
QUANTUM MECHANICS AND ASYMPTOTIC SERIESf 

BY G. D. BIRKHOFF 

PART I. 

1. Introduction, In its bold primary outline the program of 
quantum mechanics in the Schrödinger form runs as follows: 

(A) Set up the Hamiltonian equations of the atomic system 
(nucleus+electrons) on a classical basis: 

dxi dH dyi dH 

dt dyi dt dxi 

where xiy yi are ordinary rectangular coordinates and momenta, 
and H(xu • • • , xn\ yi, • • • , yn) is the total energy. The 
associated Hamilton-Jacobi partial differential equation is then 

/ dS dS\ 
( %i, • • • , x«\— > * * ' >T~" ) 
\ dxi dxj 

dS ( dS dSy 

— + H[ xi, - - - , xn;-r~> • • • > ~r- J = 0. 

(B) Write down the corresponding homogeneous linear par­
tial differential equation (the Schrödinger wave equation) : 

/ I d 1 d \ 
+ Hlxu--,Xn;— — ; • • • ,— — U 

\ X OXi X OXj 

1 óy 
f- H[ xi, • • • , xn;— — > • • • ; — -7—)^ = 0, 

X dt 
where the operational symbols in H appear on the right hand 
side of the individual terms of iJ, and where X = liri/h, if h 
is Planck's constant. 

(C) Write 

yp = e-xsy,*^ . . . ? xjf 

thus obtaining the linear differential equation (written in opera­
tional form) 

Off - E)$* = 0, 

and determine the characteristic solutions, ^1*, ^2*, • • •, for 
which the \[/? vanish at infinity in such wise that 

t An address delivered at Chicago, June 20, 1933, before the Society and 
Section A of the American Association for the Advancement of Science. In 
connection with the first part of this lecture, see two notes in the Proceedings 
of the National Academy of Sciences for March and April, 1933. 
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ƒ ^ t * dxi - • • dxn 

is finite. The corresponding Ei, E2, • • • then prescribe the 
possible "energy levels," so that the possible "spectral fre­
quencies/' vmny are those given by the formula 

hvmn = Em — En, (Em > En), 

in accordance with the Planck-Einstein law. 

Thus the program begins by relating the physical problem 
to a special linear boundary value problem of classical type. 
In its further development the aim is to obtain a complete 
account of atomic properties which is in accord with this 
starting point. While there has been extraordinary progress, 
there can be little doubt that complete success of the program 
is hardly to be hoped for. 

My purpose today is to lay before you a tentative answer to 
two important mathematical questions raised by the primary 
program itself. 

Firstly, what is the mathematical significance of the Schrö-
dinger wave equation in its relation to the Hamiltonian equa­
tions? My answer will be given in terms of classic formal proc­
esses connected with asymptotic series. I t is true that the 
theoretical physicist has obtained a kind of "deduction" of the 
wave equation on the basis of the analogy between the wave 
theory of light and the elementary optical theory (wave and 
particle theory). But I hope to bring out more clearly the true 
inwardness of the Schrödinger wave equation as a purely 
mathematical entity, f 

Secondly, the form of the wave equation which arises in 
practice is usually reducible by means of separation of variables 
to an ordinary differential equation essentially of the following 
type: 

d2\l/ Sir2m 
+ (E - V(x))f = 0, 

dx2 h2 

where the function V(x) is defined in a certain interval in which 
E— V(x) changes sign. For the determination of the character-

t For references to the important earlier work of de Broglie, L. Brillouin, 
Schrödinger, and Dirac, see my notes cited above. 
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istic numbers and functions, certain asymptotic series have been 
employed by Wentzel, Brillouin and Kramers.f It is, however, 
an open question as to whether or not their methods are 
justifiable. However, in an important recent paper bearing 
directly upon the points at issue, Langer} announces that he 
intends later to give a general discussion of this and similar 
questions. My intention here is to outline a simple justification 
of the Wentzel-Brillouin-Kramers method on the basis of a 
slight extension of some earlier results of my own. 

Thus asymptotic series play a central role in what I have to 
say today. I would not be surprised if such series were found 
ultimately to be of importance in other aspects of quantum 
mechanics; for example, in connection with the proper formula­
tion of Heisenberg's uncertainty principle. 

2. Linear Equations and Asymptotic Series. Let 

(1) Lty, X) = 0 

be any linear homogeneous differential equation in the depend­
ent variable \p and the independent variables 
and involving X, where X is a large parameter. This equation will 
be ordinary or partial according as n = 1 or n > 1. Let us suppose 
that the coefficients of xj/ and of its derivatives in L(yp, X) are 
analytic in Xi, • • • , xn, and X, and expansible in convergent 
power series in 1/X for |X | >A. 

