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To validate the process, proceed from t = 2 by mathematical 
induction. For t — 2, we consider/(xi, x2) as a function of X\, 
keep x2 fixed, and apply the summation formulas of §2. In each 
term of the result we then consider /(xi, x2) as a function of 
x2 and apply §2. 

In exactly the same way multiple summations equivalent 
to symbolic products (as above) of any number of factors of one 
or more of the types giving the explicit forms of the function 
fïps(n), (£=j3, 7, rj, p),in§2 can be written out as functions of the 
upper limits of the summations. 

By the method of proof in §§1, 2, it follows that these formu­
las remain true under linear transformations of the arguments 
of the entire functions. The like does not hold for non-linear 
transformations, as the product of two or more umbrae is un­
defined. 
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1. Introduction, Suppose we have a finite set of objects, (for 
instance, books on a table), each of which either has or has not 
a certain given property A (say of being red). Let n, or n(l), 
be the total number of objects, n{A) the number with the prop­
erty A, and n(A) the number without the property A (with the 
property not-^4 or A). Then obviously 

(1) n(A) = n — n(A). 

Similarly, if n{A B) denote the number with both properties A 
and B, and n(A B) the number with neither property, that is, 
with both properties not-^4 and not-B, then 

(2) nÇÂB) = n - n{A) - n(B) + n(AB), 

which is easily seen to be true. 
The extension of these formulas to the general case where any 

number of properties are considered is quite simple, and is well 

* Presented to the Society, October 25, 1930. 
t National Research Fellow. 
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known to logicians. It should be better known to mathema­
ticians also; we give in this paper several applications which 
show its usefulness. 

The notation is that used in a paper by the author, Character­
istic f unctions and the algebra of logic* which we shall refer to as 
C. F. I t should cause no confusion if we use the same symbols 
for characteristic functions, sets, and properties. The paper 
named is not essential for an understanding of the present paper. 

2. The Logical Expansion. We prove now the general formula 

w(JiZ2 • • • Am) = n - [niAi) + n(A2) + • • • + n(Am)] 

(3) + [n(AlA2) + n(A1As) + >-. + MA^AJ] 

- [n(A1A2As) + . . . ] + . . . + (_ \)™n(AxA2 • • • Am), 

which gives the number of objects without certain properties in 
terms of the numbers of objects with various of these properties. 
The formula is exactly what we should get if we multiplied out 
the expression in brackets in n[(l — Ai)(l — A2) • • • (1—Am)] 
by ordinary algebra and applied the general formulas 

n(F + G) = n(F) + n(G), n{- F) = - n(F). 

We assume the formula holds if there are two properties in­
volved, arid shall prove it for the case that three properties are 
involved. The proof obviously holds if the numbers two and 
three are replaced by i and i+1, and hence the formula is true 
in general, by mathematical induction. 

Consider the objects counted in n(AiA2), that is, those with 
neither of the properties Ai and A2. We wish to know how many 
of these have the property Az. Applying (1) to this set, we have 

n(A iA213) = n(A^A2) — n(A^Â2Az). 

We know, by hypothesis, that 

n(A^A2) = n — [n(Ax) + n(A2)] + n{AxA2). 

To find n(AiA2Az) we need merely consider those objects with 
the property ^43, and apply the expansion to this set. Thus 

n(I^A2Az) = n(Az) - [n(AtAz) + n(A2A3)] + n(A1A2Ai). 

* To appear in the Annals of Mathematics. 



574 HASSLER WHITNEY [August, 

Hence 

(4) ^(ZiJsZs) = n - [n{Ax) + n(A2) + n(A9)] 

+ [n{AiAi) + niA^Az) + n(A2Az)] - n(A1A2A3)) 

as required. 

