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ABSTRACT IDEAL THEORY* 

BY OYSTEIN ORE 

1. Introduction. Abstract ideal theory is a branch of algebra 
which has come into prominence only in recent years; its im­
portance for algebraic problems and also for branches of mathe­
matics outside of algebra proper has however been increasingly 
recognized; it seems established that the ideals, corresponding 
in many ways to the normal subgroups in the theory of groups, 
are the most convenient building stones in a large number of 
algebraic structures. 

In the following I have tried to give a survey of the most im­
portant problems and results, but it should be realized that an 
account of this kind must necessarily be incomplete, since the 
field is too wide and too diverse to be covered in a single lecture. 
To limit the subject, only commutative ideal theory will be con­
sidered; demonstrations have been omitted, although reluc­
tantly, since an occasional proof will often clarify more than 
any explanation the tools and working methods of a theory. 
Another difficulty in this case lies in the fact that the theory 
itself to a large extent is still in an evolutionary stage and has 
not reached the harmonious form it will probably assume later 
on. Only for domains in which the finite chain condition holds 
does it seem to have arrived at some degree of perfection. His­
torically several of the fundamental ideas can be traced to the 
work of Dedekind, Kronecker, and Lasker, but the main con­
tributions to the theory have been made in the last ten yeUrs by 
E. Noether, Krull, van der Waerden, Henzelt, Grell, Stiemke, 
and others. 

The first part of the paper contains some of the main prop­
erties of ideals, operations on ideals, quotient rings, and iso­
morphisms; then follows a discussion of prime and primary 
ideals and the consequences of the finite divisor chain condition. 
The four principal ideal representations by E. Noether are 
treated fairly completely, and to illustrate these abstract de-

* Symposium lecture delivered at the meeting of the Society in New York, 
April 14, 1933. 
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composition theorems I have given some of their applications 
to algebraic manifolds and the theorems of Hubert and M. 
Noether. The rings in which every ideal is the product of prime 
ideal powers, that is, the integrally closed rings, are mentioned 
next; in the last part I have given some results for rings in which 
the chain condition does not hold and also discussed some of 
the novel ideas of Krull on a more topological introduction and 
definition of ideals by means of absolute values. 

2. Ideals and Operations on Ideals. In the following we shall 
study the structural properties of an abstract ring R ; we assume 
that R has the ordinary ring properties, that is, it is an abelian 
group with respect to addition, and that multiplication is as­
sociative, distributive, and commutative. An ideal a in R is a 
subring of R with the following properties : 

(a) When a and /3 are elements of R belonging to a, then 
a ±]8 belongs to a. 

(b) For an arbitrary element X in R and ce in a the product 
\a belongs to a. 

This definition is due to Dedekind. An important class of 
ideals are the principal ideals (a) generated by a single element 
a in R; (a) must contain all sums a+a • • • , and all multipla 
\a such that every element can be written in the form a'=\a 
+na, where n is a rational integer; when R contains a unit 
element e we obtain the simpler representation a' =Xa. Another 
class of ideals are those having an ideal basis, ct= («i, • • • , ar) ; 
every element in a can then be represented in the form 

a! — \IOL\ + • • • + \roir + ^i«i + • • • + nrar) 

where the X4 belong to R and the fit are rational integers. We 
suppose in the following that R does not consist only of the 
zero element; every ring then has at least two ideals, the zero 
ideal it = (0) and the unit ideal R ; when R contains a unit ele­
ment then R= (e) is a principal ideal. 

The fact that an element a belongs to an ideal a is usually 
expressed by a congruence a = 0 (mod a) ; the more general con­
gruence a= /3 (mod a) denotes that a—f3 belongs to a. When all 
elements of an ideal h belong to a, we write b = 0 (mod a) or 
a > b and say that b is contained in a or a is a divisor of b. I t is 
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obvious that the zero ideal n is divisible by all ideals and that 
R divides all ideals. 

The application of ideals to algebraic problems is based upon 
the existence of various processes by means of which one can 
derive new ideals from a set of given ideals. There are four 
fundamental ways of combining two given ideals a and b into 
new ideals, and since they will be used constantly in the follow­
ing, their definitions and simplest properties shall be mentioned 
here. 

(i). The cross-cut or greatest common divisor b = (ct, b) of two 
ideals consists of all elements of the form S = a+j8, where a be­
longs to a and /3 to b ; it has the properties 

(1) a s 0, b = 0 (mod b), 

and b = 0 (mod bi) for all other ideals bi for which (1) holds. 
(ii). The union or least common multiplum m = [a, b] consists 

of all elements contained both in a and b; one has 

(2) m == 0 (mod a), m = 0 (mod b), 

and m = 0 (mod m) for all other ideals m satisfying (2). 

