SETS OF LOCAL SEPARATING POINTS OF A CONTINUUM*

BY G. T. WHYBURN

- 1. Introduction. Let M denote any locally compact metric continuum and let L be the set of all local separating points† of M. We proceed to establish the following six properties, of which, for our immediate purposes, the most useful is number (iv).
- (i). If U is any uncountable subset of L, there exists a point x of U which is a point of order 2 in M relative to U.

This statement means that x is contained in arbitrarily small neighborhoods whose boundaries have in common with M just two points and these two points belong to U. A proof has already been given by the author (loc. cit.).

(ii). If H is any connected subset of M, then $(\overline{H}-H)\cdot L$ is countable.

For if not, (i) would give a point x of this set which could be separated in M from some point of H by two points not in H, which obviously is impossible since H+x is connected.

(iii). If H is any connected subset of M, the points of $H \cdot L$ which are not local separating points of H are countable.

This results immediately from (i).

- (iv). If H is any connected subset of M such that $\overline{H} \subset L + C$, where C is some countable set, then H is a locally connected G_{δ} -set. Hence H is arcwise connected.
- By (ii) we see that $(\overline{H}-H)\cdot L$ and hence $\overline{H}-H$ itself is countable. Thus H is a G_{δ} -set. Now \overline{H} must be a regular curve, for by (i), all save a countable number of its points are points of order 2. Thus any connected subset of \overline{H} , and in particular H, is locally connected. That H is arcwise connected follows now by the well known theorem of Moore-Menger.‡

^{*} Presented to the Society, February 25, 1933.

[†] A point p is a local separating point of M provided some neighborhood V of p exists such that $M \cdot \overline{V} - p$ is separated between some pair of points belonging to the component of $M \cdot \overline{V}$ which contains p. See the author's paper in Monatshefte für Mathematik und Physik, vol. 36 (1929), pp. 305-314.

[‡] See R. L. Moore, Foundations of Point Set Theory, Colloquium Publications of this Society, vol. 13 (1932), p. 86; and K. Menger, Monatshefte für Mathematik und Physik, vol. 36 (1929), pp. 193–218.

(v). If N is any continuum $\subset L+C$, where C is countable, then every connected subset of N is a locally connected G_{δ} -set and hence is arcwise connected.

This is a corollary to (iv).

(vi). If M is locally connected, then every connected subset H of L is the difference between an F_{σ} and a countable set.

For it is known* that in this case L is an F_{σ} , so that M-L is a G_{δ} and hence so also is $(M-L)\cdot \overline{H} = (M-L)\cdot (\overline{H}-H)$. Whence, $H = \left[\overline{H} - (M-L)\cdot (\overline{H}-H)\right] - L\cdot (\overline{H}-H)$, and the first of these two sets is an F_{σ} and the second, by (ii), is countable.

2. THEOREM. In order that every connected subset of a continuum M be a G_{δ} it is necessary and sufficient that the set N of non-local-separating points of M be countable.

The sufficiency of the condition results immediately from (iv), in view of the fact that, for any connected subset H of M, we have $\overline{H} \subset M = L + N$, and N is countable.

To prove that the condition is necessary, we suppose, on the contrary, that N is uncountable. Let $M=M_1+M_2$, where M_1 and M_2 are disjoint and totally imperfect† and where M_2 , say, contains uncountably many points of N. Then‡ M_1+L is connected and $M-(M_1+L)=E$ is totally imperfect and uncountable. Thus E is not an F_{σ} and hence M_1+L is not a G_{δ} .

COROLLARY 1. If every connected subset of M is a G_{δ} , then M is a regular curve, no cyclic element of M has a continuum of condensation, and the end points of M are countable.

COROLLARY 2. If all save a countable number of the points of each cyclic element C of a locally connected continuum M are local separating points of C, then every connected subset of M is arcwise connected.

COROLLARY 3. If the non-local-separating points of each cyclic element of a locally connected continuum M are countable, then every connected subset of M will be a G_{δ} if and only if the end points of M are countable.

^{*} See the author's paper, Mathematische Annalen, vol. 162 (1929), p. 318.

[†] That is, neither contains any perfect set. For a proof that such a division of M is possible, see F. Bernstein, Leipziger Berichte, vol. 60 (1908), p. 325 and Hausdorff, Mengenlehre, 1927, p. 156.

[‡] See my paper On the existence of totally imperfect sets . . . , American Journal of Mathematics, vol. 55 (1933), pp. 146-152.