Now under these circumstances it has frequently been found 
that the differentiation of certain solutions xp, as well as of 
their various derivatives with respect to Xi, is asymptotically 
equivalent to multiplication by \dS/dxif where S is a suitable 
function of For instance in the simple case n = 1 
of an equation 

1 d2xP 
(la) Z(*, X) ^ - — + * = 0 

X2 ax2 

with solutions g±Xte, we have d\p/dx= ±\i\//, so that 5 = ±ixin 

t For the principal references see a note by J. L. Dunham, On Wentzel-
Brillouin-Kramers1 method of solving the wave equation, Physical Review, vol. 
41 (Sept. 15, 1932). 

} R. E. Langer, On the asymptotic solutions of differential equations, with 
an application to the Bessel functions of large complex order, Transactions of 
this Society, vol. 34 (1932), pp. 447-480. 
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this case. Again, in the case of the Fourier's equation with in­
dependent variable taken as X#, 

l J V 1 1 # 
(lb) L(+, X ) S - — + - - - + * = (>, 

X2 ax2 X2 x ax 

we have S = ±ix as before for suitable solutions. 
In consequence of such an asymptotic relationship we are 

led to write 

x[/ ~ exs(x^'"*Xn)VQ(xl9 • • • , xn) 

as a first approximation to \f/f and thence successively to an 
asymptotic series for \p : 

( Vi 1)2 

\ X X 2 

where VQ, VI, • • • are functions of Xi, • • • , xn. The precise test 
for such an asymptotic series solution is of course that when it is 
substituted for \f/ in L(\f/, X), with the indicated differentiations 
carried out and the coefficients of like powers of X collected ac­
cording to the usual formal rules, the expression L(\f/y X) reduces 
identically to 0. I t is not to be expected in general that such a 
series converges and yields an actual solution, although this 
may occur in special cases. Obviously it may be assumed that 
VQ does not vanish identically, since otherwise we could remove 
a factor 1/X from the solution. 

We shall term S a "phase function," and any corresponding 
VQ an "amplitude function" of 5 . The reasons for this designa­
tion will appear subsequently. 

We propose first to outline some fundamental facts concern­
ing this classical formal process which have apparently escaped 
attention. For this purpose we find it convenient to introduce 
the modified differential operators 

d^F 1 dF d^F 1 d2F 

= , — , etc. f 
dXi X dXi dxidxj X2 dxidxj 

In the two special cases noted above this notation allows us 
to write the equations ( la) , (lb) as follows: 

t See my paper, Transactions of this Society, vol. 9 (1908), pp. 219-231. 



1933-1 QUANTUM MECHANICS 685 

duty d™$ 1 1 d^ty 
+ ^ = 0; - + - + * = 0, 

dx2 dx2 X x dx 

while, more generally, Z,(^, X) may be written as a power series 
in 1/X, 

(2) Lty, X) s Zo«0 + —£iG« + • • • , 
X 

where Li(\f/), (i = 0, 1, • • -)>are linear homogeneous expressions 
in \J/} d

[1]\f//dxif dW\p/dXidxj, etc., and where we may assume 
that LoO/Of^O, since we may always multiply through by a 
suitable power of X. Evidently, then, we may write 

(3) £,(*) = ?( V + C f ' -T^ + ? ^ * V X " + * • * ' 

Furthermore, on account of the interchangeability of the order 
of differentiation, we may assume 

U\ fc(0 - t(i). t(i) t(i) t(i) 

W %ik — Kjk, Kihi — %jlk = Kkij = * ' * > • • • . 

The order of the expression L(^ , X) is evidently that of the 
highest order of Zo, l a , • • • , say m. We shall assume that m 
is the actual order of Lo(\f/)t and shall term Lo(\[/) the "principal 
part" of L(\{/, X); in dealing with LQ we shall omit the super­
scripts in referring to £(0), £/0), • • • . 