(iii). The product ab consists of all elements 7 = 2 / ce/3 repre-
sentable as the sum of products a/3, where a belongs to a and ]8 
to b; the multiplication of ideals is obviously associative and 
commutative. When c = ctb, we say that a is a factor of c; it is 
seen that then c = 0 (mod a) so that a is also a divisor of c, 
but not conversely. From the former definitions one concludes 

ct(b, c) = (ab, etc), ab = 0 (mod [a, b]), 

and it can also be shown that 

[a, b](a, b) = 0 (mod ab). 
(iv). The ideal quotient a:b is the set of all elements 7 in R 

such that 7/5 belongs to a for any element /3 in b. If c = a:b, then 

(3) cb = 0 (mod a), 

and Ci = 0 (mod c) for any other ideal Ci satisfying (3). Among 
the most important properties of the ideal quotient are the fol­
lowing: 

a:b = a:(a, b), 

[a, b]:c = [a:c, b:c], 

(a:b):c = (a:c):b = a:bc. 
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AU the operations introduced here can of course be extended 
to the case of an arbitrary finite number of ideals. 

3. Quotient Rings. Let a be an ideal and let us divide all 
of the elements of R into classes (mod a) by stipulating that 
two elements a and a\ belong to the same class â if and only 
if a = ai (mod a). The sum and product of two classes a+/3 and 
âjS are then defined as the classes containing a+ /3 and a/3; by 
this definition the set of all residue classes forms a commuta­
tive ring, which we denote by R/a and call the quotient ring or 
ring of residue classes of R with respect to a. 

At this point it becomes clearer why we have chosen, from 
the beginning, to study ideals among the various possible types 
of subrings in R : the ideals are the only subrings for which the 
quotient ring exists. The ideals correspond to the normal sub­
groups in the group theory, these being the only sub-groups for 
which a quotient group exists. This analogy between ideals and 
normal sub-groups pervades the whole theory of ideals and we 
shall see several instances of it in the following; let us mention 
as an example: Every ideal c in the quotient ring R/a is an 
ideal c in R containing a when considered as a set of elements in 
R and conversely. 

This analogy appears most clearly in the study of homeo-
morphisms of rings. We say that R corresponds homeomorphi-
cally to a ring R' when to every element a in R there corresponds 
a unique a ' in Rf such that a± /3 corresponds to a ' ± / 3 ' and a/3 
to a'/3', while conversely there exists at least one a to each a ' . 
When the homeomorphism is a one-to-one correspondence we 
say that R and R' are isomorphic; a homeomorphism is usually 
denoted by R~R' and an isomorphism by R^R'. 

In the case of a homeomorphism between R and R', one finds 
that all elements in R corresponding to the zero element 0' in R' 
form an ideal a in R since from a—>0', OL\—»0' follows a±a'—>0' 
and Xa—*0' for an arbitrary X in R. All the elements in an arbi­
trary residue class y (mod a) in R must then correspond to the 
same element y' in R and this correspondence is easily seen to 
be an isomorphism. This gives the fundamental theorem on the 
homeomorphisms of rings. Every ring homeomorphic to R is iso­
morphic to a residue ring R/a, where a is an ideal in R, and every 
such residue ring is homeomorphic to R. The second part of the 
theorem is evident. 
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It should be observed that the construction of residue rings 
and homeomorphic rings is a very familiar process in algebra 
and even in analysis. Let us consider, as an example, the con­
struction of the field of real numbers K from the field k of ra­
tional numbers. One forms the ring R of all convergent se­
quences a=(ao, #1, • • • ), where the a* are rational numbers. 
The set of all sequences having the limit zero is an ideal a in R. 
Next one proceeds to identify all zero sequences, that is, one 
constructs the quotient ring R/a and after showing that this 
ring is a field, K is defined by the relation K^R/a. The same 
process can obviously be applied in any ring in which an ab­
solute value or the notion of a limit can be defined. 

I also mention that from the definitions (i) and (ii) one can 
derive a second fundamental theorem on the isomorphisms of 
rings expressible in the formula 

(4) (a,b)/a^b/[a,b]. 

4. Prime Ideals. A natural generalization of prime ideals in 
the theory of algebraic numbers would be to define a prime 
ideal p as an ideal without divisors, that is, there shall exist no 
ideal except p itself and R containing it. A prime ideal might 
then also be called a maximal ideal and according to a remark 
in §3 the quotient ring R/p must be simple, that is, have no 
ideals different from the ring itself and the zero ideal. A simple 
analysis yields the following result.* A simple ring is a field or 
a ring isomorphic to the finite ring 

(5) Rp = 0,p,2p,---y(p- l)p (mod p*). 

