
SUMMATION OF FOURIER SERIES* 

BY EINAR HILLE 

1. Introduction. My topic, the summation of Fourier series, 
has been dealt with in addresses delivered to this Society by 
C. N. Moore, G. H. Hardy, and again by C. N. Moore, the last 
one less than two years old. f If I venture to speak on the same 
subject again, it is because the field is in a state of brisk and 
steady development so that it is possible for me to deal with 
matters which have not been exhausted by previous speakers. 
In particular, I am happy to be able to include in my report a 
number of results, published and unpublished, found by J. D. 
Tamarkin and myself during the last few years. 

The term Fourier series is used in at least five different senses 
in the current literature. In the present report the term signifies 
a trigonometrical Fourier-Lebesgue series, that is, a series of the 
form 

(1) \- 2^/(an cos nx + bn sin nx)y 
2 w = = i 

or, in the complex form preferred nowadays, 

+00 

(2) J2Unix 

n=—oo 

where the coefficients are determined by 

an) 1 r+r ( cos ) 1 r+T 

bn) 7T J„r I sin ; ZTJ-TT 

respectively. Here f (x) is supposed to be integrable in the sense 
of Lebesgue in the interval (— x, +7T), and is extended by the 
convention ƒ(x + 2w) =f(x) outside this interval. 

* An address read by invitation of the program committee before the So­
ciety at New York, March 25, 1932, as part of a symposium on summability. 

f The addresses of C. N. Moore have appeared in this Bulletin, vol. 25 
(1918-19), pp. 258-276, and vol. 37 (1931), pp. 240-250. 
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These formulas associate a formal series with every integra-
ble function ƒ (x), the Fourier series of fix). It is natural to ask 
in what sense the series represents or determines the function. 
If we write 

(4) sn(x) = h 2Z(ak cos kx + bk sin kx) = z2fkekix, 
2 k=l k=~-n 

our first guess is of course that 

(5) lim sn{x) = f{x). 
n—>oo 

All the evidence accumulated during a century indicates, how­
ever, that this relation must be considered as an exception ra­
ther than as the rule, though a quantitative measure of the im­
probability of (5) is still lacking. 

Ordinary convergence being a clear failure in the study of 
Fourier series, it is obviously necessary to consider some notion 
of generalized convergence instead. Essentially two different 
lines of attack are available here. We may use the modern 
theory of systems of integrable functions involving the concepts 
of strong convergence, weak convergence, convergence in meas­
ure and so on. Or we may use the theory of transformations of 
sequences together with the related theory of singular integrals. 
It is with the second mode of procedure that I shall be concerned 
here. I want to emphasize, however, that these two methods are 
closely interwoven, and that both are indispensable for a com­
plete theory of Fourier series. 

The early history of summation of Fourier series has been 
outlined often enough. Let me merely recall here that the 
theory received its first strong impetus from the fundamental 
paper of Fejér in 1903 [ l l*; preliminary communications go 
back to 1900] which was followed by the investigations of Le-
besgue in 1905-09 [26, 27, 28]. These memoirs form the point 
of departure of the modern theory of Fourier series. They also 
kindled a wide interest among analysts in the theory of summa-
bility which had already proved its usefulness in connection 
with the problem of analytic continuation around 1900 [see, 
for example, 3, 29, 30, 31 ]. 

* Reference to the Bibliography at the end of this paper. 
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2. Effectiveness. Throughout the development of the theory 
of summation of Fourier series we may discern two different 
points of view, a local one and a global one, which occasionally 
are in conflict but usually complete each other. 

The phenomena of convergence or summability of a Fourier 
series are of a purely local character. Only the properties of the 
function in the immediate neighborhood of a point determine 
whether or not its Fourier series is summable at that point by a 
particular definition of summability. We should like to know 
what local properties of the function imply such summability 
of its Fourier series, and, conversely, what properties of the 
function are implied by its Fourier series being so summable. 
We have here two types of limiting processes, one referring to the 
function, the other referring to its Fourier series, and the 
question is when the existence of one limit implies that of the 
other. 

This is the local problem, but there is also a problem in the 
large. Every function f(x)cL determines a unique Fourier 
series, but to a given Fourier series correspond infinitely many 
functions the difference of any two of which is a null function. 
One of the main problems of our theory is how to pass from the 
series to the function, or, rather, to any one of the set of equiva­
lent functions. This requires that we be able to assign a sum to 
the series for almost all values of x, and that the sum-function 
has the given series as its own Fourier series. The global point 
of view thus leads to the question : Does a given definition of sum­
mability sum Fourier series to "the correct sum" almost everywhere! 
The characterization of all such definitions then becomes a 
problem of interest and importance both to the theory of Four­
ier series and to the theory of summability. 

