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NON-ANALYTIC FUNCTIONS OF A 
COMPLEX VARIABLE* 

BY E. R. HEDRICK 

1. Introduction. The outlines of the theory of non-analytic 
functions of a complex variable, called also polygenic functions, 
have been stated in recent years in a number of articles.! In­
deed, from the very first of the modern study of the theory of 
functions, going back at least as far as the famous inaugural 
dissertation of Riemann, the beginnings of the subject have 
been mentioned essentially, if for no other purpose than to state 
the conditions under which a function of a complex variable is 
analytic, and to delimit the field of functions to be studied. 

In the present address, such preliminary details will be men­
tioned only briefly, with references ; but enough of them must be 
stated to develop a notation, and to give the proper setting. 
More detailed attention will be given to those developments 
which have taken place during the last decade, and to some 
hitherto unpublished facts. A brief review of some of the his­
torical background will serve both its obvious purpose, and also 
that of introducing the necessary preliminary details and no­
tations. 

2. Historical Background. As was stated above, every careful 
presentation of the classical theory of functions of a complex 
variable did include in a measure the elementary ideas for the 
general case of any function of a complex variable. A function 

(1) w = f(z) = <l>(x, y) + i\p(x, y), 

where w — u-\-iv and z=x+iy, is said to be defined for a given 
region (or set of values) of z if w is determined whenever z is 
assigned a value in that region (or set). The equation (1) is then 
equivalent, of course, to the two real simultaneous equations 

(2) u = </>(x, y), v = yp(x, y), 

which themselves express a transformation of the xy plane onto 

* An address delivered at New Orleans, December 31, 1931, as the retiring 
presidential address, before the American Mathematical Society, 

f See the list of recent articles at the end of this paper. 
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the uv plane. In general, we shall assume that <£ and \p are 
continuous, and that they possess continuous first partial de­
rivatives, unless the contrary is stated. 

If z and w have corresponding increments Az and Aw, the 
limit of their ratio, Aw/Az, is the derivative dw/dz whenever it 
has a unique value for all methods of approach of Az to zero, for 
a fixed value of z ; in general, that limit will depend upon the 
slope m of the curve along which Az approaches zero, and we 
shall call it the directional derivative. This limit is written in a 
variety of forms in standard works; we shall write 

dw # Aw % Au + iAv 
y = a + if} = = lim = lim 

dz A2->o Az A*->O Ax + iAy 
(3) A;y->0 

ux + ivx + m(uy + ivy) 

1 + iw 
where 

Mxj ™"yj Vxj Vy denote the partial derivatives in the usual 
manner, and where m — dy/dx is the slope of the curve of ap­
proach. In order that (3) give a unique result independent of m, 
the usual necessary and sufficient conditions are the well known 
Cauchy-Riemann equations 
(4) UX = Vy, Uy = — VX. 

The equation (3) may be written in other forms. Riemann, in 
his inaugural dissertation, wrote it essentially in the following 
form. Let 6 denote the angle between the x axis and the curve 
of approach, so that tan 6 = m; then, by means of the usual re­
lation e'ö = cos B-\-i sin 9, it is easy to reduce (3) to the form 

dw Aw 
(5) 7 = — = lim -~ = <D[f(z)]+<P[f{z)]e-™, 

az AZ^O Az 
where 

£>[ƒ(*)] = %[ux + Vy + i(vx - uy)], 

*P[ƒ(*)] = ï[«* - »v + *0* + %)]• 
These expressions will occur frequently in what follows. The ex­
pression D(w), which is the part of (5) that is independent of 6, 
is precisely the value of the derivative dw/dz whenever the de­
rivative has a unique value at the point z, that is, whenever the 
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result in (5) is independent of 6. The expression for ^(w) vanishes 
when and only when the equations (4) hold. I t is pointed out 
that some of the results recently announced can be seen as im­
mediate consequences of (5). 

The preceding classical statements evidently do not presume 
in advance that w is an analytic function of z> nor that the equa­
tions (4) hold. This is true of many other results of the classical 
theory. In particular, the well known Morera Theorem,* the 
Weierstrass Mean-Value Theorem,! and many others, do not 
presume the analytic character of the functions in their hy­
potheses. In such theorems as that of Morera, in fact, the very 
point of the theorem would be lost if there were such an original 
hypothesis. 

Specific attempts to discuss as such functions that are not 
analytic have been made from time to time. One such that I 
would mention is a paper by Picard,J in which the attention is 
directed toward generalizing the Cauchy-Riemann equations 
(4). 