This definition of a prime ideal was actually used by Sono, 
one of the earliest writers on abstract ideal theory. However, 
the applications of the theory have shown that this definition 
is too limited and that a more satisfactory definition is obtained 
by using another property of prime numbers. A prime ideal p 
is an ideal such that from a/3 = 0 (mod p) follows ce = 0 or /3 = 0 
(mod p). One may also state this definition in an equivalent 
form:/fora an ideal relation bct = 0 (mod p) follows b = 0 or ct = 0 
(mod p), or finally as a property of the residue ring: a prime 
ideal is an ideal such that the residue ring R/$ is a domain of in­
tegrity, that is, has no divisors of zero. 

* Sono, Memoirs of the College of Science, Kyoto, vol. 2 (1917). 
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In the following we shall adopt the last definition of a prime ; 
it is easily seen that it is not equivalent to the former since the 
zero ideal n in (5) is a prime ideal by the first definition, 
Rp/n ^Rp being simple and yet R£ = n. 

A very characteristic, but at the first glance somewhat sur­
prising, property of our prime ideals is that they may have 
divisors. As an example let us consider the ring of all polynomi­
als in two variables x and y with coefficients in a field K. The 
ideal pi = (y) is seen to be prime and to consist of all polynomials 
divisible by y ; the residue ring is the set of all polynomials in x. 
The ideal p2 = (x, y) is a prime ideal dividing pi; it consists of 
all polynomials without constant term, and the residue ring is 
K. We shall see later that by certain geometrical applications, 
if there exists a chain 

po < pi < • • • < pr < R 

of prime ideal divisors of a prime ideal p0 such that no further 
prime ideal can be inserted in the chain, then r coincides with 
the dimension of the manifold corresponding to po. 

5. The Chain Condition, We have introduced ideals in order 
to study the structure of a ring R and its subrings. In a special 
case, as for instance the ring of all integers in a finite algebraic 
field, we have the fundamental theorem that every ideal is 
uniquely representable as the product of prime ideals. For more 
general rings a result of this simple nature cannot be expected 
as examples show; as a matter of fact, the ideal theory for the 
most general rings is so complicated that it is at the present 
time not fully mastered. We shall therefore have to impose a 
condition on the rings we consider; this condition brings us 
closer to the case of ideals in algebraic fields, but it is at the 
same time sufficiently general to include the most important 
rings in algebra. We shall call it the condition of finite divisor 
chains or simply the chain condition. 

Every chain of ideals ai<ct2< • • • , each dividing the pre­
ceding, must break off after a finite number of terms. One can also 
put the condition in the form, that if an infinite chain Ctî ct2 
S - - - exists, then (from a certain point on) all ideals must be 
equal. The chain condition corresponds to the condition usually 
imposed by the study of groups, that the series of composition 
shall be of finite length. The condition is obviously satisfied in 
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rings of integers in a finite algebraic field, since all ideals have 
only a finite number of divisors. 

One may state the finite chain condition in a different man­
ner, which is sometimes more useful for applications. When the 
chain condition holds for the ideals in a ring R, then every ideal 
has a finite ideal basis and conversely. Suppose that the chain 
condition holds and let a be an ideal in R; when a\ is an element 
of a, then a = (ai) or there exists an element a2 in a, but not in 
(ai) ; then we have a = («i, a2) or there exists an as in a not con­
tained in («i, a2), and so on. This process must finally give us a 
basis for a since 

(ai) < (ah a2) < (ah a2, a3) < • * * 

breaks off. Let us suppose conversely that every ideal has a 
basis and let Cti^ct2^ • • • be an infinite chain of ideals. The 
union of all ideals et; is an ideal b = (ft, • • • , j8r) in R, and since 
each Pi belongs to an ideal et/ and to all following ideals, one 
must have ak = b from a certain index k. 

6. Irreducible Ideals. The idea of decomposition theorems for 
ideals in rings where unique decomposition into prime ideal fac­
tors does not exist, seems to have originated with Dedekind; 
Lasker* realized their importance for polynomial ideals and 
proved the existence of a decomposition into primary compo­
nents; an account of Lasker's work can be found in Macaulay's 
tract: Algebraic Theory of Modular Systems. The first general 
investigation of the decomposition of ideals in rings (satisfying 
the chain condition) is due, however, to E. Noether;f in the 
following, we shall give the principal results which have been 
obtained. 