But one can also occupy a more general point of view of which 
those already mentioned are only special aspects. Let there be 
given a class C of series 

+00 

(6) J2CnUn(x), 
— 00 

the terms of which are defined for a^x^b. Suppose further 
that with each series of C there is associated a function f(x) 
defined for almost all x in (a, b). To fix our ideas, we may think 
of the class L of all Fourier-Lebesgue series, f(x) being in this 
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case one of the equivalent functions which give rise to the par­
ticular series. But we could also let C be the class of conjugate 
series, or of Fourier-Denjoy series, or of Fourier series in the 
sense in which this term is used in the theory of almost periodic 
functions, or of Legendre series etc. In each case it is possible 
to make the required association between series and function. 
With each such function fix) we associate a set Ef of points in 
(a, b) where f(x) has a finite definite value and satisfies a pre­
scribed condition of regularity. The latter condition will usually 
imply tha t / (x ) and (or) some related function are continuous 
in some sense or other. We can think of ordinary continuity or 
continuity in the mean or strong continuity (a Lipschitz condi­
tion or a similar one). Finally, let a definition of summability 
be given, A say, which associates with the series (6) a sequence 
or a one-parameter family of functions T(x, œ;f(-), A). H now 

(7) limTX*, « ;ƒ( . ) , 4 ) = ƒ(*) 
co—> oo 

for every series in C and for every x in Ef, we say that the defini­
tion A is (C, Ef)-effective. The notation indicates that this defi­
nition can be used for the summing of any series in C, and will 
assign as the sum of the series the associated function f(x) for 
every x c Ef. It should be realized that Ef may be vacuous and 
that we disregard entirely what happens in the complementary 
set (a, b)—Ef. 

In (7) we presuppose convergence in the sense of Cauchy, 
but we can reach still greater generality by considering various 
forms of generalized convergence, e.g., convergence in the mean, 
in which case the definitions have to be modified in an obvious 
manner. (For the development of this terminology and this 
point of view, see Hille and Tamarkin [20 ], third and fourth 
notes, [21] and [22].) A few examples will clarify the notation. 

(i) Let C be the class L of all Fourier-Lebesgue series, f(x) 
any one of the equivalent functions giving rise to the series. 
Let Ef be the set of points where ƒ (x) is continuous. We say that 
A is (F)-effective if it has this type of (C, Ef)-effectiveness. 

(ii) Let C and f(x) be defined as above and let Ef be the set of 
points where 

(8) lim— f | ƒ(* + /) -f(x)\dt = 0. 

We designate this type as (L)-effectiveness. 
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Thus A is (F)-effective if it sums the Fourier series of f(x) 
to the sum/(x) at all points of continuity of f(x), and (L)-effec­
tiveness implies summability to the sum f(x) almost everywhere. 
It is clear that every (L)-effective definition is also (F)-effec­
tive, but the converse is scarcely likely to be true. There exist 
definitions of summability which are (F)-effective, and which 
have not been proved to be (L)-effective so far. 

In the following I shall be concerned chiefly with the prob­
lem of what definitions of summation are (F)- or (L)-effective. 
Before leaving these general considerations I want to empha­
size, however, that this is only a particular case of the general 
question of (C, Ef)-effectiveness, though one of the most im­
portant cases. It is customary to consider various associated 
series simultaneously with the theory of Fourier series proper 
such as the conjugate ( = allied) series, the derived series of func­
tions of bounded variation and their conjugate series. Without 
attempting to be systematic, I shall frequently mention what is 
known about the corresponding effectiveness problems for such 
classes of series. 

3. Conditions of Effectiveness. We pass over to the question of 
how to decide if a given definition of summation A is (F)- or 
(L)-effective. A is supposed to associate with ƒ(x) cL a family of 
functionals T(x, co; ƒ(•), A). A particularly simple example is 
that in which A is a regular linear sequence-to-sequence trans­
formation with finite reference defined by a triangular matrix 
||<2m)n|| and the equations 

m 

(9) ym = ^2amnxn, (m = 0, 1, 2, • • • ) . 
71=0 

Substituting 

1 r+ 7r sin O + h)t 
(10) sn(x) = — f(x + 0 1 dt 

2w J_,r sin \t 
for xn, we get 

(11) T(x,m;f(-),A) = f 'f(x + t)Km(fidt, 

where 
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™ sin O + %)t 
(12) Km(f) = 2^amn~ 

n =o t-K s m %t 

A necessary and sufficient condition that 

(13) T(x, m\ ƒ(•), A) —> f{x) as w—» oo 

at every point of continuity of ƒ(#) is given by 

(14) f | Km{t)\dt < M 
Jo 

for a fixed finite M independent of m. The representation (11) 
and condition (14) remain valid under much more general as­
sumptions on A. But if we merely assume that T(x, co ;ƒ(•)> A ) is 
a linear functional of ƒ( • ) which as a function of x belongs to 
L for every finite co and which converges to f{x) at every point 
of continuity as co—>oo, then the integrals in (11) and (14) have 
to be replaced by suitable Stieltjes integrals. 