The expression ^(w) defined in (6) is equal, except for a con­
stant factor (see §9), to a concept considered by D. Pompeiu, 
and later by Hayashi.§ Pompeiu arrived at this concept, which 
he called the areal derivative, by considering the limit 

ff(z)dz f f(z)dz 
J c J c 

(7) lim = lim , 
c=o r c=o A 

J I xdy — ydx 
J c 

where C denotes a contour surrounding the point P , A the area 
of the region bounded by C, and where the limit is taken as C 
shrinks toward P in such a way that C eventually lies in an 
arbitrarily small circle about P. Some of the results of these 
papers are stated below (§9). 

* Morera, Rendiconti, Ist i tuto Lombardo, (2), vol. 19 (1886); and texts 
on the classical theory. 

f See, for example, Osgood, Lehrbuch der Funktionentheorie, 1923, vol. 1, 
p. 212; Goursat, Mathematical Analysis (English éd.), vol. 2, Part 1, p. 65. 

t Journal de Mathématiques, (4), vol. 8 (1892), p. 217. 
§ D. Pompeiu, Rendiconti di Palermo, vol. 33 (1912), pp. 108-113, and 

vol. 35 (1913), p. 277. 
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The other papers cited at the end of this address, and still 
others, have appeared during the past decade. They form to­
gether a body of knowledge concerning this field of which the 
remainder of this address gives a summary. 

3. Principal Directions. Characteristic Lines. If we introduce 
the familiar notation 

(8) E = ui + v£, G = uv
2 + v£, F = uxUy + vxvVi 

it follows readily* that 

(9) r = 
dw 

dz 

Aw 
lim 
A3-+0 Az 

du2 + dv2 E + 2mF + Gm2 

dx2 + dy2 1 + m2 

where m denotes, as before, the slope dy/dx of the curve of ap­
proach. The maximum and minimum values of r are found to 
exist for values of m given by the equation 

(10) F + (G - E)m - Fm2 = 0, 

and these values of r are themselves solutions of the quadratic 
equation 

(11) P 2 - (E+G)p+J2 = 0, 

where 

J = (EG — F2)1'2 = UXVy — UyVX. 

Since the roots of (10) are negative reciprocals, it follows that 
the directions which give a maximum and a minimum stretching 
ratio R — r112, are at right angles. These directions we called the 
principal directions. They were discovered first by Tissotf in his 
study of the mapping problem. The two families of curves that 
are tangent to these principal directions at every point we 
called the characteristic curves for the given function. 

I t is shown J that the only orthogonal system of curves in the z 
plane which corresponds by the transformation w=f(z) to an or­
thogonal system in the w plane, is the system of characteristic lines. 

If we lay off, at a fixed point Zo, in the direction m, the recipro-

* See Hedrick, Ingold, and Westfall, loc. cit. 
t Tissot, Sur les cartes géographiques, Comptes Rendus, 1849. 
J Hedrick, Ingold, and Westfall, loc. cit. See also the geometric proof given 

by Darboux, Leçons sur la Théorie des Surfaces, vol. 3, p. 49. 
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cal stretching factor P = l/R, the curve obtained* is the ellipse 

(12) Ex2 + 2Fxy + Gy2 = 1, 

where x, y are the coordinates measured from the point z0 as 
origin. This ellipse may be called the Tissot indicatrix. Similarly, 
if (2) can be solved for x and y in terms of u and v, the factor R 
can be laid off about the point w0 in the w plane to obtain the 
corresponding ellipse 

(13) £ü2 + 2jüv + Çv2 = 1 

in the uv plane, where 6, J, Ç are the fundamental quantities 
similar to E, F, G when u and v are the independent variables. 

I t is clear that these concepts all degenerate, the ellipses be­
coming circles and the principal directions becoming indeter­
minate, if 

(14) E = G, F = 0. 

These equations are satisfied, of course, if the Cauchy-Riemann 
equations (4) are satisfied, that is, if' f{z) is an analytic f unction 
of z, or also if f(z) is an analytic function of z — x — iy, in which 
case the signs in (4) are changed, but (14) still hold. 

4. Pointwise Analytic Functions. It is evident that the de­
rivative dw/dz may exist at isolated points in the sense that the 
limit (3) may be independent of m at isolated points. These 
points are the solutions of (4) regarded as simultaneous equa­
tions for x and y. We say that ƒ(z) is analytic at a point zQ if (4) 
hold at that point. 

Since we have assumed that u and v, and their first deriva­
tives, are continuous, it follows that the points at which f{z) is 
analytic form a closed set} except for points at which f(z) is not 
defined or does not satisfy these hypotheses. At all points at 
which f(z) is analytic, the ellipses defined in §3 become circles 
and the principal directions become indeterminate. 