An ideal a is said to be reducible when it can be represented 
as the union ct= [b, c] of two proper divisors b and c; a is irre­
ducible when no such representation exists. When a is reducible, 
the divisors b and c may be decomposed further, and from the 
chain condition, it follows that one can finally obtain a repre­
sentation 

(6) a = [ai, a2, • • • , a r], 

* Mathematische Annalen, vol. 60 (1.905). 
t Mathematische Annalen, vol. 83 (1921). 



Î933-] ABSTRACT IDEAL THEORY 735 

where all et; are irreducible. I t may occur that some of the ideals 
a» in the representation (6) are superfluous, a* being a divisor of 
the union of the remaining ideals ; we shall suppose that all such 
ideals are omitted. I t may also happen that a component can 
be replaced by a proper divisor. When all such reductions have 
been made, we say that (6) is a reduced representation of a by 
means of irreducible components. This is the first decomposition 
given by E. Noether; it is usually not unique, but one can show: 
The number of irreducible components in two different reduced 
representations is always the same. 

7. Primary Ideals. In the ring of rational integers the reduced 
representation (6) corresponds to the representation of an in­
teger as the product or least common multiplum of prime pow­
ers. I t may, therefore, be natural to seek a connection between 
the reduced representation and the prime ideals dividing a ; this 
connection is obtained through the introduction of primary ide­
als. These ideals form a generalization and a substitute for the 
prime ideal powers in the general case and reduce to them in the 
case of unique prime ideal factorization. An ideal q is said to be 
primary if a congruence a(3 = 0 (mod q), where a = 0 (mod q), 
implies the existence of an exponent k such that ft = 0 (mod q). 
When k = l for all elements in R, then q is a prime ideal. To 
every primary ideal q there exists, as for the prime powers, a 
unique prime idéal p associated with it; this prime ideal is de­
fined as the set of all elements w in R having the property that 
a power ir2 belongs to q. A simple study shows that these el­
ements actually form an ideal which must be prime. The def­
inition of p and the primary ideal q shows that a congruence 
ce/3 = 0 (modq), where a = 0 (modq), implies that /3 belongs to p. 

Since we suppose that the chain condition holds, there exists 
a representation p = (ft, • • • , ft). A power of each ft belongs 
to q according to definition and a power of p must consequently 
also be divisible by q. To every primary ideal q there belongs a 
unique prime such that 

(7) p, q > p ' . 

One might have used the relation (7) to define a primary ideal 
and its corresponding prime ideal. A primary ideal is sometimes 
defined by an ideal condition, namely, that the ideal congruence 

ab = 0 (mod q), a ^ 0 (mod q), 
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shall imply bk^0 (mod q). An ideal having this property is said 
to be strongly primary ; while the former definition yields weakly 
primary ideals. The two concepts are identical in rings in which 
the chain condition holds. 

The study of the structure of primary ideals seems to be one 
of the most important problems in abstract ideal theory. Vari­
ous authors have dealt with this problem directly or with ques­
tions which can be interpreted in this way. I shall only mention 
papers by Sono, Schmeidler, van der Waerden, and a series of 
contributions by Krull. The problem is equivalent to the investi­
gation of primary rings, that is, the rings of residue classes of 
primary ideals. The definition of a primary shows that these 
rings have the characteristic property that a power of every di­
visor of zero must vanish. 

8. Decomposition Theorems. We now return to the representa­
tion (6) of an ideal by means of irreducible components. It can 
be shown, that every irreducible ideal is primary; each compo­
nent, consequently, has a characteristic prime ideal and it can 
be proved, furthermore, that not only is the number of irre­
ducible components in any representation (6) of an ideal a the 
same, but also the corresponding prime ideals must be the same 
and have the same multiplicity. 

Another theorem on primary ideals is the following. The union 
of primary ideals belonging to the same prime ideal is again pri­
mary, but the union of primary ideals belonging to different prime 
ideals is never primary. We now unite all primary ideals in (6) 
belonging to the same prime ideal p into a new primary ideal 
by, and call by a maximal primary component of a. Our former 
results then yield this: Every ideal a can be represented as the 
union of maximal primary components 

(8) a= [Bi, Ba, • • • ,&•] ; 

the number of components and the corresponding prime ideals 

(9) »h, H • • • , ps 

are the same for all such decompositions. The prime ideals (9) are 
all different and uniquely determined; we shall call them the 
prime ideals belonging to a. 

E. Noether gives two other types of decomposition theorems ; 
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the two last types are distinguished by the fact that the de­
compositions are unique. 