No necessary and sufficient conditions for (L)-effectiveness 
seem to be known. For a rather wide class of definitions, includ­
ing all regular definitions of finite reference, a set of sufficient 
conditions is given by (14) together with 

(15) lim Km(t) = 0, * 5* 0, 
w-->°° 

r5 

(16) I dt[tKm(t)]\ < M, Ô < ôo, mo < m. f \dt[tKm{t)} 
Jo 

It should be mentioned^ however, that condition (16) is apt to 
fail in all except the very simplest cases occurring in the theory 
of Fourier series. 

Our problem can also be approached through the relations of 
relative inclusion known to exist between various definitions 
of summability. If every series summable A2 is also summable 
Ai to the same sum, we say, following W. A. Hurwitz, that the 
definition Ai includes the definition A2. Hence, if Ai includes A2 

and if A2 is (C, Ef)-effective, so is A\. Now Cesàro's definition of 
order a>0 is known to be (L)-effective (G. H. Hardy [16]; 
many other proofs are known). It follows that any definition A 
which includes a Cesàro definition of positive order is necessarily 
(L)-effective. Incidentally, such a definition will also sum the 
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conjugate series, the derived series of a function of bounded 
variation and its conjugate series, each to its proper sum for al­
most all values of x. The value of this and of similar criteria is 
limited by the fact that (Z)-effective definitions are not neces­
sarily comparable or even consistent, nevertheless such criteria 
will frequently be used in the discussion below. 

4. Plan of Survey. I proceed to the main part of this address 
which is devoted to a preliminary census of the known defini­
tions of summability from the point of view of (F)- and (In­
effectiveness. In this short exposition I can obviously only con­
sider some of the more important definitions where the actual 
choice of course is largely dictated by my own temporary in­
terests. The classification of definitions of summability is not 
far developed. I use the customary grouping according to finite 
or infinite reference; a third heading is added for summation of 
integrals. 

I. DEFINITIONS WITH F I N I T E REFERENCE 

I consider four separate types of definitions of summability 
based upon a single generating sequence (§§5-8) and a fifth 
one based upon two generating sequences (§9). The discussion 
of means of the closed cycle which may be of finite or infinite 
reference starts in §10 and is continued in §11 of II . All these 
six types contain the definitions of Cesàro as special cases. 

5. Retrogressive Means. We employ a sequence of complex 
numbers {pv} such that 

(17) Pn = p0 + pi + ' » « + Pn * 0, 

and take as the generalized limit of the sequence {sn} the ex­
pression 

(18) (N, pv) - lim sn = lim P^ipnSo + pn-\Si + • • • + poSn) 

if this limit exists. The conditions for regularity are 
n 

(19) H\pk\ <C\ Pn\ ,Pn/Pn->Q. 

It is customary to refer to these means as those of Nörlund [36] 
though the first discovery goes back to Woronoi [54]. The term 
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"retrogressive" is used here for the purpose of comparison with 
the means of §6, and refers to the manner in which the weights 
{pv} are attached to the elements of the sequence {sn}. 

The relative inclusion theory of these means has been studied 
by M. Riesz [43]. The condition that (TV, pv) shall include 
(N, 1) = (C, 1) is particularly simple, viz. 

n 

(20) « | Po | + E ( « - k + 1) I pk - pk-x | < C | P , | , 
/ c = l 

and is satisfied, for example, if pn is positive and monotone in­
creasing. Any such definition (N, pv) is consequently (L)-effec-
tive. A direct study of the effectiveness of these means with 
respect to Fourier series has been made by Hille and Tamarkin 
([20], first note, [21]) who found that the following conditions 
are sufficient for (L)-effectiveness: 

(21) n\pn\ < C | P » | , 
n 

(22) Hk\ph-pk-i\ <C\Pn\ , 

(23) Z±J±<C\pn\. 
fc=l k 

If these conditions are satisfied the method (N, pv) will also sum 
the conjugate series, the derived series of a function of bounded 
variation, and its conjugate series to the proper sums almost 
everywhere. If pn>0 and satisfies (21) and (22), thus in particu­
lar if pn is ultimately monotone decreasing, then (23) is a neces­
sary as well as sufficient condition for (F)-effectiveness. A s^m" 
pie example of a definition which is not (F) -effective is given by 
the harmonic mean, (N, (̂  + 1) - 1). 

