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6. Conclusion. This method of analysis of straight-line nets by 
the contiguous segments, as herein extended to all the lines in 
the system, regardless of their relation to a pentagon, hexagon, 
or other basal polygon, is applicable to any number n of straight 
lines and is even not restricted to the case that only m = 2 lines 
shall pass through a point. The method furnishes a necessary and 
sufficient test for the equivalence or the non-equivalence of two 
systems of straight lines, and in the case of two equivalent sys­
tems this method simplifies the discovery of the substitution 
which transforms the one system into the other system. 
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1. Introduction. In previous papers one of the writers de­
veloped a general theory for the concrete representation of arbi­
trary operations and relations in a finite class of elements, f Let 
p be a prime, and let a mod p denote the least positive integer 
obtained from integer a by dropping multiples of p. Consider 
the function ƒ(x) given by 

(1) f(x) = Co + cxx + • • • + Cp-ix**"1, mod p, 

where x ranges over the complete system of ^-residues 0, 1, • • • , 
p— 1, and where the coefficients £»• are among the ^-residues. 
The general theory is based on the fact that any unary operation 
in a class Koip elements, the operation satisfying the condition 
of closure, can be represented by a polynomial of form (1). But 
when the number of elements in K is large, the calculation of (1) 
by the method of the general theory is very laborious, for the 
work involves, for a class of p elements, the computation modulo 
p of p determinants each of order p—1. For an m-ary operation 
or an ra-adic relation where m > 2 , the calculation of the repre­
sentation by the method of the general theory is very laborious 
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t See the Proceedings of the International Mathematical Congress, 

Toronto, 1924, p. 207, and this Bulletin, vol. 32, p. 533. 
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even when p is as small as 3. Moreover, the method of the 
theory is not at all adapted to cases in which p is a letter in­
stead of a given number. The present paper gives a method of 
obtaining with extreme ease the representations of the theory 
for operations and relations of any complexity and for p literal 
or a number of any magnitude. 

2. The Unit-Zero Functions. The method of the present 
paper makes fundamental the notion of unit-zero function. A 
function ƒ(x) will be called a unit-zero function with respect to a 
iîf(x) — 1 or 0, according as x — a or x^a. In general, a function 
ƒ(#!, x2, • • • , xm) will be called a unit-zero function with respect 
to the sequence #i, a2, • • • , am if /(#i, #2, • • • , xm) = 1 or 0, ac­
cording as the equalities Xi — aif (i = l, 2, • • • , m), do or do not 
all hold. The functions with which our theory is concerned are 
all polynomials modulo p, where p is prime. A unit-zero function 
with respect to the sequence ai, #2, • • • , am, if the function be a 
polynomial modulo p in xi, #2, • • • , xm, will be denoted by 
(xi, x 2 l • • • , x m j ax, a2f ' ' ' y 

The unit-zero functions (x; a)p and (#1, #2, • • • , #»»; 
#i, a2, • • • , aw)p can be readily written down. Indeed, by 
Fermat's theorem, we have 

(2) (x; a)p = 1 — (x — a)p~l, mod p, 
v-l 

(20 = 1 + (p - 1) X y ^ ' ^ n i o d ^ . 
And, evidently, 

(3) fo, 
#2> j ^ m j #1> # 2 , j 

= ( # i ; # i )p (#2 ; #2)0 • * * \%m', am)p. 

From the nature of the unit-zero function we have 
(4) a(xij X2, - - • , %m', ah a2, • • • , am)p 

+ b(xh x2, • - • , xm; &i, 62, • • • , &w)i> = a, or &, or 0, 

according as x% — a% all hold, or Xi = bi all hold, or neither Xi = ai 
all hold nor X{ = bi all hold, (i = l, 2, • • • , w). 

3. Representations. The method of representing finite opera­
tions and relations by means of unit-zero functions can now be 
stated. Let K be a finite class of n elements. These elements 
may be denoted by 0, 1, • • • , n—l. The representations of 
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operations O and relations R in K are given in cases (A)-(E) 
below. 