For any local separating point of a cyclic element of M is a local separating point of M and any non-local-separating point of M which is on no non-degenerate cyclic element of M must be an end point of M.

3. THEOREM. If M is any locally compact continuum such that (a) no two maximal free arcs* in M abut and (b) $L \cdot \overline{R}$ is countable and $R \neq 0$, where R is the set of all ramification points (that is, points of order >2) of M, then M contains a connected subset which is not arcwise connected.

Proof. Let $M=M_1+M_2$, where M_1 and M_2 are totally imperfect and disjoint. Set $E=M_1+L$. Then since $M-E \subset M_2$, E is connected (loc. cit.). Furthermore $E \cdot \overline{R} = M_1 \cdot \overline{R} + L \cdot \overline{R}$, and since $L \cdot \overline{R}$ is countable it follows that $E \cdot \overline{R}$ is totally imperfect. Now if a and b are two points of E lying in different maximal free arcs \dagger of M, there can exist no arc ab in E. For if ab is any arc in M from a to n, then $ab \cdot \overline{R}$ cannot be countable, (for if so, some two free arcs contained in ab would abut), and hence it must contain a perfect set. Thus ab cannot be $\subset E$, since $E \cdot \overline{R}$ is totally imperfect.

4. Example. There exists a regular curve C such that (a) no two free arcs of C abut, (b) $L \cdot \overline{R}$ is countable, and (c) \overline{R} is punctiform. Hence C contains a connected subset which is not arcwise connected.

Let I be the unit interval and let K be the non-dense perfect set consisting of all numbers on I which can be expressed in the triadic number system using only the digits 0 and 2. Let I_1 , I_2 , \cdots , be the segments on I complementary to K ordered in descending order of length and let p_1, p_2, \cdots , be the end points of these segments, where p_{2n-1} and p_{2n} are the end points of I_n . Let $a_n = \sum_{1}^{n} 2^m$ and $P_n = \sum_{1}^{n} p_i$ and $P = \sum_{1}^{\infty} P_i$. Let us select in K - P two sequences of points x_n and y_n such that

$$0 \leftarrow \cdots < x_n < x_{n-1} < \cdots < x_1 < \cdots < y_{n-1} < y_n < \cdots \to 1.$$

^{*} An arc ab is free in M provided ab-(a+b) is an open subset of M. Two such arcs are said to abut if they have a common end point.

 $[\]dagger$ Clearly two such exist, otherwise M contains a punctiform connected set. See my paper, loc. cit.

In the upper half plane let us construct equilateral triangles with bases x_2y_2 , y_{4n-1} y_{4n+2} , $x_{4n+2}x_{4n-1}$, $(n=1, 2, 3, \cdots)$, and in the lower half plane construct equilateral triangles with bases $y_{4n-3}y_{4n}$ and $x_{4n}x_{4n-3}$, $(n=1, 2, 3, \cdots)$. Let T_0 be the set of triangles so constructed.

Now the points (x_n) and (y_n) together with the points of P_1 divide I into a collection of intervals; let us omit I_1 from this collection and call J_1 the resulting collection. Now on each interval of J_1 let us construct a set of equilateral triangles exactly as we constructed T_0 on I. Let T_1 be the set of triangles obtained for all intervals of J_1 . Now the vertices of the triangles of T_1 that are on I together with the points of P_2 divide I into a set of intervals. Omit from this set the intervals I_1 , I_2 , I_3 and call J_2 the resulting collection. On each interval of J_2 construct a set of triangles as before and call T_2 the total set so constructed.

Continue this process indefinitely and let $C = I + \sum_{0}^{\infty} T_n$. Then clearly C is a continuum. The maximal free arcs in C are exactly the intervals I_n together with the two sides of each of the triangles of $[T_n]$ not on I, so that no two maximal free arcs in C abut. Furthermore the set R of ramification points of C is a subset of K such that $\overline{R} = K$. Thus \overline{R} is totally disconnected and C is a regular curve. Finally we note that if x is any point of K - (P + R), then for each n there is a triangle t of T_n with base axb, where 0 < a < x < b < 1; and since $\delta(t) < 1/(n+1)$ and x is not a ramification point, it follows that x is not a local separating point. Thus $L \cdot \overline{R} = L \cdot K \subset P + L \cdot R$, which shows that $L \cdot \overline{R}$ is countable, since both P and $L \cdot R$ are countable.

THE JOHNS HOPKINS UNIVERSITY