3. The Measure of Characteristic Functions. This section relates 
this paper to the paper C. F. We shall find a general class of 
formulas which contains the logical expansion as a special case, 
making use of characteristic functions. With each element x of 
a set of n objects R we associate an integer A (x), positive, nega­
tive, or zero. We define the measure o f A by the equation 

(5) n(A) = *ZA(x). 
x in R 

Suppose A were one for certain elements of R (which elements 
form the set A ' ) , and zero for the rest. Then A is the character­
istic function of A ', and n(A) is just the number of elements in 
A '. In particular, if A = 1, that is, A ' is R, then n{A) is 

(6) n(l) = n, 

and if A = 0 , that is, Ar contains no elements, then n(A) is 

(7) w(0) = 0. 

If A and B are any functions and p and q are any numbers, then 

n(pA +qB) = £ [pA(x) + qB(x)] = pT,A(x) + <?!>(*) 

(8) 
= pn(A) + qn(B). 

The logical expansion now follows at once if we expand 
AiA2 - • • Am into the second normal form as in C. F.* 

4. On Prime Numbers. Let 

Ph P2, ' ' ' , pm 
be any set of positive integers. We wish to find N, the number of 
numbers less than or equal to a given number x, which are not 
divisible by any of these numbers. If we let R be the set of all 
numbersS% and let J\- be those divisible by pi, then 

* Note that , for characteristic functions, Ai = l~Ai. We make this sub­
stitution, multiply out, and use (8). 
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N = n(PlP2 • • • Pm) 

(9) = n - [»(P0 + »(Pa) + • • • ] + [n(P1P2) + • • • ] 

+ ( - l ) ^ ( i W • ' Pm), 

by the logical expansion (where n=x). This expansion is funda­
mental in prime number theory.* Its importance lies in the fact 
that the terms of the form n(Pi1Pi2 • • • Pik) are easier to cal­
culate directly than the desired quantity. 

Suppose we wish to find the number <fi(x) of prime numbers 
^x. Let pi, p2, m ' • i pm be the primes <\/x* Then the primes 
Soc are just those numbers ^x which are not divisible by any 
of the numbers pi, p2, • • • , pm, except for the number 1, to­
gether with the m numbers pi, pi, • • • , pm. Thus 

(10) 4>{x) = N + m - 1. 

5. A Problem in Probability. Suppose a pack of cards is lying 
in a row on a table. If we lay out another pack of cards on top of 
these, what is the probability that no card of the second pack 
will lie on the same card of the first? If a pack contains m cards, 
there are m\ arrangements of the cards in the second pack. If 
there are N arrangements of the second pack such that no card 
of the second pack falls on the same card of the first, then the 
required probability is p = N/m\. If n(Ai) denotes the number 
of arrangements such that the ith card of the second pack falls 
on the same card of the first, etc., then N = n(Ai-A2 • • • Am). 
If we use the logical expansion, a typical term of the result 
is ( — l)kn(Ai1-Ai2 • • - Aik). This is the number of arrange­
ments in which the cards numbered ii, i2, - - • , ik fall on the 
same cards of the first pack. These k cards being fixed in position, 
there are (m — k)\ arrangements of the remaining cards. The 
term is thus (— l)k(m — k) !. There are (f) terms with k factors, 
contributing together ( - l)k(f)(m-k) ! = ( - \)km\/k !. Sum­
ming over k and dividing by m I, we have 

- ( - l)k 1 1 1 
p= "£1 J L = 1 + + ( _ l ) m _ , 

M kl l! 2! ml 
which is the sum of the first m + 1 terms in the expansion of 1/e. 

* See for instance E. Landau, Primzahlen, Leipzig, Tuebner, pp. 67 ff. 



576 HASSLER WHITNEY [August, 

6. On the Number of Ways of Coloring a Graph. Consider any 
set of objects a, b, c, • • • , ƒ, and any set of pairs of these ob­
jects, as ab, bd, • • • , cf. We call the whole collection a graph, 
containing the vertices a,b, c, • • • , ƒ, and the arcs ab, bd, • • • , cf. 
It can be visualized simply by letting the vertices be points in 
space, and letting each arc be a curve joining the two vertices 
involved. 

Suppose we have a fixed number X of colors at our disposal. 
Any way of assigning one of these colors to each vertex of the 
graph in such a way that any two vertices which are joined by 
an arc are of different colors, will be called an admissible color­
ing of the graph. We wish to find the number MÇK) of admissible 
colorings, using X or fewer colors. 