An ideal b is said to be relatively prime to a if any relation 
bc = 0 (mod a) implies c = 0 (mod b). If we suppose a<R, then 
the necessary and sufficient condition that b be relatively 
prime to a is that no prime ideal belonging to b is divisible by 
a prime ideal belonging to a. This criterion shows that the no­
tion of being relatively prime is not mutual, that is, b may be 
relatively prime to a, but not a to b. Krull defines relatively 
prime by the equivalent condition ct:b = a. An ideal a is said to 
be relatively-prime decomposable when there exists no represen­
tation ct= [b, c], where b and c are mutually relatively prime. 
One can then show that every ideal has a unique decomposition, 

(10) a = [ei, C2, • • • , Ct]y 

as the union of relatively-prime indecomposable components. The 
decomposition (10) can be obtained from the maximal primary 
decomposition (8) by joining all primary components into sets 
such that when a set contains a primary ideal with the corre­
sponding prime ideal p, then it contains all primary ideals be­
longing to prime divisors or multipla of p. The uniqueness of 
the decomposition (10) also gives some information about the 
components in (8), and a certain class of maximal primary com­
ponents, the so-called isolated components, can be shown to be 
uniquely determined. 

The final decomposition theorem does not possess quite the 
same generality as the preceding since we shall have to suppose 
that the ring contains a unit element e. On the other hand, this 
decomposition claims additional interest since it gives not only 
a representation as the union of ideal components, but also a 
product representation by means of the same ideals. Let a and 
b be ideals without common divisors, that is, (a, b )= i£=(e ) ; 
this implies that a and b are mutually relatively prime, and the 
definitions in §2 show that in this case ctb = [a, b ] ; for ideals 
without common divisors the union is equal to the product. An 
ideal is direct indecomposable, when no identity ct= [b, c] holds, 
where b and c are without common divisors. I t can then be 
shown that every ideal is uniquely représentante as the union or 
product of direct indecomposable ideals, 
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(11) a = [bi, • • • , b„] = bx • • • b„, 

where each bi has no common divisor with the union of the rest. 
The four decompositions (6), (8), (10), (11) give the main 

results on the structure of ideals; they have been given, as in 
the original paper by E. Noether, in order of decreasing de­
composition, each being deducible from the preceding by joining 
some of its components into larger groups. Space does not per­
mit a discussion of other properties of these decompositions, but 
it should be mentioned that Krull* has simplified the proofs of 
the main theorems through a systematic use of the ideal quo­
tient. In another paper f Krull deduces the theory on an axi­
omatic basis, considering the ideals not as sets in rings, but as 
symbols having the operational properties defined in §2.$ 

9. Polynomial Ideals and Algebraic Manifolds. To clarify the 
significance of this abstract theory it may be well to consider a 
concrete illustration ; a suitable example of sufficient generality 
can be found in the theory of polynomial ideals and the related 
theory of algebraic manifolds. We shall suppose that K is an 
algebraically closed field and consider the ring R{x\, • • • , xn) 
of all polynomials in n variables with coefficients in K; according 
to a well known theorem by Hubert the chain condition will 
hold in this ring since every ideal has a basis. 

An algebraic manifold in the corresponding ^-dimensional 
space Sn is the totality of points £ = (£i, • • • , £n) with coordi­
nates in K satisfying a set of algebraic relations 

(12) fi(x) = fi(xh • • • , xn) = 0, {i = 1, 2, • • • ) . 

To every ideal a in R (xi, • • - , # » ) then corresponds a unique 
algebraic manifold SDî(a) defined as the totality of points at 
which all polynomials of a vanish ; it coincides with the manifold 
defined by the basis polynomials of a. Two different ideals may 
have the same manifold, for instance, 2W(a) = 9ïî(an) ; when a>b, 
then obviously 

2K(a) g 3 » ( b ) . 

To every algebraic manifold $1 corresponds conversely a unique 

* Mathematische Annalen, vol. 90 (1923). 
t Sitzungsberichte Erlangen, vol. 56 (1924). 
t See also Sono, Memoirs of the College of Science, Kyoto, vol. 7 (1923). 
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ideal am denned as the set of all polynomials vanishing in all 
points of 9ft. 

One easily finds that the cross-cut of two algebraic manifolds 
9ft and 91 is an algebraic manifold defined by (am, an), while the 
union is an algebraic manifold defined by the union [am, an] 
or also by the product aman. We say, as usual, that an algebraic 
manifold is irreducible if it is not the union of two manifolds 
contained in it ; one can then show that the necessary and suf­
ficient condition that a manifold be irreducible is that the corre­
sponding ideal be a prime ideal ; every prime ideal defines a unique 
irreducible algebraic manifold. 