6. Progressive Means. We again employ a sequence {pv} satis­
fying (17), but the generalized limit is taken to be 

(24) (R, pv) - lim sn = lim P^iPoSo + piSi + • • • + pnsn) 

instead. The conditions of regularity are now 
n 

(25) S I pk I < C I Pn I , Pn -* 00 . 
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We can refer to these weighted means as progressive means. 
If pn>0 they become a particular case of the discrete Riesz 
means R(Pn, 1). The choice pv = l gives (R, 1) =R(n, 1) = (C, 1). 
Except for particular instances, the question of effectiveness of 
such means does not seem to have been studied, but there is 
plenty of information available from the inclusion theory. Thus 
G. H. Hardy [15] has proved that any series summable (R, pv), 
pv>0, is summable (R, pv €„) to the same sum if the latter defi­
nition is regular and e„ is monotone decreasing. It follows in par­
ticular that (R, ev), where 2^e„ is divergent, is always an (In­
effective definition. As a special case we note that the logarith­
mic mean (R, (p + l ) - 1 ) is (L)-effective whereas we have seen 
that the harmonic mean (N, (̂  + 1)_1) is not even (F)-effective. 
(For a recent study of the application of the logarithmic mean 
to Fourier series, see Hardy [17].) Necessary and sufficient 
conditions that (R, pv) include (R, 1) = (C, 1) are simply con­
ditions (21) and (22) of §5, which are satisfied if, e.g., pn is a 
monotone increasing function of n which does not grow faster 
than every power of n. Any such mean is (L)-effective. 

7. Typical Means. In order to be in agreement with standard 
notation we put P n = X n + i , and suppose £n=Xn + i—Xn>0, n^O. 
The typical means of M. Riesz [18, 41 ] of type X, order K, of the 
first kind, (R, X, K), involve taking as the generalized sum of 
the series^Lun the expression 

(26) lim 
\n<œL co J 

when this limit exists. Here co is a continuous parameter. If, 
however, co—>°o through a denumerable sequence of values, 
usually through the set {Xn} itself, we get various forms of dis­
crete Riesz means, R(k, K). We use the latter notation exclu­
sively for the case in which co is restricted to the set {Xn}. 
We have already observed that R(K, 1) = (R, X„+i— X„) and it 
is easy to see that R(n, K) = (N, (v + l)K — vK). Since every series 
summable (R, n, K) is also summable (R, X, K) to the same sum 
if Xn is a logarithmico-exponential function of n which does not 
tend to infinity faster than every power of n [18], it follows that 
any such definition (R, X, K) is (L)-effective. 

Applications of various types of typical means to the theory 
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of Fourier series are due to, among others, S. Chapman [7, 8], 
M. Riesz [41], M. H. Stone [48], and W. H. Young [55, 56]. 

8. Momental Means. We designate the generating sequence 
by {fJLn}. The fi's are supposed to be moments of a mass distribu­
tion over the interval (0, 1). To be precise, we assume the exis­
tence of a function q(u) with the following properties: 

(27) q(u) is of bounded variation in (0, 1); 

(28) q{u) is continuous at u = 0 and g(0)=0; 

(29) 2(1) = 1; 

(30) fxn = f und[q(u)], (n = 0, 1, 2, • • • ) • 
Jo 

The generalized limit of the sequence {sn} is taken to be 

(31) lim E ( W * £ ( - 1)'( . W * 

if this limit exists. According to Hausdorfï [19] every such func­
tion q(u) gives rise to a regular definition of summability which 
we denote by [H, q(u)]. All such definitions are known to be 
mutually consistent, and Cesàro's definitions of positive order 
belong to the set. The analytically regular definitions of Hurwitz 
and Silverman [23] also belong to this class. 

The theory of relative inclusion of momental means offers a 
fascinating study; particular results found by Hausdorfï [19] 
and by Hille and Tamarkin [unpublished] throw an interesting 
light over the question of the effectiveness of these means with 
respect to Fourier series. A direct attack on the latter question 
has been made by Hille and Tamarkin [20, details unpublished] 
who have shown that the properties of the Fourier transforms of 
q(u) are decisive for this problem. Put 

(32) C(v) = I [q(u) — u] cos uv du, 
Jo 

tlQM, , r'-'QiV - e (« ) , (33) 7(e) = f——du+ f 1 ' ? ^ — 
Je u Jo 1 

6(«) = f I dq(s) | . 

u 
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The condition 

(34) | C{v) | dv < oo 
Jo 

is necessary for the (70-effectiveness of the definition [H, q(u)]; 
and (34) together with 

(35) lim 7(e) < oo 

is sufficient. 
Condition (34) is of a type which we shall encounter again in 

§§10 and 11. It expresses the fact that the Fourier cosine trans­
form of a certain kernel is integrable over the range ( — °o , + oo ) ; it 
imposes restrictions on the kernel analogous to those required 
for the absolute convergence of a Fourier series. Pursuing this 
analogy, Hille and Tamarkin [20, third note] have announced 
a number of conditions, necessary and sufficient or merely 
sufficient, that the Fourier transform G(u) of a function g{u) 
shall have this property. Among these conditions the following 
may be emphasized :* 