5. The Beltrami Equations. Classification of Functions. The 
Cauchy-Riemann equations (4) have been generalized by Bel-
tramif to the case of any surface. These equations are 

* Hedrick, National Academy of Sciences, loc. cit. 
t Beltrami, Délie variabili complesse sopra una superficie qualunque, Annali 

di Matematica, (2), vol. 1; see also Picard, Traité d'Analyse, vol. 2, p. 8. 
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(15) 
Jvx = Fux — Euy, 

Jvy = Gux — Fuy; 

and u and v satisfy the generalized Laplace equation 

(16) 
ax\ 

FUy-GU: 

J 

d/FUx - EUy 

+4 J ) -
0. 

These equations, which evidently hold for the plane also, are 
here written with the symbol J=(EG — F2)1/2, instead of the 
symbol H employed in the theory of surfaces. 

As in the case of a surface, so here also, those functions for 
which the ratios E:F:G are the same form a class. Every func­
t i o n / ^ ) belongs to some class; no function belongs to two differ­
ent classes ; there exist functions belonging to every class ; and if 
two functions belong to the same class, the one is an analytic 
function of the other. 

I t is easy to prove* that two functions f = u+iv and 
F— U+iVdo belong to the same class, so that one is an analytic 
function of the other, if and only if the jacobian of F and ƒ with 
respect to x and y vanishes : 

(17) 

d(U + iV) d(U + iV) 

dx dy 

d(u + iv) d(u + iv) 

dx dy 

= 0. 

For functions of the same class, a function theory entirely 
analogous to that of ordinary analytic functions exists. 

6. The Kasner Circle. Let us now return to the formula for the 
directional derivative, which we write in the form 

dw 

dz 
(18) a + ifi = = V + <Pe~ 

where O and <P are functions of z alone, independent of 0, and 
are defined by the equations (6). I t is immediately evident from 
(18) that the values of the directional derivative 7, for a fixed 
value of z, depend only on 8, and that these values of y all lie on a 

* See Nicolesco, Thesis, loc. cit. 
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circle in the y plane, whose center is the point V(w) and whose 
radius is | ^{w) | . In fact, (18) can be written in the form 

(19) 7 - E> = <Per2i°, 

whence 

(20) | Y - 0 | = | <P\, 

which is the equation of the circle described above. Here 7— D 
is a vector counted from the point D as origin, which is a fixed 
point if z is fixed. If we insert the detailed values given by (6), 
and the value a+ij3 for 7, the equation (20) becomes 

(21) 
H^)]*+H^-)T 

_ /UX — Vy\2 /VX + Uy\2 

In this form, the equation was first published by Kasner.* I 
have proposed that the circle be called the Kasner circle. His 
original derivation of the equation (21) is not so immediate, 
however, as is the process given above; all that is necessary is to 
transpose the term O in the Riemann equation (5) and then 
eliminate 6 by taking the absolute values on both sides. 

I t is obvious also from (19) that, as 6 varies in the z plane, the 
point 7 moves around the circle at twice the rate at which d changes, 
and in the opposite sense. 

On account of the resemblance just described to an ordinary 
clock-motion, Kasner has proposed that the distribution of the 
values of the directional derivative on this circle be called a 
clock. As z varies, there will be one such clock for every value of 
z in the z plane ; Kasner has called the whole family a congruence 
of clocks. He has pointed out alsof that the mean value of 7 on 
the circle is 

1 rT 1 rT 

— I ydd = — I (a 
T J 0 T J 0 

(22) 

If 
+ ip)d6 

(P + <Pe-2ie)dd = O; 

* Kasner, Science, vol. 66 (1927), pp. 581-582. 
f Kasner, National Academy of Sciences, loc. cit., p. 81. 
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and he calls <D(w) the mean derivative of w. The reason for this re­
sult is simply that D and <P are constant during this integration, 
since only 0 varies ; and since 

cpe-^dO = <P I <r2"<*0 = 0, 
0 «^ 0 

the term involving <P in (22) falls out, and (22) becomes an 
identity. 

Other developments regarding the congruence of clocks as a 
picture of the directional derivative are given by Kasner (loc. 
cit.) and by Kasner and Hofmann.* 

7. Riemann Surfaces. The Increment Ratio. It is well known 
that any function w—f{z), that is, any transformation of the 
form (2), can be represented by a Riemann surface. The equa­
tions (2) can be solved for x and y under the hypotheses made 
above, near any point (xo, yo) at which the jacobian J = uxvy 

— uyvx does not vanish. If there are several solutions near 
(^o, VQ), they can be represented geometrically by points of a 
Riemann surface of several sheets over the uv plane, as in the 
usual theory. These sheets must be connected, if at all, along the 
branch curves K in the uv plane, which are curves that corre­
spond to the critical curve 

(24) J(x, y)=0 

in the xy plane. The ordinary branch points of the classical 
theory of functions are degenerate cases of these branch curves, 
since the jacobian reduces to a sum of squares if the Cauchy-
Riemann equations (4) hold. Any curve in the xy plane that passes 
through a point of the curve (24) corresponds to a curve in the uv 
plane that is tangent to the corresponding branch curve K, unless 
the corresponding point (u, v) is a singular point of K.\ 

On account of these properties, I have proposed to call the 
branch curves K the edge of regression on the Riemann surface, 
since they play a role very similar to that of the edge of regres­
sion of a developable surface. Indeed, if any family of curves 

x = p(t, a), y = g(/, a), 

* This Bulletin, vol. 34 (1928), pp. 495-503. 
t Hedrick, Bulletin of the Calcutta Society, loc. cit., p. 114. 
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crosses the critical curve C at a variable point that is a function of 
a, the edge of regression K is the envelope of the corresponding 
family in the uv plane. 