Later on we shall have something to say concerning the 
existence of actual solutions of (1) corresponding to such 
asymptotic series solutions in the special case m = 2. For the 
present we shall make only the following heuristic remarks. 
(1) Solutions asymptotically represented by such series solu­
tions will exist for suitably restricted ranges of the variables 
#i> * • • » xn* (2) These actual solutions are not uniquely deter­
mined by the series solutions; for example, if \[/ is so represented, 
so also will (l+e~x)\f/ be if X is real and positive. (3) The solu­
tion £ 1^1+£2^2, where \j/\ and \f/2 are represented by two such 
series, is in general represented asymptotically by the domi­
nant one of the series for c$\ or £2^2. 
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If we substitute in the hypothetical series for yp and equate 
the term independent of X to zero, we obtain an equation 

/ dS dS\ 
(5) P[ xu • • • ,xn; — , • • • , — ) = 0 

\ dXi OXj 

on removal of a factor exsVo. Here the explicit expression for P is 

_ dS — dS dS 
(6) P - « + 2 > — + E^y— — + ' • • • 

Thus P is a polynomial of degree m in dS/dxi, (i = 1, • • • , w), in 
which one or more terms of degree m are actually present. 

We shall term (5) the "multiplier equation" for L{\py X)=0. 
This is an equation of the first order in S which does not contain 
5, and which is in general non-linear. In the two examples above 
the multiplier equation is 

\dx / 

so that we find S= ±ix, up to an additive constant. 
I t is also to be noted that for a given polynomial P there is 

one and only one corresponding principal part L0, while Li, 
L2, • • • remain entirely arbitrary. For convenience we shall 
term the special case in which L ^ L o the "principal equation" 
for the given multiplier equation. 

Let us proceed to the determination of Vo, Vi, • • • , which 
turn out to be respectively determined by the later equations 
for k = l, 2, • • • . We have then to substitute the expressions 
for ^, d^\f//dxi, • - • in the power series for L(^/f X), and equate 
the coefficients of 1/X, 1/X2, • • • to zero. In the case k = l, we 
observe first that a single term only, Qexsv0/\, is contributed by 
the terms after the first in the series for L(\[/, X); here 

i O %% 

Thus Q is related to L\ just as P is to L0. I t remains then to 
determine the term in 1/X which arises from L0. To do so we 
note that, to terms of the first order in 1/X, 
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dUty /dS 1 
e\s I Vo -|_ 

dXi \dXi X 

(7) 

/dvo dS \ \ 

\öXi dXi // 

/rdS l d " l 1 05 \ 
~ e*s I 1 Uo -I vi 1, 

\Ld#; X dXiJ X dxt- / 
duty /res i d i r a s 1 an 

~ eM[\ — + — + U 
dXidXj \LdXi X dXiJ \_dxj X dxjj 

1 d5 dS + 
X 

as as \ 
vi ) , 

a#t- ox,- / 

and so on. Here we use an obvious operational notation. 
Now we observe that on substitution in L0, the terms in Vi 

disappear identically because of the multiplier equation. Hence 
aside from the factor ex5, the coefficient of 1/X in L0 is 

_ dvo — /dS dvo dS dvo d*S \ 
Z)fc h Hbd + + wo) 

i (3X% ij \0X% 0Xj OXj OXj OXiOXj / 

— /dS dS 

ijk \ÖX% OXj 

/ ds d2s ds d2s dS d2s \ \ 
+ ( + + U )+••• , 

\dxi dXjdXk dXj dXidXk dXk dXidXj/ / 

where the general law of formation is obvious. But on account 
of the symmetry relations (4), this may be written 

_ dvo „ dS dvo ^ dS dS dvo 
2 > + 2 2>y—; + 3 Yttijk + • • • 

i O X i ij O %i O X j ijk OX% OXj OXk 

dS dS dvo dS dS dvo dS dS dv0 

+ Uuk[— 1 1 ~ 
dx/c dXi dXk dXj dXj dXk dXi 

1 / _ 3*5 _ dS d2S 
+ — 2 ' 1 & / —- + 3-2 E • + 

Zi \ ij OX%OXj ijk O Xi O X jO Xk 
Vo. 

But the coefficient of dv0/dxi in the first line is dP/dji if we 
write yi^dS/dxi in P; and the coefficient of d2S/dXidxj in the 
second line is(v0/2)d2P/dyidyj. Hence the required condition for 
k = 1 may be written in the form 

/ dP dvo 1 / _ d2P d2S \ 

(8) E + —(E + eK = o. 
,• dyi dXi 2 \ij dyidyj dXidXj / 

Let us next throw this linear differential equation in VQ into 

file:///LdXi
file:///_dxj
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a different form, by use of the curves #» = X»(T), (i = l, • • • , » ) , 
defined by the n ordinary differential equations of the first order 

dxi dP 

(9) - T = T - ' (*- i , ••• ,»). 
dr oyi 

Along any such curve in w-dimensional (xi • • • xn)-space, (8) 
may be written 

dvo 
(10) + $vQ = 0, 

dr 
where <£> is the coefficient of Vo in (8). The solution of (8) is 
therefore 

(11) vo = r o V / M ' . 