This result illustrates clearly the occurrence of divisors of 
prime ideals as has already been mentioned in §4. For instance, 
in three-dimensional space any irreducible surface will corre­
spond to a prime ideal p2 of dimension 2 ; any irreducible curve 
on the surface corresponds to a prime ideal p\ dividing p2, while 
every point on the curve is a zero-dimensional prime ideal p0 

dividing p2 and pi. 
Since the manifolds defined by prime ideals are known, the 

manifolds of all other ideals can be determined; the manifold 
of a primary ideal q is equal to the manifold of its prime ideal 
p, since p divides q and a power of p is divisible by q; the mani­
fold of the union of two ideals is equal to the union of the mani­
folds. If we represent an ideal a as the union of maximal primary 
components, the manifold of a must then be equal to the union of 
the manifolds defined by the prime ideals belonging to a. The fact 
that these prime ideals were uniquely defined is only a new way 
of stating that every algebraic manifold can be represented 
uniquely as the union of irreducible manifolds. 

These remarks give us a simple access to various fundamental 
theorems in the theory of algebraic manifolds. Let f(x) be a 
polynomial vanishing at all the points of the manifold 9ft de­
fined by the relations (12); ƒ(x) is then divisible by all prime 
ideals belonging to the ideal 

(13) * = (fi(*),--,Mx)), 

and if p is an upper bound for the exponents of the primary 
components of a, then f(x)p must belong to a. This is equivalent 
to a theorem of Hubert: If a polynomial f (xi, • • • , xn) vanishes 
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at all points satisfying (12), then there exists an exponent such 
that 

f(x)p = £iO)/iO) + g2(x)f2(x) + • • • + gr(x)Mx). 

Another important problem is to determine when a poly­
nomial f(x) belongs to a given ideal a; we first consider the 
simplest case of an ideal a = (/i(x, y),f2{xy y)) in two variables 
and suppose that the curves /i(x, y) = 0, /2(x, 3/) = 0 have only 
a finite number of points (xu 3>i), * • ' > (%n yr) in common. The 
manifold of a is then determined by the zero-dimensional prime 
ideals J) = (x — Xiy y— yd, and a has a representation of the form 
ft^ffii» ' • ' > Or] as the union of maximal primary components g* 
with the corresponding prime ideals p. For a polynomial/(x, y) 
to belong to a it is necessary and sufficient that it belong to all 
primary components g*; the ideals g* are not known directly, 
but since g divides $ipi, one finds that ĝ  = (a, (3/ *') and we obtain 
the condition of M. Noether, 

(14) f(x,y) = 0 (mod (a, J3/0). 

Since pfi consists of all terms of the form 2ca,b (x — Xi)a (y — yi)b, 
a+b^pi, it follows that fix, y) belongs to a, that is, is repre-
sentable in the form 

(15) f(x, y) = gi(x, y)fi(x, y) + g2(x, y)f2(x9 y) 

if and only if such a representation (15) exists for all intersec­
tions when terms of degree p in x — Xi and y — yi are disregarded. 
The importance of the theorem of M. Noether for algebraic 
geometry is well known; a condition similar to (14) for an arbi­
trary ideal (13) was given by Henzelt.* 

10. Unique Prime Ideal Decomposition. I t is a problem of 
considerable interest to determine the necessary and sufficient 
conditions which a ring must satisfy in order that every ideal 
be representable uniquely as the product of a finite number of 
prime ideal factors. This problem has been investigated sys­
tematically by E. Noether. f We shall consider a ring R with 

* Henzelt, Mathematische Annalen, vol. 88 (1923); E. Noether, Mathe­
matische Annalen, vol. 90 (1923); Hermann, Mathematische Annalen, vol. 95 
(1925); Kapferer, Mathematische Annalen, vol. 97 (1927); v. d. Waerden, 
Mathematische Annalen, vol. 96 (1927) and vol. 99 (1928), Algebra, Chap. 13. 

f Mathematische Annalen, vol. 96 (1927). 
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unit element and without divisors of zero. I t is obvious that 
it is necessary first to impose the chain condition on the ring; 
secondly it must be assumed that the prime ideals in R have no 
divisors ^ R . This condition either may be postulated or may 
be derived as a consequence of the so-called chain condition for 
multipla of ideals. Every chain cti>a2> • • • of ideals, each di­
visible by the preceding, must break off when all the ideals in the 
chain are divisors of a fixed ideal a^O. When the two chain con­
ditions are satisfied the three decompositions for ideals given in 
§8 are identical and every ideal in R is representable uniquely 
as the product of its maximal primary components. It remains 
then to find the condition which will make every primary ideal 
equal to a prime ideal power ; this condition is closely connected 
with the notion of integral elements. 