I have stated some examples in my Calcutta paper (loc. cit.). 
The usual derivative ratio 

Aw Au + iAv 
(25) f = £ + in = -— = 

Az Ax + iAy 

is a single-valued function of z = zQ+Az for a fixed point s0, ex­
cept at the point z = z0, at which it is not defined. I have shown 
in my Calcutta paper that the jacobian of £" 

vanishes at precisely the points of the Kasner circle. Hence the 
Kasner circle is precisely the edge of regression for the function f, 
which is in general represented on a two-leaved Riemann surface 
whose leaves join along the Kasner circle. As the point z revolves 
once around the point z0, the point f revolves twice about the Kasner 
circle. 

This fact makes it very evident why the directional deriva­
tive y revolves on the Kasner circle twice as fast as the angle 6 
revolves in the z plane; the directional derivative is indeed pre­
cisely the edge of regression, geometrically, and is the missing 
definition of what corresponds in (25) to the value z = z0. 

8. Other Geometric Properties. Several particular cases, and 
particular values of the directional derivative y on the circle, are 
given by Kasner.* He uses the fact that the point A(vy, vx) lies 
on the circle. Other important special points on this circle are 
E(ux, vx), D(vy, —Uy), B(ux, —Uy). In my Calcutta paper, I have 
used these four points A, E, D, B, which evidently lie at the 
vertices of a rectangle inscribed in the circle. From the origin O 
in the plane of 7, the distances O A and OE are 

OA2 = vi + Vy2 = G, OE2 *= u2 + u2 = E, 

which represent the two fundamental quantities E and G. I t is 
also easy to represent the fundamental quantity F as the differ­
ence between the areas of two rectangles in the same figure. I 

* Kasner, Proceedings of the National Academy, vol. 14 (1928), pp. 75-82. 
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have pointed out also that the diameter through 0 has its ex­
tremities at points 71 and 72 of the Kasner circle, so that | 711 
and I 72 J are precisely the maximum and the minimum values 
of | 7 | , that is, the maximum and minimum values of the 
stretching ratio 

R = fi/2 = 7 = 
dw 

dz 

discussed in §3. Finally, I have shown that the jacobian of ƒ (2) is 
represented by the length of the tangent from 0 to the Kasner 
circle. The jacobian of ƒ (z) can vanish, therefore, only for values 
of z for which the Kasner circle passes through the origin 0 in 
the 7 plane. I t follows that the jacobian vanishes at a point z if 
and only if at least one determination of the directional derivative 
7 vanishes at that point. This can be verified also immediately 
by substituting a = 0, /3 = 0 in the equation (21). 

9. The Areal Derivative. By Green's Theorem, we may write 

(26) f f{z)dz = f (u + iv)(dx + idy) = 2i f f <P[f(z)]dxdy, 
J C J C J J R 

where C is a closed curve, and where the double integral is taken 
over the region R bounded by C. If a denotes the area of R, we 
have, by the law of the mean, 

(27) f f(z)dz = 2»?[/(f)] f f dxdy = 2i¥[fQ;)]-<r, 
J C J J R 

where f is some value of z in R. If C shrinks toward a single point 
2, f also approaches z, and we may write 

(28) 2i¥[f{z)] = lim— f f(z)dz. 
<r J c 

This expression is defined by Pompeiu* to be the areal deriva­
tive. 

If we introduce the conjugate imaginary quantity z = x — iy, 
we may find, similarly, 

* Pompeiu, Rendiconti di Palermo, vol. 33 (1912), p. 112. I have used 
the symbol u because it is his initial. 
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(29) 2iD [ƒ(*)] = l i m — ff(z)dz. 
<T J C 

Hence the formula (5) may be written in the form 

dw i 1 r r r 1 
(30) 7 = - - = - - lim - f(z)dz + <r*" f(z)dz \. 

dz 2 (r[_ J c J c J 
It may be remarked that the forms (28), (29), (30), and hence 
also the forms (26) and (27), can be interpreted even when it is 
not supposed by hypothesis that the first derivatives of u and v 
exist. Some results exist in this field, but they are not important. 
I propose, however, to pursue this and to investigate results ob­
tainable without the hypothesis in question. I t is to be re­
marked that the results of §10, and the well known theorem of 
Goursat mentioned there, may be construed to be theorems of 
this category. 