1. G{u) cgi , if (i) g{u) c%pfor some p, Kp^2, (ii) g(u) is of 
bounded variation in (— °o , + °°), and (iii) g{u) is continuous in 
( _ oo f +<x))fits modulus of continuity, co(A), satisfying the condi­
tion 

(36) f [«(A)]1'*'*-"1*** < °°-
Jo 

2. G{u) c£i , if (i) g{u) c%pfor some p, KpS2, (ii) g(u) is ab­
solutely continuous and g!(u) cgx, and (iii) 

ƒ. 
i 
tt(h)h-ldh < oo, 

o 

* We denote by 8P , 1 ̂ p^2, the class of functions which are measurable 
and the pth power of the absolute values of which are integrable over the in­
terval (— °°, + °°). The conjugate exponent of p>\ is denoted by p', that is, 
1/p + l/p' = 1. The Fourier transform referred to is the complex one; the 
cosine transform is obtained'if g( — u) =g(u). In applying the results to momen-
tal means we take g(u)=q(u)—u for O ^ w ^ l and put g(u)=0, u>l, g(u) — 
g( — u), u<0. A similar remark, mutatis mutandis, applies in the case of the 
means of the closed cycle below. 
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(37) 

ƒ +00 

\g'(u+ h) - g'(u- h)\du. 
-00 

On the basis of these and similar criteria it is possible to con­
struct mass functions q{u) which give rise to (F)-effective means. 
I t should be noted that it is neither necessary nor sufficient that 
q{u) be absolutely continuous for (F)-effectiveness. On the 
other hand, the reciprocity relations between g(u) and G(u) 
show that it is necessary that q(u) be equivalent to a continuous 
function. I t follows, in particular, that the (Ep)-means of K. 
Knopp [24] cannot be (F)-effective since the corresponding 
function q(u) is a step function. A direct proof of this fact was 
first given by C. N.Moore [32]. 

The question of (L)-effectiveness offers additional difficulties. 
Suppose, however, that (35) holds, and that there exists a posi­
tive, monotone decreasing, continuous function S(w) such that 

/

00 

Then the corresponding definition [H, q(u) ] is (L)-effective, and 
it will sum the derived series of a function of bounded variation 
almost everywhere. If a similar inequality is satisfied by the 
Fourier sine transform of q{u)—u, the definition will sum the 
conjugate series and the conjugate derived series to their proper 
sums almost everywhere. (A slightly different criterion occurs in 
[20, third and fourth notes ]. See also S. Verblunsky [50].) A 
definition with all these properties is obtained, in particular, 
if Q(u) is absolutely continuous and (suitably extended outside 
of the interval (0, 1)) satisfies (37). 

9. Means Based upon two Sequences. T. H. Gronwall [14] has 
recently considered means (ƒ, g) based upon two analytic func­
t i o n s / ^ ) and g(w). Here ƒ(w) is holomorphic for \w | ^ 1, W9^1, 
and z =f(w) gives a one-to-one map of \w |< 1 on a domain D in 
\z | < 1 so that 2 = 0 or 1 for w = 0 or 1 respectively. Tlte inverse 

function is supposed to be holomorphic on the boundary of 
D except at z = 1 where 

(39) 1 - w = (1 - zY{a+ (1 - *)$(! - z)),\ = 1, a > 0. 
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Further 
00 

(40) g(w) = ^bnw
n, bn 7e 0 for every n, 

(41) g(w) = (1 — w)~a + y(w), a > 0, 

where y(w) is holomorphic for \w \ S 1, and g(w)^0 for |w | < 1. 
Gronwall then associates with the series lt2™uv the sequence 

{ Un} defined by the formal identity 
oo oo 

(42) X>„2- = k o ^ X X ^ w » , 
v=0 n=0 

and says that //ze series is summable (ƒ, g) to the sum s ij 

(43) lim Un = 5. 

All definitions (ƒ, g) corresponding to a X>1 are (L)-effective 
(with corresponding properties with respect to the associated 
series) since every series summable (C, a) is also summable 
(ƒ» g) to the same sum if X > 1 . The restriction X>1 is essential 
since, e.g., the (E^-means of K. Knopp, already mentioned, are 
(ƒ, g)-means with X = l, and are known not to be (F)-effective. 
The particular choice 

(44) w = 4^(1 + z)~\ g(w) = (1 - w)-1'2 

with X = 2 gives the means of de la Vallée Poussin [49] who 
proved that this definition is (70-effective. Generalizations of 
the means of de la Vallée Poussin are also included among the 
(ƒ, g)-means. 

The (VP)-means are but rarely found as special cases of 
more general definitions. In addition to Gronwall's (ƒ, g)-means, 
I have to mention some (F)-effective definitions studied by H. 
W. Bailey [2] which contain the (FP)-means as special cases. 