Let S and T be two rings ; S shall be a subring of T and have 
a unit element. An element t in T is said to be integral with re­
spect to S, when the powers of / can be expressed by a basis 
/i, • • • , tn in the form 

(16) / = SX h + • • • + Sn tn, 

with coefficients Sj(i) in S. When S satisfies the chain condition, 
(16) is equivalent to the condition that / shall satisfy an alge­
braic equation 

tn + sj"-1 + • • • + sn = 0. 

We say that S is integrally closed with respect to T when every 
element in T which is integral with respect to S is already con­
tained in S. 

Let us now return to the ring R considered above, and impose 
the third condition : R shall be integrally closed with respect to its 
quotient field. Every primary ideal can then be shown to be a 
prime ideal power and there is a unique prime ideal decomposi­
tion of each ideal in R. The theory is completed by the converse 
theorem, that if there exists a unique prime ideal decomposition 
then the ring must satisfy the three conditions mentioned.* 

Some of the most important rings in algebra are integrally 
closed and satisfy the chain condition, but prime ideal divisors 

* See also Krull, Sitzungsberichte Heidelberg, 1924, 1925; Mathematische 
Annalen, vol. 99 (1928). 
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may exist. The rings of polynomials are of this type. In this 
case, however, a certain class of ideals, namely the principal 
ideals, have a unique decomposition into prime factors. Van der 
Waerden* has pointed out that the decomposition theorem 
holds even for rings with prime ideal divisors, when only the 
so-called highest prime ideals are considered. A highest prime 
ideal is then defined as a prime ideal not dividing any other 
prime ideal ; in the case of polynomial ideals these prime ideals 
define the algebraic manifolds of dimension n — \ and are ordi­
nary prime polynomials. Through a suitable definition of equi­
valence of ideals van der Waerden shows that every primary 
ideal is equivalent to a prime ideal power, and that every ideal 
is equivalent to a unique product of prime ideals; in the case of 
rings without prime ideal divisors this reduces to the ordinary 
decomposition theorem. 

11. Rings without Chain Condition. We shall conclude this 
survey by considering briefly the results obtained for the ideal 
theory in rings without chain condition. The examples which lie 
closest at hand are the infinite algebraic fields ; the ideal theory 
of the ring of all integers in such fields has been discussed in a 
remarkable posthumous paper by Stiemke. f There exist prime 
ideals and also an enumerable basis for each ideal. One can 
usually not expect any representation of ideals as product of 
prime ideals since the prime ideal divisors of even a single prime 
may form a set having the power of the continuum. There are, 
however, special infinite algebraic fields in which there exists 
only an enumerable set of prime ideals and in such fields every 
integral element can be represented uniquely as the product of 
prime ideal factors and certain primary factors, which can be 
characterized by fractional exponents. An example of a field 
satisfying the condition of Stiemke is the field of all pmih roots 
of unity (w = 0, 1, 2, • • • ), where p is a fixed prime. 

The investigations of Stiemke have been continued by 
Krull, % who has obtained a method of handling the set of ideals 
in an infinite ring of algebraic numbers through the introduction 

* Mathematische Annalen, vol. 99 (1928); Algebra, §103. 
f Mathematische Zeitschrift, vol. 25 (1926). 
% Mathematische Zeitschrift, vol. 29 (1929); vol. 31 (1930). 
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and systematic use of the notion of absolute values* Let K be 
any field. We say that an absolute value is defined in K when 
to each element a in K there corresponds a real number ||a|| 
with the properties 

||0|| = 0, ||a|| > 0, when a ^ 0, 

(17) MI-INIMII« + flll^NI + IWI. 
Let us consider the rational field P as an example. In this field 
there are only two different types of absolute values ; the first is 
the trivial type 

(18) IMI = | a |', O^pè 1, 

where p is a constant and \a | denotes the ordinary absolute 
value. To obtain the second type let p be a prime and let us 
write all rational numbers in the form 

u 
(19) r = pa — , ( « , t>) = 1, 

v 
where u and v are integers not divisible by p\ the correspondence 

(20) IHI =c;o<c^i, 

then satisfies the conditions for an absolute value. The main 
difference between the two types (18) and (20) of absolute val­
ues lies in the triangular inequality (17) ; in the case of the type 
(20) the inequality may be strengthened to 

(21) ||« + i8 | |âMax( | |« | | , | | iS | | ) 

and we say that the absolute value is non-Archimedian. Ostrow-
skif has shown that every field with Archimedian absolute 
values is isomorphic to a subfield of the field of all complex 
numbers, and that the absolute value can then be defined as in 
(18). 