Pompeiu, Hayashi, and Nicolesco* have considered at length 
the values of ff(z)dz on a circle of radius p about the point z0; 
and have derived formulas for the expansion of this integral in 
terms of successive powers of p2. From these expansions, several 
theorems are deducible. Thus, if (l/(7rp2))ff(z)dz, taken over 
concentric circles of radius p, is independent of p, the function is 
called by Nicolesco non-analytic of the first degree. It is shown 
by Hayashi that for such a function V2u+iV2v is itself an 
analytic function, where V2 denotes the usual Laplace operator. 
In §10, we shall see that if the same expression approaches zero 
with p, for a set of values of z that is everywhere dense, then 
f(z) is an analytic function. 

The introduction of the conjugate imaginary z may be em­
ployed to simplify the notations as follows. Using the simple 
identities 

z + z z — z 
x = , y = , 

2 2% we may write 

(z + z z — z\ (z + z 

•-*>-<— irJ + K-T' 
(31) 

= F(*,2), 

z — z\ 

2% ) 

Pompeiu, loc. cit.; Hayashi, loc. cit.; Nicolesco, Thesis, loc. cit. 
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whence, if we agree to differentiate partially* with regard to z 
and z, we may write, by an easy identification with (6), 

dw dw 
(32) — = O(w), — = <P(W), 

dz dz 
andf 

dw dw dw 
(33) y = = 1- e-2i0 

dz dz dz 

In order to refer by some name to <P(w), I shall call it the con­
jugate derivative, for the reason suggested by (32), and because 
the name is otherwise appropriate ; whenever it is convenient to 
do so, however, I shall use the combination 2icP{w), which is the 
Pompeiu areal derivative. Similarly, I shall call the integral 
ff(z)dz the conjugate integral; for the most part, however, I shall 
use the mean derivative D(w), which, by (29), differs from this 
conjugate integral only by the factor 2i. 

Pompeiu considered the integral 

ƒ —,:*• 
J c z - Ç 

where f is any point in R; and he obtained the formula 
(34) f(z) = f ——~ds + — f f ———~ dxdy, 

2iri J c s — z ir J J R z — s 
which is the generalization of the well known Cauchy Integral 
Theorem. Essentially the same formula is used by Borel in his 
Leçons sur les Fonctions Monogènes, and by Calugaréano in his 
thesis, where a complete proof is given. This formula shows that 
a function f{z) is completely determined in R if its values are 
known on C, and if the areal derivative is known in R. The clas­
sical theorem is a special case of this one, since in the classical 
case the areal derivative is known to be identically zero. 

The first term of (34), as is well known in the classical theory, 

* Calugaréano, Thesis, p. 5, credits this suggestion to Al. Proca, who has 
himself not published it; such forms are used also by Nicolesco in his thesis. 

f We may even write, with Calugaréano, dw/dz — dw/dz-\-(dw/dz) (dz/dz), 
since it is true that dz/dz = e~2id. 
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represents a function analytic in R. I t follows that the knowledge 
of the areal derivative in R determines a function f(z) to within 
an analytic function. This follows also from the fact that if two 
functions f± and ƒ2 have the same areal derivative, the areal de­
rivative of their difference is zero; that is, their difference is an 
analytic function. Calugaréano shows in his thesis (pp. 15-20) 
that the areal derivative can be assigned arbitrarily; that is, if 
(pÇw) be any function of z, f(z) given by the second term of (34) 
has <P(w) as its areal derivative. 

Since the term e~2i6CP(w) in (5) essentially determines what 
Kasner has called a clock, the same theorems hold, by mere re­
wording, in terms of the concept of clock. 

10. The Morera Theorem. The original Morera Theorem is 
contained in all standard works on the classical theory of func­
tions. Refinements of the hypotheses have been made by several 
authors. H. Looman* has proved the following theorem. 

If z is a point of a region R, and y is a square containing z, 
consider the function 

ƒ f(z)dz 
(35) <J{Z) = lim sup , 

7-*o y 

where y denotes also the area of the square; if then a(z) is every­
where finite and equal to zero almost everywhere, the function f(z) 
is analytic throughout R. 

A further extension of this theorem was given by J. Wolff.f 
These theorems may be regarded as extensions of the well 
known proof by GoursatJ of the Cauchy Integral Theorem. 

If we assume that the limit contained in Looman's theorem 
exists, we have in it again essentially the areal derivative of 
Pompeiu, so that <r(z) is in that case equal to the areal deriva­
tive. With the assumptions regarding continuity made in the 
present paper, we may state the following theorem. 