10. Means of the Closed Cycle. I. We return to definitions of 
summation based on a single generating function which we de­
note now by K(s). We suppose K(s) to be defined for s^O and to 
be of bounded variation in (0, + 0 0 ) . Further, K(s) shall be con­
tinuous to the right at s = 0 and K(0) = 1. The i£(s)-sum of the 
series y ^ ^ n is then 

(45) lim X > ( — \ n 
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if the limit exists. The conditions stated are necessary and suffi­
cient for the regularity of this definition. In this paragraph 
we restrict ourselves to the case in which i£(V) = 0 for s ^ l , 
so that (45) is replaced by 

(46) lim X>(— V,, 
co->oo n<œ \ CO / 

and the general case is taken up in §11 of Part II . 
Special cases of such definitions occur very early in the history 

of the theory of summability. The discussion of the general 
case goes back to Fejér [ i l ] and H. Weyl [52]. Fejér proved 
that such a definition includes (C, 1) if both s2 + p | i£(s) | and 
s2+p\K" (s)\ are bounded for s>l and a fixed p > 0 . Weyl as­
sumed K(s) to be monotone decreasing to the limit zero. In a 
different form and applied to Fourier series only, we find a 
closely related definition in the writings of W. H. Young [55, 56] 
who works with the formula 

(47) \ f [f(x + kt) + f(x - kt)]Uk{t)dt 
Jo 

= ^2fne
nix I Uk(i) cos nkt dt, 

w=—oo *J 0 

where £/*(/) is a function of bounded variation (and absolutely 
integrable) over (0, + ° ° ) which vanishes at infinity, and k is 
supposed to tend to zero. Young limits his actual discussion to 
the case in which £/&(/) is independent of k, and gives details 
only for some special cases. 

We return to (46) and put 

C(t) = f\ (48) C(t) = K(s) cos st ds. 
Jo 

A necessary and sufficient condition for the (F)-effectiveness of this 
definition of summability is 

(49) C\C{t) 
Jo 

< oo, 

The sufficiency is found, in kernel at least, in Young's results. 
Young of course starts with C(t) and works backwards to K(s). 
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It is of interest to note that the Fourier transforms play a role al­
ready in Weyl's investigation of Gibbs' phenomenon. 

Condition (49) is of the same nature as (34) of §8, and what 
we have said there regarding the construction of (F)-effective 
kernels applies, mutatis mutandis, to the present situation. 
Similarly, the condition (38) is sufficient also for the (L)-effec-
tiveness of the i£(s)-definitions and for the summability almost 
everywhere of the derived series. The conjugate series involves 
similar considerations where, however, the cosine transform has 
to be replaced by the sine transform. 

Some special cases require separate mention. In each case it is 
understood that K(s) = 0 for s>l. The choice 

(50) K(s) = (1 - s*)* 

has been considered by W. H. Young ([55, 56]; details only for 
p = l and 2). The case p-=\ of course gives the kernel of the 
Riesz-Cesàro means. The kernel 

(51) K(s) = ( l o g e a i - 5 ) 4 l o g -
I 1 - s 

has been investigated by Bosanquet and Linfoot [4, 5] who 
have also considered other kernels on the logarithmic scale. 
They have devoted their attention especially to the relations 
holding between summability by such kernels and continuity in 
the mean defined by kernels of the same type. As a further exam­
ple we may list the kernel 

(52) K(s) = [cos^pirs]* 

where p and K are positive integers of which p is odd. This ker­
nel has been introduced by W. Rogosinski [45, 46] in his inves­
tigations on section couplings (Abschnittskoppelungen). The 
corresponding transformation, which is (L)-effective, can be 
utilized for a number of different purposes in the theory of Four­
ier series. The case K = 1 leads to particularly simple formulas in 
as much as the generalized sum of the Fourier series is then 
taken to be 

(53) | lim < sn ( x H ) + sn ( x - — ) > . 
n-^oo { \ In) \ In)) 

r 
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Rogosinski has also investigated other kernels of this general 
class (even for arbitrary types X in the sense of M. Riesz), and 
has proved relative inclusion theorems between his means and 
those of Riesz. 

I I . DEFINITIONS WITH INFINITE REFERENCE 

Of the great number of definitions with infinite reference we 
can only treat three different classes each of which is of some im­
portance in various branches of analysis. These classes will be 
the means of the closed cycle, already mentioned in §10, and 
two types of means used in the theory of analytic continuation. 

11. Means of the Closed Cycle. II . We return to formula (45). 
A study of the effectiveness of these definitions with respect to 
Fourier series has been undertaken by Hille and Tamarkin 
[unpublished ]. If we form the series 

(54) Z # ( — )fnenix 

n^-oo \ CO / 

without assuming that K(s) vanishes for large values of s, it 
may happen that it does not converge for any values of x and co 
for a suitably chosen function/(x) cL. We can guard ourselves 
against this by assuming, e.g., that K(s) is monotone decreas­
ing and 

(55) f K(s)s^ds < oo . 