For the study of divisibility properties only the non-Archi-
median absolute values are, therefore, of importance; in this 
case the exponent a in (19) is the characteristic to be investi -

* See for instance the exposition of this theory in O. Ore, Some recent de­
velopments in abstract algebra, this Bulletin, vol. 37 (1931), pp. 537-548. 

t Acta Mathematica, vol. 41 (1917). 
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gated and it is, consequently, more convenient to define the 
absolute value v(a) in the additive form 

(22) v(o&) = v(a) + v(fi), v(a + ]8) è Min (v(a), v(fi)). 

One obtains (22) from (17) and (21) by putting v(a) = — log||a||, 
and for the rational case (19) it reduces to v(r) = ka, where the 
positive constant k may be taken equal to unity. 

We return again to the representation (19) of the rational 
numbers ; the numbers r for which the exponent a is non-nega­
tive form a ring Pp which we shall call an evaluation ring (Be-
wertungsring) with respect to p. This ring has a series of proper­
ties which all have their analogues in the more general evalua­
tion rings considered later; Pp is a maximal ring in P , that is, 
there is no ring containing Pv except P ; Pv is integrally closed 
in P ; when Y\ and r2 are two elements in Pp, then Y\ is divisible 
by f2t or conversely; the ideals in Pp are all of the form a = (pn) 
and an absolute value for the ideals can be defined by putting 
v(a) =n\ the ideal a consists of all elements r such thatfl(r) j^fl(a); 
the only prime ideal is p = (p) consisting of all elements with 
positive absolute values. The ring of rational integers is equal 
to the cross-cut of all rings Pp for all p, and the divisibility 
properties of any rational integer are determined by its values in 
the various evaluation rings. 

Krull now shows that for each definition of absolute value 
in a field there exists a corresponding evaluation ring consisting 
of the elements with non-negative values; this ring is maximal 
and conversely every maximal ring defines an absolute value. 
These rings have the properties mentioned above: An evalua­
tion ring is integrally closed; when two elements are given, one 
always divides the other; there exists only one prime ideal £> 
consisting of all elements having positive absolute values. 
There are now two different possibilities. The values of the 
elements may form a discrete set; in this case we have perfect 
analogy to the rational case and all ideals are powers of p. In 
the second case the values may be everywhere dense; in both 
cases the ideals a consist of the elements whose values lie above 
a certain limit K. We define a value of a by putting v(a) =/c; to 
each K there may correspond two ideals, namely, the ideal a 
containing all a such that v(a) >v(a) =/c and the ideal b con­
taining also elements /3 such that v(fi) =v(b) = K. We shall call 
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a an open ideal and 6 a closed ideal and say that v(a) >v(b) ; in 
the case of continuous values p is an open ideal with the value 
0 and the unit ideal is a closed ideal with the same value. 

This theory may be applied to the ring R of all integers in an 
infinite algebraic field K. One can show that the maximal rings 
in K are defined by the prime ideals p in R and that R$ consists 
of all fractional elements in K whose denominators are not 
divisible by p; and that the ring of integers R is equal to the 
cross-cut of all maximal rings Rp as in the rational field. To each 
ideal a in R corresponds an ideal ctp in Rp and this permits us to 
define a set of values v$(a) for each ideal a, where p runs through 
all prime ideals of JR. These values may be considered as a gen­
eralization of the exponents in the case of prime ideal decomposi­
tions in the finite fields. They satisfy the addition theorem, 
Vp(ab)=vp(a)+Vp(b), and the fundamental theorem is, that an 
ideal a can only be divisible by an ideal c when vp(a) èflp(c) for all 
prime ideals p ; one can also find a necessary and sufficient con­
dition that an ideal be a factor of another. The inverse problem, 
namely, finding all sets of values to which there correspond 
ideals, Krull was able to solve, through topological considera­
tions, by making the set of all evaluation rings a topological 
space. 

In a recent paper, Krull* generalizes the notion of absolute 
value by letting correspond to each element of a field not a real 
number as formerly, but an element of an ordered abelian group, 
such that the conditions (22) are satisfied. This absolute value 
corresponds to a generalized type of evaluation rings with a 
number of properties in common with the evaluation rings 
studied above. One of the most interesting results of this theory 
is the following characterization of the integrally closed rings. 
A necessary and sufficient condition that a ring be integrally 
closed is that it be the cross-cut of general evaluation rings. Krull 
also gives various other results which cannot be discussed here ; 
a paper by Prüferf on the divisibility of ideals in rings without 
chain condition and a paper by v. DantzigJ on topological alge­
bra should be mentioned in this connection. 
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