With the notation and assumptions of §2, if 

* Nieuw Archief voor Wiskunde, vol. 14 (1924), pp. 234-239. 
t Report of the Toronto Congress, pp. 457-459. 
t Transactions of this Society, vol. 1 (1900), p. 14. 
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<P(w) = Hm — | f(z)dz 

is zero at any set of points everywhere dense in R, then f{z) is 
analytic throughout R. 

As a corollary, we may state the following generalization of 
the Morera Theorem. 

With the notation and assumptions of §2, if Ii=fCif(z)dz ap­
proaches zero with i on a set of curves d that approach z} for each 
of a set of points that is everywhere dense in R, then f (z) is analytic 
throughout R. 

11. The Liouville Theorem. I have pointed out* that the fa­
miliar theorem that the absolute value of an analytic function 
cannot have a maximum in any region in which it is regular, can 
be extended to the general case of §2. For if we consider simply 
the real transformation (2), and if (w0, VQ) corresponds to x = 0, 
y = 0, the existence of a maximum of \f{z) \ = u2-\-v2 at any point 
(ui, v{) would imply that the equations (2) could not be solved 
to give a unique solution 

x = $(«, v), y = *k(u, v), 

in a region about (u\, Vi). By the usual theorems on the ex­
istence of implicit functions, this would imply that the jacobian 
of (2) vanishes at (u\, Vi). If we exclude the vanishing of the 
jacobian (which corresponds to a requirement that the deriva­
tive shall not vanish), the maximum cannot exist. We may 
therefore state the following theorem. 

If the jacobian of (2) does not vanish in a region R, \f(z) | can­
not be at a maximum at any point of R. 

Since, as I have pointed out in §8, the jacobian cannot vanish 
unless at least one value of the directional derivative at the 
same peint is zero, and conversely, we may re-state this theorem 
as follows. 

If the directional derivative y does not vanish in a region Rf 

\f(z) | cannot be at a maximum at any point of R. 

We may use this result to generalize the classical theorem of 
Liouville, that every integral analytic function whose absolute 

* This Bulletin, vol. 36, p. 59, and vol. 36, p. 801. 
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value is always less than a fixed number M is a constant. For, 
suppose that any function ƒ(z) is defined, and that the assump­
tions of §2 hold, for every point z in the z plane, that \f(z) I < M 
for all values of z, and suppose that lim^oo f{z) = 0. Then \f(z) \ 
would have a maximum at the same point in the plane, which 
contradicts the preceding theorem, except in the trivial case 
/(V)==0. Next, suppose that lim^^ f(z) = C; then it is sufficient 
to consider the new function <j>(z) =f(z) — C, for which Hindoo 
4>(z) = 0. Hence we may state the following theorem. 

If f(z) satisfies the assumptions of §2 at every point of the z 
plane, if the directional derivative is never zero, if\f(z)\ <M,and 
if lim^^oo f(z) exists, then f (z) is a constant. 

As in the classical theory, it is easy to define the point at in­
finity, by means of the simple transformation z = \/zf. In the 
case just discussed, that is, when lim,^^ ƒ(z) = C, the function 
f(l/z') is regular near the new origin z' = 0 if we define it to be 
equal to C at that new origin. We may also use the classical 
language, and say that f(z) has the value C at the point at in­
finity, and that it is defined at every point on the "sphere," in 
the usual sense. Since the theorems announced above are also 
valid near the origin in the zf plane, we may state the following 
theorem, which is a generalization of one form of the Liouville 
theorem. 

If f{z) satisfies the assumptions of §2 at every point of the z 
sphere, and if the directional derivative is never zero, then f (z) is a 
constant. 

I t is possible to replace the condition that lim2+oof(z) exist by 
lighter requirements. If \f(z) | assumes the value M a t any point, 
it is easy to see that the theorem regarding the non-existence of 
a maximum would have to be violated at that point, if we main­
tain the assumption that the directional derivative never van­
ishes. I t is indeed sufficient to assume that there exists some 
closed curve inside of which f(z) takes on values greater than 
any values assumed on the curve itself. 

Somewhat similar theorems may be found also by using the 
formula (34) in a manner analogous to the use made of the 
analogous theorem in the classical theory, for special hypotheses 
regarding the second term, that is, regarding the areal dériva-
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tive. This is precisely what is done in the classical theory, for it 
is assumed there that the areal derivative is identically zero. If 
we assume that \f(z) | has a maximum M at z0, we may take C 
to be a circle of radius p about z0, and we can then show from 
(34) that we must have 

T W f ) ] i • • * * Iƒ(*.)! ^ - \f(s)\de+ — t ^ i 
Z7T J o J 7T I J J 

3 6 ) ^ {Max. of | / ( * ) | on C} + 2P<P[/(f)], 

where f is a value of 2 within C. 