This condition ensures the convergence of (54) for 0<co<oo 
whenever sn(x) =0(log n), that is, almost everywhere. 

But we may also occupy a different point of view (see [22]). 
We may simply require that whenever/(x) c L , the series in 
(54) shall be the Fourier series of a function f(x, co) such that 

(56) ƒ(*,«)->ƒ(*) 

in some set Ef. A necessary and sufficient condition for (54) to 
be a Fourier series is that 

(57) £ ' _ W i _ L ) g » i * 
n=,-oo n \ co / 
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should be the Fourier series of a function of bounded variation 
(for this range of ideas see M. Riesz [44] where references to the 
earlier literature are to be found). This condition will be satisfied 
if we suppose that 

I COO I dt < °o, C(t) = lim I K(s) cos st ds. 
o a^+co Jo 

Further, if (58) holds, (56) is valid at all points of continuity 
of f(x), so that the K(s)-definition of summation is (F)-effective 
in this generalized sense, and if (55) is also satisfied it will 
be (F)-effective in the previous, narrower sense. If there exists 
a positive, continuous, monotone decreasing function (£(/) 
satisfying (38) (of course with C(t) defined by (58)), the defini­
tion will also be (Z,)-effective in the sense that (56) holds in the 
set where (8) is valid. 

The relations between the various means of the closed cycle 
(Abelian and Tauberian theorems) have recently been eluci­
dated in a brilliant manner by N. Wiener [53] ; they are largely 
governed by the properties of the Fourier transforms of the cor­
responding kernels. It is likely that the methods of Wiener may 
be used to great advantage in a study of the effectiveness prob­
lems of these definitions. A similar remark would seem to apply 
to the momental means, the kernels of which appear to be "al­
most of the closed cycle" in Wiener's terminology. 

The so-called "gestrahlte Matrizen" of R. Schmidt [47] define 
transformations having kernels which usually seem to be "al­
most of the closed cycle" when not actually "of the closed 
cycle." The solution of the (F)-effectiveness problem for this 
class of transformations is likely to be found by Fourier analysis 
of the kernel. 

The means of the closed cycle contain a large number of im­
portant special cases. Thus if we choose for K(s) a monotone 
convex function which tends to zero as s—><*> and such that 

(59) f t 1 - K(s)]s~lds < oo, 

we always get an (L)-effective definition (in the narrow sense 
if (55) or similar condition is satisfied). As classical examples 
of such a choice we may note the kernels e~s and e~s2 which are 
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associated with the names Abel, Poisson and Fourier, Poisson, 
Weierstrass respectively, and which have played an important 
rôle in the history and development of the theory of Fourier 
series [l, 12, 38, 51 ]. 

The kernel of Riemann [40 ] 

(60) s~2 sin2 .y 

is not of such a simple nature, but is nevertheless (L)-effective. 
A number of variations and modifications of the Riemann kernel 
have occurred in the literature [9, 11, 39, 42]. We note especi­
ally 

(61) s-p sin*1 s, 

(62) ( - l)m(2tn)ls-2m\coss - X) (~ 1)* h 
{ kss0 (2k)\) 

m—l r m—l ç2/c+l \ 

(63) ( - l)~(2w + 1)!*-*— l{sins - ] £ ( - l ) ^^ f—777f> 
I A;=O (2 k + 1)!; 

where m and p are integers ^ 1 , which definitions are all (In­
effective. The extreme case p = 1 in (61) is particularly interest­
ing. This kernel is not of bounded variation in (0, +<*>), and it 
is known that the corresponding transformation is not regular. 
Nevertheless, it was shown to be (L)-effective by Lebesgue 
[27], and we may notice that condition (58) is satisfied. 

Definition (45) is a special case of 

(64) lim Z > ( — )^n (0 g Xn < XH-I, Xn-> + oo) 

which has been proposed by Perron [37]. In some cases it would 
seem possible to apply a similar analysis to the (F)-effectiveness 
problem of such means. 

12. Summation by Analytic Convergence Factors. The problem 
of analytic continuation of power series has led to a number of 
definitions of summation. Among these we may distinguish 
various definitions employing convergence factors y(n, a) which 
are holomorphic functions of n as well as of a and a is supposed 
to tend to zero. One possibility of getting such factors is to put 
y(n, a)=K(a, n) where K{z) satisfies the conditions of regu­
larity stated in §§10 and 11, and, in addition, is holomorphic in 
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a domain of the complex z-plane containing the positive real 
axis including the origin. In addition to the choices e~z and 
e~z2 already mentioned, we may list the kernels 

1 cos TTZ sin irz e+Tiz 

(65) 
r(i + z) r(i + z) r(i + z) r(i + z) 

of which the first one has been used by G. Mittag-Leffler [31] 
and the others by H. von Koch [25]; all these definitions are 
(L) -effective. 