Thus the equation for & = 1 may be looked upon as deter­
mining the value of v0 throughout a tube of these integral 
curves, once v0 has been assigned values #o* on a particular 
transversal surface 2). The later coefficients do not enter at this 
first stage k = l. 

If now we turn to the later equations for any k (k>l), it is 
clear that these have a similar form 

dvk-i 
(12) — — + ^ _ i + i . - i = 0, 

dr 
where Ak-i is a known linear differential expression in v0y 

Vi, • • • , Vk-2- Hence we find that v0, Vi, • • • are determined in 
succession by their values on the transversal surface S. 

In particular we may suppose that v0, Vi, • • • are given arbi­
trarily on a small region <r of S, continuous together with all of 
their partial derivatives in a but vanishing along the boundary 
of and outside of a. Evidently these functions will then vanish 
similarly all along the tube and outside of it. We shall refer to 
a formal solution \f/ of this nature, as an *'asymptotic wave 
packet ' ' solution for obvious reasons. 

3. The Associated Canonical Equations. Let us assume now 
that 5 is not only a solution of the partial differential equation 
P = 0, but belongs to an ^-parameter family of solutions 

O^Xl, , Xn', Cly , Cn—l) ~f~ Cftf 
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involving n constants Ci, • • • , cn, one of which, cn, is additive. 
We shall assume that the n — 1 constants ch • • • , cn_i are "inde­
pendent" in the sense that if we write yi = dS/dxt so that always, 
by (6),P(*i , • • • ) = 0, the y/s may be regarded 
as independent except for the relation just written, that is, we 
shall assume that the w X ( w - l ) matrix 

| | d2S/dXidCj\\, (i = 1, • • • , n\j = 1, • • -, n — 1), 

is of rank n — 1. In general an arbitrary (non-singular) solution 
S of (5) can be imbedded in such a "complete solution." 

But by differentiation of the equation yi = dS/dxi along a 
curve yielding a solution of (9) for any particular set of values 
of Ci, • • • , cn_i, we obtain 

dy{ d2S dxj d2S dP 

dr j dXidXj dr dxidxj dyj 

by use of (9). On the other hand, by partial differentiation of the 
identity (6) as to Xi, we obtain 

dP » dP d2S 
+ E = 0. 

dxi ƒ=! dyi dXidXj 

By combination of this equation and the one which precedes it, 
we conclude that the following equations also obtain : 

dy{ dP 
(13) _ ^ L = _ ( i = l , . . . , « ) . 

dr oXi 

It will be observed then that the equations (9), (13) yield a 
canonical system in xit yit (i = 1, • • • , n), of the 2?zth order, 

dxi dP dyi dP 
(14) - T = — > ~ T = - — ' «=!,••-,»), 

ar dyi dr oXi 
having a principal function P not containing the independent 
variable r. 

Moreover we have 
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since dP/dci^O. Hence we infer that the solutions of (14) under 
consideration satisfy the equations 

dS 
(15) di = , {i = 1, • • • , » - 1). 

dCi 

But Xit - - - , xn, yi, ' ' ' , yn can evidently be taken as any 
point on the {In — 1)-dimensional manifold P = 0 at r = 0 so that 
we obtain in this way the general solution P — 0 of (14) in the 
form 

dS dS 
(16)y< = — , ( f = l , • • • , » ) ; d< = — , (f = 1, • • • 9n - 1), 

dXi dCi 

where S(xi, • • • j Xn> Cij , 
cw-i) +£n is a solution of the multi­

plier equation of the specified generality. I t will be observed 
that there are 2n — 2 arbitrary constants involved, namely 
C\, • • • , cw_i, di, • • • , dn-i. Thus (16) defines a {In — 2)-parame-
ter family of curves filling up the (2^ — 1)-dimensional manifold 
P = 0 ; the parameter r is then determined by setting 

dxi dyn 

dP/dyx ~~ " dP/dXn 

and integrating. 
I t need hardly be remarked that the equations (14) define the 

Cauchy characteristics of the partial differential equation P = 0, 
in the theory of the solution of which the equations (16) play a 
well known fundamental part. Thus we may state the following 
result. 

As T varies, an asymptotic wave packet solution of L{\f/, X) =0 , 
belonging to a non-singular phase function S and an amplitude 
function vo, travels along the corresponding Cauchy characteristic 
in Xi - • • xn s pace j defined by the canonical equations (14), 
where the initial values of yi are given by the equations 

yi = dS/dxii (i = 1, • • • , n). 