12. 2"Âe Derivative on a Field. Stieltjes Integrals. Nicolesco in 
his thesis (pp. 21-25) has proposed the idea of the derivative of 
ƒ(z) on a given field. This field may be given by means of a 
family of curves 

(37) x = 4>(t, a), y = \p(t, a), 

of which one and only one passes through a given point of R, 
or by a given real function m(x, y) which determines a direction 
m at every point of R; that is, essentially by means of a differ­
ential equation. We shall assume the essential equivalence of 
these two methods of determining the field. Nicolesco has proved 
the following theorem. 

If m(x, y) is given, and if any function y(z) =y=a-{-i(3 is 
given, there exist an infinite number of f unctions f {z) =u+iv whose 
derivatives on the field m are equal to y(z) ; and these are the solu­
tions of the equations 

du du 
Y m a + nifi = 0, 

dx dy 
(38) 

dv dv 
Y m ma — P = 0, 

dx dy 
in which the variables u and v are separated. 

The functions f{z) may be called the primitive functions of 
the function y(z). 

I have pointed out elsewhere* that integration and differenti­
ation can be carried out on such a field, and that they are in-

* This Bulletin, vol. 34 (1928), p. 150; and Bulletin of the Calcutta Mathe­
matical Society, vol. 20 (1928), pp. 109-124. 
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verse operations in the usual sense, if the directions taken in 
each case lie in the field. In fact, if (37) define the directions in 
question, dx/dt = cos 6 and dy/dt = sin 6 are determined at every 
point, so that 6 = 6(xy y) is a function of x and y. Then, given 
w=f(z) =u(x, y)+iv(x, y), 

dw 
(39) y = — 

dz 

(ux+ ivx) cos 6 + (uy + ivy) sin 0 
= a + i/3 = 
» cos 6 + i sin 0 

The integral, which I have called a Stieltjes integral, of this 
function 7 on the curves of the family (37) is 

ydz = I (a + i/3)(dx + iJ^) 

= ƒ O + #){<**(*, a) + *#(/, a) } 

(40) = f (a + i/3)(cos (9 + i sin 6) dB 

= I {(ux + M>S) cos 0 + (uy + izjy) sin d}dd 

(^x + ivx)dx + (% + ivv)dy = [u + iv\Xo, 
x,y 

vo 

where the limits to be taken in the several integrals are obvious. 
Conversely, the derivative on the field of the integral on the 

field is readily seen to be equal to the original function. For a 
given field, therefore, differentiation and integration may be 
regarded as inverse operations, the result in each case being a 
function of z alone. 

13. Second and Higher Derivatives. The definitions of second 
and higher derivatives that have been given by different au­
thors are not in agreement. In taking a second derivative, if the 
slope of the curve along which the increment Az approaches 
zero be denoted b y w ' , while m still denotes the similar slope for 
the first derivative, the following plans may be (and have been) 
used: 

(A) m = m' = const., independent of z. 
(B) m = mf =fx(x, y), a field (see §12). 
(C) nt', and the curve of approach, independent of m. 
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In his thesis, Nicolesco considers the various possibilities. 
First of all, he proves that in any case the order of differentia­
tion is immaterial; that is, that m and m' may be interchanged 
without affecting the second derivative. He extends this result 
to the ?zth derivative. His position usually, however, is that of 
the assumption (A) above. 

Calugaréano, who makes much more extensive use of second 
and higher derivatives, makes the assumption (A) throughout. 
He discusses the difference between his own attitude and that of 
Kasner in a recent paper.* We shall return to this discussion. 
Calugaréano proceeds with essentially the same notation as that 
used in equations (31), (32), (33) of §9 of the present paper. 
Assuming m—m\ we easily derive the formula 

dnw /d d \ < n ) 

(41) = l — + e-2ie—) w, 
dzn \dz dz/ 

where the symbolic exponent (n) is to be interpreted in the usual 
symbolic sense. The simplicity of this formula makes unneces­
sary any extended discussion, if this interpretation is to be 
adopted. 

Kasner f and his students J have adopted the assumption (C). 
He uses as the path of approach any curve whatever, independ­
ent of the original choice of m, and he obtains the formula 

d2w wxx + 2wxyy
r + Wyvj'2 Wy ~~ w * 

This formula depends essentially upon the second derivative y" 
of the curve of approach, that is, upon the curvature of that 
curve. He shows that d2w/dz2 is independent of yn, under his 
assumptions, when and only when w is an analytic function of z. 
He also proves that the oo1 set of values of d2w/dz2> for a con­
stant curvature AC, describe an irrational curve of the eighth 
order, which reduces to a limaçon when K = 0. A detailed report 
upon these facts seems inappropriate here, though the geometry 
developed is of great interest. Further developments of this 

* Transactions of this Society, vol. 32 (1930), pp. 110-113. 
t Transactions of this Society, vol. 30 (1928), pp. 803-818. 
J Kasner and Hofmann, this Bulletin, vol. 34 (1928), p. 495; J. E. Donahue, 

Columbia University Thesis, Hamburg, 1930. 
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geometry have been given by J. E. Donahue in his thesis (loc. 
cit.). He includes a review of Kasner's work (only), and gives 
elaborate details with many special cases, and with very in­
teresting geometric developments. These seem, however, to be 
beyond the scope of this paper. 