As a special case of this general problem we have the four-color 
map problem: To know if we can assign to each region of a 
map on a sphere one of four colors in such a way that no two re­
gions with a common boundary are of the same color, that is, 
to see if ikf(4)>0. Our graph (which is just the dual graph of 
the map) is constructed by placing a vertex in each region of 
the map, and joining two vertices by an arc if the corresponding 
regions have a common boundary. We shall deduce a formula 
for the number MÇK) of ways of coloring a graph due to Birk-
hoff.* 

If there are V vertices in the graph G, then there are XF pos­
sible colorings, formed by giving each vertex in succession any 
one of the X colors. Let R be this set of colorings. Let A ab denote 
those colorings with the property that a and b are of the same 
color, etc. Then the set of admissible colorings is 

AabAbd • • • Acf, 

and the number of colorings is, if there are E arcs in the graph, 

* A determinant formula for the number of ways of coloring a map, Annals 
of Mathematics, (2), vol. 14 (1912), pp. 42-46. The formula was discovered 
independently by the author by the method here given. See in this connection 
a paper by Birkhoff, On the number of ways of coloring a map, Proceedings of 
the Edinburgh Mathematical Society, (2), vol. 2 (1930), pp. 83-91; also a 
paper by the author, The coloring of graphs, to appear in the Annals of 
Mathematics. In regard to the four-color map problem, see references in Birk-
hofFs last mentioned paper, also a paper by the author, A theorem on graphs, 
Annals of Mathematics, (2), vol. 32 (1931), p. 379. 
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M(X) = n(Jab1bd • • - ACf) 

(11) = n - [n(Aab) + n(Abd) + • • • + n(Acf)\ 

+ [n(AabAbd) + . . . ] - . . . 
+ ( - l)En{AabAbd' • -Acf). 

With each property Aab is associated an arc ab of G. In the 
logical expansion, there is a term corresponding to every pos­
sible combination of the properties Apq; with this combination 
we associate the corresponding arcs, forming a subgraph H of G. 
In particular, the first term corresponds to the subgraph con­
taining no arcs, and the last term corresponds to the whole of G. 
We let H contain all the vertices of G. 

Let us evaluate a typical term, such a s n\A.ab/±ad ' ' ' JLce). 
This is the number of ways of coloring G in X or fewer colors in 
such a way that a and b are of the same color, a and d are of the 
same color, • • • , c and e are of the same color. In the corre­
sponding subgraph II, any two vertices that are joined by an 
arc must be of the same color, and thus all the vertices in a 
single connected piece in II are of the same color. If there are p 
connected pieces in H, the value of this term is therefore \p. 
If there are 5 arcs in H, the sign of the term is ( — l) s . Thus 

( - l)sn(AabAad • • • Ace) = ( - 1)*\*\ 

If there are (p, s) (this is BirkhofFs symbol) subgraphs of s 
arcs in p connected pieces, the corresponding terms contribute 
to MÇK) an amount ( — l)s(p, s)\p. Therefore, summing over all 
values of p and s, we find the polynomial in X: 

(12) M(X) = Z ( - 1)8(A *)X'. 

Consider a subgraph II of G of s arcs, in p connected pieces. 
Let us define its rank i and its nullity j by the equations 
i=V — p,j = s — i = s— V+p. Then p= V — i, s=i-\-j} and put­
ting (p, s) —mV-p,s-v-\-p = rnii, (thus, m a is the number of sub­
graphs of G of rank i, nullity j), we have 

(13) M(\) = E ( - 1)*%^-* = I>AF-*, 
i. i i 

mi = X X - îy+'mij. 
i 
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7. The Mi in Terms of the Broken Circuits of G. We shall find 
in this section an interpretation of the coefficients of MÇK) di­
rectly in terms of properties of the graph. Consider for instance 
the graph G containing the vertices a, b, c, d and the arcs ab, ac, 
be, bd, cd, the arcs being given in this definite order. Make a list 
of the circuits in G, naming the arcs of a circuit in the order in 
which they occur above. Here, the circuits are ab, ac, be, and 
be, bd, cd, and ab, ac, bd, cd. From each circuit we now form the 
corresponding broken circuit by dropping out the last arc of the 
circuit. The broken circuits here are ab, ac, and be, bd, and ab, 
ac, bd. Then the number { — V)lmi is the number of subgraphs of G 
of i arcs which do not contain all the arcs of any broken circuit. 