4. On Certain Integral Invariants. We propose next to give the 
condition (8) an alternative integral invariant form. It is well 
known that an integral such as 

(17) I = J Gv0
kdxi • • • dxn 
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will be invariant as r changes in case a certain divergence van­
ishes: 

[Gvo— ) s 0. ?i(« dyj 

Here V(T) is a volume in x\ • • • xn space which moves as r 
changes in accordance with equations (14), where yi = dS/dxi. 
This yields 

_ dG dP / _ ÔP dvo\ 

i dXi dyi \ i dyi àxJ 

( _ d2P _ a2P a25 \ 

\ i dxidyi a dyidyj dXidXj/ 

which by virtue of (8) reduces to 

_ dP dG / _ a2P 
(is) E - — + ( E — — 

/ £ x _ a2P a25 \ 
+ (i ) E £<2)G^O. 

x 2 ' a dyidyj dXidXj / 
In this equation *x<ij * * * j *̂w are the independent variables since 
dS/dxi is substituted for yi throughout. It may be noticed here 
that G = const, is a solution for k = 2, Q = 0, provided that 

^ a2P 
(19) E — — - 0, 

i dxidyi 

regardless of the choice of yi\ we shall have occasion to employ 
this result later on. 

Conversely it is evident that in general if for the given S and 
k, a function G is a solution of (18), and if fv(r)Gv0

kdxi • • • dxn 

is an integral invariant for any region F, then Vo must satisfy the 
equation (8). 

We may now announce the following result. 
If vo is any amplitude function of the non-singular phase func­

tion S and if G satisfies the linear partial differential equation (18) 
for this S, and some k, then 

= f Gv0
k 

JV(T) 

dxi - • • dxn 
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is an invariant integral for any volume V(T), where •V i l f »VJl 

vary with r in accordance with (14) (with yi = dS/dxî). Conversely, 
if this integral is invariant for all regions V(T), then v0 is an ampli­
tude function which satisfies the equation (8). 

5. The Schrödinger Wave Equation. Suppose now that we take 
n + 1 variables /, *vl> * y *Vflj 

with ds / ds ds\ 
— + HI Xi, • • • , xn; - , • , — J, 
dt \ dxi dxn/ 

so that the ''multiplier equation' ' takes the form of the usual 
Hamiltonian equation. The corresponding principal equation 
£o0/0 = 0 is then the usual Schrödinger wave equation 

2wi d\p / 2wi d 2iri d \ 
(20) -ir-Z+H(Xl>^'>Xn'>-TT-> '"> T 7 r = 0' 

h dt \ h dxi h dXi/ 
provided we take X = liri/h. 

The Schrödinger equation is therefore merely the principal equa­
tion which has the usual Hamilton-Jacobi partial differential 
equation as its multiplier equation, with X = l-wi/h. 

Furthermore, the corresponding Hamiltonian equations are 

together with 

(21) 

dt 

dxi dH 

dr dyi 

\dt/ 

~&T 

dyi 

~dï " 

- — n 
- — u, 

dH 

dxi 
(i = 1, • • • , ») , 

with yi = dS/dxi. Hence we find T = /+const . , dS/dt = const, 
along any trajectory. But in this case a complete solution can 
be found in the form 

S = S*(xi, * • -, xn; ci, • • -, cn-i) + cj + cn+i 

with yi = dS*/dxi for i= 1, • • • , n. Hence the equations for the 
Cauchy characteristics reduce to the ordinary Hamiltonian 
equations(21) with t = r, associated with Schrödinger's wave 
equation. 

Furthermore, it is easily proved that 
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JV(T) 

\[/\J/dtdxi • • • dxn> 

where \f/ denotes the conjugate of \[/, is then an integral invariant 
to the first order in 1/X, at least if 

(19') E s 0. 
i dxidyi 

In fact, since \ = 2wi/h is a pure imaginary, we have 

for S and v0 real, so that the above integral reduces essentially 
to fv(r)Vo2dtdxi • • • dxn, which is of the form treated above 
with G = l, k = 2; furthermore, we have Q = 0 in this case. But 
when rectangular coordinates are employed, we have also 

H = V(xi, • • • , xn) + — ^kiy}, 

where V is the potential energy and yif • • • , yn are the momen-
tal coordinates corresponding to respectively. Hence 
(19) and (19') obtain, and the integral I is invariant as stated. 
Finally, since dr — dt, it follows at once that fv(r)Vo2dxi • • • dxn 

also remains constant over any region in x\ • • • xn space. Thus 
we arrive at the following conclusion. 