14. Solutions of Differential Equations. Calugaréano, using 
the definitions stated here in §13, has proceeded to discuss the 
non-analytic solutions of differential equations and of functional 
equations. I t will not be possible here, in the space at my com­
mand, to do more than to indicate the nature of his results, and 
to state a few of the simplest theorems. I t may be said that 
these developments would not be possible under the definitions 
assumed by Kasner, and that it would seem that differential 
equations of the sort discussed below would not possess non-
analytic solutions if the Kasner definition were to be used. 

Returning to the definition used by Calugaréano, we may say 
that a differential equation 

(43) $(s, w, « / , • • • , w(w)) = 0 

will be satisfied, in general, by a function w =f(z) if, when we sub­
stitute for the nth derivative wM the value given in (41), the 
equation (43) is satisfied for all values of 6. An at tempt to ex­
press the fact that the result of the substitution is independent 
of 6 gives in general a number of conditions which must be satis­
fied if there are to be any non-analytic solutions. That non-
analytic solutions do actually exist in some cases is easy to 
verify. Thus the linear equation 

(44) A(z)w" + B(z)w' + C{z)w + D(z) = 0, 

where A, B, C, D are analytic, has solutions if 

(45) B2 - 4AC = 2(A'B - AB'), 

a condition which is fulfilled for any A and B if C is properly 
chosen, provided A does not vanish. 

Such linear equations, however, always have rather simple 
non-analytic solutions; if we express them in the form F(z, z), as 
in (31), it results that F is an analytic function of z and a poly­
nomial in z, for linear equations of any order. However, these 
solutions are helpful also in obtaining ordinary analytic solu-
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tions, since it is shown that the analytic function F(z, z — C) 
obtained by replacing z by z — C, is also a solution of the given 
differential equation. 

Calugaréano also showed that any differential equation of the 
second order that has non-analytic solutions must be of the 
form 

(46) w" + A(z, w)w'2 + B(z, w)wf + C(z, w) = 0, 

where A, B, and C are analytic functions of z and w. It is true in 
this case also that if F(z, z) is a solution of (46), then F(z, z — C) 
is an analytic solution of the same equation. These results are 
generalized to equations of higher order. 

In his 1930 paper cited above, Calugaréano shows that the 
analytic integral of (46) is obtained from the non-analytic in­
tegral F(z, z) by replacing z by 71.3+72. 

15. Other Results. Conclusion. The results mentioned above 
have explicit reference to theorems on non-analytic functions. 
Two other directions exist in which associated results are to be 
found. In the first place, as is emphasized above, even the 
classical textbooks contain many theorems in which the hypoth­
esis of analytic character is not made. A complete report on 
theorems satisfied by non-analytic functions would have to in­
clude all such theorems, which would not be appropriate here. 
Moreover, as the theory of non-analytic functions is becoming 
more widely known, more attention has been and will be paid 
to the question as to whether or not the hypothesis of analytic 
character is necessary, in any given theorem. I have called at­
tention to several theorems in which such a hypothesis can be 
modified without essential change in the conclusion of the the­
orem. I have not tried to include all such instances in this 
paper. I t is to be expected that a very large number of such 
cases will be found, as has been true in the similar case in the 
theory of functions of real variables. 

Other notable omissions are caused through lack of space. In 
a list which follows, I have included the titles of some papers to 
which I have made no explicit references. In general, I have 
sought to include results which seemed to possess not only in­
terest, but also a degree of apparent finality. Some results ap­
pear to be tentative in character, as is natural in a new field. 
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The other direction of research associated with this paper, 
but not represented here, is the generalization of ideas inherent 
in the background of this paper, through extension to higher 
dimensional spaces, or to functions of other fundamental ele­
ments than points, or to hypercomplex numbers. A number of 
papers of this character have been published, and they are 
highly significant, but they seemed not to be an integral part 
of the discussion here, unless the field of discussion were to be 
extended unduly, in view of the limitation of space. That I my­
self have assisted in the publication of some of these is evidence 
enough that my present omission of them is not caused by any 
lack of personal interest. 

I t is my hope that the present paper may serve to acquaint 
many with some of the salient advances in the theory, to enable 
others to find a variety of results in one compact paper, and to 
give some indication of possible future research. 
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