To show this, we arrange the broken circuits of G in a definite 
order, where we put a broken circuit Pi before a broken circuit 
Pj if, in naming the arcs of G one by one in the given order, all 
the arcs of Pi are named before all those of Pj are named, other­
wise, the ordering is immaterial. Suppose there are a broken 
circuits, Px , P2 , • • • , Pa- We now divide the subgraphs of G 
into <r + l sets (some of which may be empty), putting in the 
first set, Si, all those subgraphs containing all the arcs of Pi) 
in the second, S2, all those not containing Pi, but containing P 2 ; 
in the third, S3, all those containing neither P i nor P2 , but con­
taining P 3 ; • • • ; in the last set, Sff+i, all those containing none 
of these broken circuits. 

Consider now all the terms in (11) corresponding to the first 
set of subgraphs. Suppose ai is the arc we dropped out of a cir­
cuit to form the first broken circuit Pi . To each subgraph in Si 
not containing a\ corresponds a subgraph in Si containing oti 
and conversely, as ai is not in Pi . The subgraphs of Si, and 
hence the corresponding terms of (11), are thus paired off. 
But the two terms of each pair cancel. For let H and H' be the 
two corresponding subgraphs. If H is in p connected pieces, so 
is H'', as the arc o>i joins two vertices already connected by the 
broken circuit Pi . The terms each contribute \p therefore; but 
they are of opposite sign, as H' contains one more arc than H. 

Consider now the terms corresponding to S2 (if there are any 
such). If a2 is the arc dropped out in forming P2 , a2 is in neither 
Pi nor P2 , on account of the way we have ordered the broken 
circuits. Thus to each subgraph in S2 not containing «2 corre­
sponds a subgraph in S2 containing a2, and conversely. The cor-
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responding terms of (11) are thus paired off, and they cancel, 
exactly as before. 

Continuing, we cancel all terms in 5 3 , S 4, • • • , Sff. We are 
left only with terms in 5<r+i, that is, those corresponding to sub­
graphs not containing all the arcs of any broken circuit, and 
none of these have been canceled. 

Consider any such term containing i arcs. The corresponding 
subgraph H contains no circuit, as it contains no broken circuit. 
If we build up H arc by arc, each arc we add joins two vertices 
formerly not connected therefore, and the number of connected 
pieces is decreased by one each time. Thus the number of con­
nected pieces in H is V—i, and the corresponding term con­
tributes ( — l)i\v~i to ikf(X). If there are U such subgraphs, they 
together contribute an amount (— l)ilikv~i. Hence, summing 
over i, we have P(X) =y^2i( — l)ilîkv~i. Comparing with (13), we 
see that /; = ( — 1){mi, as required. 

EXAMPLES. Let G contain the vertices a, b, c, and the arcs ab, 
acy be. There is one broken circuit: ab, ac. There is one subgraph 
of no arcs, and ra0 = 1. There are three subgraphs of a single arc, 
and —mi = 3. There are three subgraphs of two arcs; but one of 
them contains the broken circuit, so ra2 = 2. The subgraph of 
three arcs contains the broken circuit. Hence, as V = 3, 

M(\) = X3 - 3X2 + 2X = X(X - 1)(X - 2). 

This is easily verified. For we can color a in X ways; there are 
X — 1 colors left for b ; there are now X — 2 colors left for c. 

Let G be the graph named at the beginning of this section. 
If a subgraph contains the last broken circuit, it contains the 
first also, so we can forget the last. We find 

MÇK) = X4 - 5X3 + 8X2 - 4X = X(X - 1)(X - 2)2, 

which again is easily verified. 
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