In the special case of the Schrödinger equation in \p with rectan­
gular coordinatesy the asymptotic wave packets follow the corre­
sponding dynamical trajectories, while the squared amplitude 
integral ƒ \\[/12dx\ • • • dxn remains constant over any part of the 
packet, to terms of the order of h> 

6. On Change of Independent Variables. Suppose now that we 
make any change of independent variables 

, n). X% Ji\%l) ) %n)y 

Because of the identities 

= 2^ > 
dXi j dXi dXj 

d t 2 t y dXk dxi dVty 1 _ d*xh 

a = i, 

ô t iu 

dx%dXj k,i dXi dXj dXkdXi X k dXidXj dxu 
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the components L0, Li, • • • in L do not remain individually 
invariant in the equation (1), and in particular the principal 
part L0 will not carry over into the new principal part by the 
ordinary rules. In fact the coefficients transform by the rules 
valid for the attached Hamilton-Jacobi equation. Hence Schrö-
dinger's wave equation in the form (20) is only maintained (in 
general) under a linear transformation of the independent vari­
ables. 

This fact indicates that any coordinate system from which we 
start is to be regarded as a privileged absolute system of reference 
for the Schrödinger wave equation, up to an arbitrary linear trans­
formation. 

7. Linear Systems and the Dirac Equations. Let us now turn 
briefly to a system of k homogeneous linear partial differential 
equations in fa, • • • , yph: 

Lix 
(22) Li(fa, • • •, fa; \)^LiQ + + • • • = 0, (i = 1, • • • , *) . 

A 

Here vvi, , X)i are the independent variables, and the same 
operational symbols have been introduced as above. Now each 
Lio may be written as a sum, Z^jLao, where L^o contains only the 
terms of Li0 which involve \[/j. Furthermore there is then a cor­
responding set of polynomials Pi3' (xi, • • • , %n) yiy ' ' ' ) yn ) ob­
tained as in the special case k = 1 treated above. 

If we use formal series solutions, 

fa = é^(vio + y - + • • • V (i = 1, • • • , *), 

and substitute in the k given equations, the leading terms give 
us the k equations 

^ / dS dS\ 
Z^PiAxi, - - -, xn;— , - ' -, — )vi = 0, (* = 1, • • • , * ) . 
j \ oxi oxn/ 

In order that these be consistent, the "multiplier equation" for 
the system 

P = \Pii\ = 0 

must be fulfilled. Furthermore if the "phase function" 5 satisfies 
this multiplier equation, then the linear equations just written 
determine the k functions \pi up to a proportionality factor. 
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For the determination of this proportionality factor v and so 
of fljo, of Vn, • • • , we might proceed as before with a greater 
degree of algebraic complication of course. It is sufficient for our 
purposes, however, to observe that here too the phenomenon of 
wave packets occurs. In fact by elimination we may reduce the 
given system in various ways to a single linear differential equa­
tion in a single unknown function \p, linear in \pi and their partial 
derivatives. Its multiplier equation is then essentially P = 0, 
with the same polynomial P as before, since the phase functions 
are the same as before. Hence asymptotic series solutions for \[/ 
having the nature of wave packets exist, associated with this 
particular P , and so there exist also the corresponding solutions 
*Ai> * • • , *A&. Thus there exist asymptotic wave packets for the 
system which follow the Cauchy characteristics belonging to P. 
The arbitrary proportionality factor in v%o on a transversal 
surface 2 corresponds to the arbitrary VQ on 2 in the series 
for t/'. 

Thus it is clear that any system of "wave equations' ' is corre­
lated with a multiplier equation and the allied set of character­
istics. 

Now the well known work of Sommerfeld showed that the 
program of Schrödinger leads to a successful theory of the fine 
structure spectral lines, if one takes account of the special the­
ory of relativity in a natural way; but that it fails to account 
for certain magnetic properties of the atom. Pauli then substi­
tuted a system of two wave equations of the first order for the 
single Schrödinger equation of the second order so as to bring 
about the indicated modifications; the multiplier equation P = 0 
obtained is again that necessitated by the special theory of 
relativity. Finally Dirac obtained a system of four equations of 
the first order, with multiplier equation P2 = 0. 