Definitions of this nature, but based upon a more general 
choice of y(z, a) , have been proposed by E. Lindelof [30]. These 
definitions embrace as particular cases those of von Koch and 
Mittag-Leffler quoted above, as well as the definition of Le Roy 
[29] and one by Lindelof himself corresponding to 

r ( l + (1 - a)z) 
(66) ^7r-T\ ' e x P Î " "(* + 1} l oS (* + !) 

r(i + z) 
respectively. Both these definitions are (L)-effective since any 
series summable (C, 1) is summable to the same sum by either 
method (H. L. Garabedian [13], and D. S. Morse [33], respec­
tively). As a further special case we may mention a definition 
due to Perron [37], based on the convergence factors 

(67) 
I > + z + 1) 

which is easily shown to be (L)-effective. 
The Dirichlet series definitions studied by H. L. Garabedian 

[13] and W. H. Durfee [10] with 

(68) y(n, a) = e-«\ 0 ^ Xn < Xw+i, Xn/--» + oo, 

are special cases of Lindelof s general definition if Xw is a suffi­
ciently simple analytic function of n. The inclusion relations 
holding between these definitions and the typical means of M. 
Riesz show that they are ordinarily (i)-effective unless the se­
quence {Xn} grows either too fast or too slowly. 

13. Summation by Entire Functions. Another type of means 
which has been utilized in order to effect analytical continuation 
of power series is based upon the use of summatory functions, 
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especially entire functions. We take as the generalized limit of 
the sequence {sn} the expression 

00 

(69) lim [E(co)]-1 E^n + ico«+1 , 
co—>oo n = o 

where 
00 

(70) E(z) = 2>„z", Co = 1, e» è 0, 
n=0 

is an entire function. Such definitions have been proposed by 
Borel, Lindelof, Mittag-Leffler, and others (see A. Buhl [6]). It 
seems that these definitions are ordinarily not even (F)-effec­
tive. This was shown by C. N. Moore [32] in the case of Borel's 
own definition corresponding to E(z) =ez. I t is also true of the 
more powerful definitions based on Mittag-LefHer's function 
Ea(z), and rough estimates indicate that the same negative 
result is valid for a wide class of definitions such that the coeffi­
cients cn decrease to zero in a sufficiently regular manner [Hille 
and Tamarkin, unpublished]. The two classes of definitions in 
§§12 and 13 have about the same capacity of handling power 
series, but their effectiveness with respect to Fourier series ap­
pears to be entirely different. 

I I I . DEFINITIONS FOR SUMMATION OF INTEGRALS 

14. Summable Integrals. The nth partial sum of a Fourier 
series is given by formula (10), i.e. by a definite integral involv­
ing a parameter n. This suggests a possible application of the 
theory of summable integrals to our problem. I shall restrict 
myself to one single illustration, viz. to a definition due to 
F. Nevanlinna [35] which has close relations to the means of 
the closed cycle. Let K(u) > 0 and 

(71) f K(u)du = 1. 
Jo 

Putting 

(72) FK(U) = f K(u)F(œu)du, 
Jo 

we can affirm that 
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(73) limFx(co) = limF(co), 
CO—> 00 CO—> ° 0 

whenever the right-hand side exists and is finite. F. Nevanlinna 
replaces the integral of Dirichlet by the integral of Fourier over 
a finite interval 

1 rb sin œ(t — x) 
(74) F(«; *) = - f(t) dt, 

IT J a t — X 

which has similar convergence and summability properties. He 
takes this as the function F(œ) and supposes, in addition, that 
K(u) is monotone increasing in 0 S u ^ 1, and that 

(75) lim I K(u) log du < oo . 
c-+0 J o \ — U 

He then shows that 

1 T1 /*& sin œu(t — #) 
(76) — K(u) ƒ(/) dtdu->f(x) 

T Jo J a t — X 
at every point of continuity. It follows that these definitions 
of summability are (F)-effective. A. F. Moursund [34] has 
recently shown that they are also (L)-effective. 

15. Conclusion. The preceding survey is rather incomplete. 
In restricting the attention to the (F)- and (L)-effectiveness 
problems, I had to disregard a number of important develop­
ments. The reader will undoubtedly miss references to the theory 
of multiple series, conjugate series and derived series, to various 
types of summability, to convergence in the mean, strong con­
vergence and various other forms of generalized convergence, to 
Tauberian theorems, and to a number of other topics. In spite 
of having obviously given too little, I may also with due cause 
be taken to task for having given too much. But I shall be happy 
if I have at least convinced the reader that the regular defini­
tions of summability which are effective with respect to Fourier 
series form a vast and important class, and that there is some 
hope of our being able to bring some order into the bewildering 
chaos which reigns in this domain at present. 

16. Bibliography, The subsequent list of references contains 
only papers referred to in this report, and no pretence is made 
of its being in any way complete. 
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