Without attempting to analyze the formation of the elegant 
equations of Dirac, it may be pointed out that the retention of 
the multiplier equation in unaltered form is of itself sufficient to 
ensure the proper general form of the characteristic numbers 
and functions (see the second part of this lecture). It becomes 
then a very puzzling problem to discover whether the equations 
of Dirac are to be regarded as more than a set of equations built 
ad hoc. This is an issue upon which I do not feel myself compe­
tent to pronounce. 
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PART IL T H E WENTZEL-BRILLOUIN-KRAMERS METHOD AND 

ASYMPTOTIC SERIES 

8. Formulation of the Problem,] In order to simplify the form 
of statement of the problem, we shall write the wave equation 
to be considered in the form 

(23) — + \\E - V(x)W = 0, (̂ X2 = - - - J , 

and assume that V(x) is real and analytic for all real values of 
x, and that it possesses a single (absolute) minimum for X — XQJ 
such that dV/dx = 0, d2V/dx2>0 a t *0, while dV/dx^O for 
XT^XQ. Finally we assume that for \x | large, V admits a con­
vergent series expansion in 1/x of the form a+b/x-\- • • • , so 
that lim V(x) = a a s x becomes infinite. While this is a somewhat 
idealized form of the case of physical importance, it will be 
found that the method proposed in justification of the final 
formula can be extended without essential modification to the 
cases of physical interest. 

We are concerned with the real solutions \p of (23) which van­
ish both at x = — oo and x = + °° , for real and positive X. Now, 
for E :£ V0, the coefficient of \f/ in (23) is everywhere negative 
or 0, and elementary oscillation theorems show that no solu­
tion \f/ can vanish for x = ± <*>. On the other hand, if E>a, this 
coefficient is everywhere negative, and all solutions oscillate 
indefinitely often with an amplitude that need not approach 0; 
this corresponds to the possibility of a continuous spectrum. 
Hence we may assume that E exceeds V0 but is less than a. 

Let us for the present consider X as a large positive parameter 
while E is taken to be restricted as stated. We have then a 
boundary value problem of classical type, but with the difficulty 
arising from the singular nature of the boundary conditions 
(the boundaries lie at infinity) and from the fact that the coeffi­
cient of \[/ changes sign twice. As far as I know problems of this 
singular type have not as yet been treated (see, however, Langer, 
loc. cit.). 

f We follow A. Zwaan and J. L. Dunham (loc. cit.) in using a complex 
variable x. Zwaan's treatment is extremely suggestive, although lacking in 
essential respects. 
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9. An Auxiliary Lemma, In order to proceed further we shall 
need the following lemma. 

LEMMA. In any leaf-shaped region a of the complex x-plane in 
which V{x) is analytic and which can be covered by a regular 
family of curves from two points P and Q of its boundary, in such 
wise that 

(24) 3K(F(*) - EY'Hx) ^ 0 

along each curved there will exist two solutions ypi{x, X), ( i= 1, 2), 
analytic in x and X, and asymptotically represented by the usual 
formal series solutions Si(x, X), (i = 1, 2), throughout a. 

This lemma is a special case of an obvious extension of results 
contained in my doctoral thesis.$ 

10. Application of the Lemma. By use of the above lemma, it 
is possible to determine such regions o\ We restrict attention to 
the neighborhood of the axis of reals in the #-plane, and let x — a 
and x = fi (a<Xo</3) denote the two values of x for which 
V(x)—E vanishes, so that V(x)— E is positive or negative ac­
cording as x lies outside of or within (a, /3). For x — a this func­
tion decreases, while for x = fi it increases. 

Let us make a cut in the complex x-plane from — oo to a, and 
from j8 to + °°, along the axis of reals and consider (V(x) —E)112 

in the cut plane; here we take the positive branch on the upper 
side of the cut (—<*>, a), and then determine this function 
throughout the cut plane. Evidently (V(x)—E)112 is a pure 
imaginary quantity with negative coefficient of i on the real 
axis between a and /3, and is a negative real quantity on the 
upper side of the cut (/3, + °° )• On the lower side of the two cuts, 
the function is of course equal to the negative of its value at the 
same point on the upper side. 

f 2^ denotes the "real part of"; E is regarded as fixed. 
X On the asymptotic character of the solutions of certain differential equa­

tions containing a parameter 1 Transactions of this Society, vol. 9 (1908), pp. 
219-230. It will be found that for an equation of order n with real parameter p 
(notation of my paper) it is sufficient that along the curves PQ in a we have 

<RJiwidx) ̂  <Bjiw2dx)^ • • • ^ <Bjiwndx). 

This convenient condition for maintenance of asymptotic form in <r was known 
to me in 1908, and is indeed obvious from my paper. 
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Now let us consider the curves 

(25) ^((V(x) - EyiHx) = 0, 

which evidently play an important part in the determination of 
possible regions a. Under the assumptions made above, the gen­
eral nature of these curves near the x axis is readily seen to be 
that indicated in the figure below. 

2 4 

F I G . 1 

This leads at once to five special types of regions <x : I : a above 
2ap3; I I : a above la/34; I I I : a below la/34; IV: a below 2a/33; 
V: a between la2 and 3/34. 

Here the boundaries of these regions are usually to be ex­
cluded. We shall, however, assume that the point P or Q of the 
Lemma in regions a of types I -IV may be taken at an infinite end 
of the real axis. A critical investigation of the validity of this 
reasonable assumption is being undertaken by Mr. A. C. Gal-
braith at Harvard University. 

11. The Distribution of the Characteristic Values. With these 
preliminaries in hand we are prepared to determine the distribu­
tion of the characteristic values X. In the first place we are only 
interested in the solutions \p of (23) which tend to 0 as x tends 
to ± oo. Now we have two formal solutions 

sx(x, X) ~ fifv-B^dxtfa x), s*(x, X) ~ frfw-n^hix, X), 

where we take x on the upper side of the cut ( — oo , a) to begin 
with, and (V—£)1/2 as positive there. Here the ti(x, X) are ordi­
nary power series in 1/X, and we may suppose that Si and t\ go 
into $2 and h, respectively, as we traverse the cuts. 
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Now the unique formal solution of the first type above which 
reduces formally to 1 for x = y (see the figure) is clearly 

si(x, X)Ai(7, X) = e^w-v^hix, \)/h(y, X). 

According to the Lemma there is a corresponding \px having this 
asymptotic form in the region I, which will evidently approach 
0 exponentially as x approaches — oo. Similarly there will exist 
a solution \J/2 represented by S2(x, X)/s2(y, X) which approaches 
oo under the same circumstances. Hence \f/i(x, X) is essentially 
the only solution (up to a constant multiplier) which remains 
finite as x approaches — oo, and \f/i(x, X)/^i(7, X) is a special 
solution, yp*(x, X), with the same asymptotic form, which re­
duces to 1 for x = 7. This solution is clearly real for x real, since 
V(x) is real for x real. Hence \p* is represented asymptotically by 
Si(x, X)/si(7, X) in the combined region I +111, since for x below 
the real axis, \p* is conjugate to its value at the conjugate point 
above the axis, and Si(xt \)/si(y, X) has the same formal prop­
erty. Taking account of the cut, however, we have 

(si(x, 

\s2(x, 

fSi(x, X)/*i(7, X) in I, above, 
$1 (%, X) ~ <[ 

X)/s2(y, X) in III , below. 

Similarly in the regions 11 + I V we are led to fix attention upon 
a solution 

(s^x, \)/si(Ô, X) in II, above, 
^2 (x, X) ~ < 

\s2(x, X)/s2(8, X) in IV, below, 

as yielding the only possible solution which approaches 0 as x 
becomes positively infinite. I t is to be noted that Si(x$ X) is rep­
resentative of the formal solution which is asymptotic to 0 as x 
approaches + 00 along the upper side of (/3, 00 ). Moreover, for a 
characteristic value and only then, these two solutions must be 
proportional; that is, their ratio must reduce to essentially the 
same function /(X) in the overlapping parts above lce/53, and 
below 2a/34. Hence we are led to the necessary relation 

si(5, X) s2(ô, X) 
(26) 

*i(7> X) s2(y, X) 

Consequently if we write 

Si(x, X) = g/*wiogfc/**)d* (f = 1 2), 
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so that yf/i is a formal solution of the wave equation (23), the 
above relation yields 

Ç* dlog^ix) Cbd\og^2 . 
I dx + I dx ~ Ik-Ki, (k an integer), 

J y dx J y dx 

or, more briefly, since d log \px changes to d log fa as we traverse 
the cut, 

dx = 2kwi, 
dx 

where the path of integration is a positive loop around the 
points a and ft. Written out explicitly this gives the series 

(V(x) - EY'Hx + • • • = ^ - 7 ^ > (* = 0, 1, • • • ) , 

which is essentially the desired Wentzel-Brillouin-Kramers 
equation. 

We shall not at tempt to consider the degree of precision with 
which this equation leads to satisfactory approximations to 
the energy levels EQy EXy • • • . I t may be anticipated, however, 
that the approximation will be good whenever the terms of the 
series on the right diminish rapidly; and that an exact result is 
obtained in case the series involved converges. 
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