(A). 0 a K-closing m-ary operation, n a prime p. There is a K-
element eaia2... am for every sequence of m elements a\, #2, • • •, aw 

of K. From (4), the representation of 0 is the function 

p—i p—i p—i 

(5) ]C ' * ' iC X X w O m ^ l ? Xh ' ' ' J X™> 01, 02, * ' ' > 0 * ' 
«1=0 a

O T _i=0 «m=0 

Thus, the representation of the operation 
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0 

is the function ƒ (x, 3/) given by 

(ii) ƒ(*, y) = 2(*, y; 0, 1)3 + (*, y; 0, 2)3 + (*, y; 1, 0), 

+ 2(*, y; 1, 2)3 + 2(a?, y; 2, 0)3 + (*, y; 2,1)8 

== x + 2y, mod 3. 

(B). 0 an m-ary operation not K-closing, n a prime p. There are 
sequences 

« 1 1 , « 1 2 , ' * • , aim) « 2 1 , « 2 2 , * * * , « 2 J » ; * * * ) «Art , Ö5&2, ' * * , «fcm 

to which no i^-elements correspond. Let 0 ' be the operation ob­
tained from 0 by assigning some üC-element, 0 for convenience, 
to each of these sequences. Let </>(xi, x2, • • • , xm) be the func­
tion, obtained as in (A), representing 0 ' . The representation of 
0 is the function 

(6) <f>(xu x2y - • • , xm) 

k 

+ Zl^O/ { 1 "" (Xh %2, ' * * t %m', Otil, «t-2, * ' * , O^m)?} . 

Thus, consider the operation ƒ(x) defined by 

X 

ƒ(*) 

0 

2 

1 

— 

2 

0 

3 

— 

4 

1 

where ƒ (1) and ƒ (3) do not belong to the class 0, 1, • • • , 4. Take 
the operation </>(x) defined by 
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X 

4>(x) 

0 1 2 3 4 

2 0 0 0 1 
(iv) 

The representation of (iv) is given by 

(v) 00) = 2(x; 0)B + 0; 4)B. 

Hence, the representation of (iii) is given by 

(vi) f{x) = <j>{x) + 0 /{ l - (*; 1)5} + 0 /{ l - (*; 3)B} 

= 3 - 2a;4 - (x - 4)4 + 0/(x - l )4 + 0/(x - 3 ) 4 , mod 5. 

(C). O an m-ary operation in K, n not prime. Consider a class 
K' of £ elements 0, 1, • • • , «—1, • • • , p—l, where p is a prime 
exceeding n. Let Or be any operation in K' identical with 0 for 
all the sequences of m elements taken from the i£-elements 
0, 1, • • • , n— 1. For convenience, we may have 0' assign 0 to 
each of the sequences in K' that are not in K. Let 
<£(xi, X2, • - • , xm) be the representation of 0 ' , obtained as in 
(A) or (B). The representation of 0 is the function </>(xi, 
#2, • • • , xm) in which the Xi range over the K-elernents 0, 1, • • • , 
n— 1. 

Thus, the representation of the operation f(x) denned by 

(vii) 
A*) 

0 1 2 3 

2 1 0 4 

X 

0O) 
0 1 2 3 4 

2 1 0 4 0 

is the representation of the operation (f>{x) defined by 

(viii) 

with x ranging over the elements 0, 1, 2, 3. 

(D). R an m-adic relation inK,na prime p. Let the sequences 
which satisfy R be 

« 1 1 , <*12, * * * , « l m ) « 2 1 , <*22, • • * , «2mJ * * * J OLkl, «fc2, ' ' ' 9 «fcm. 

The representation of R is the equation modulo p 

(7) / A X\* X2j ' * * y Xm) OiHj &i2y * ' * j OLim)p •*• • 
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Thus, the representation of the dyadic relation defined by 

0 1 2 

(ix) + + 
+ 

is the modular equation 

(x) (*, y; 0, 1), + (*, y; 0, 2), + (*, y; 1, 2>, = 1. 

(E). R an m-adic relation in K, n not prime. Consider a class 
K' of p elements 0, 1, • • • , w — 1 , • • • , £ — 1, where £ is a prime 
exceeding n. Let i£' be any m-adic relation in K' identical with 
R for all the sequences of m elements taken from the ^-elements 
0, 1, • • • , n — 1. For convenience we may have R' contradicted 
for all the sequences in K' that are not in K. Let the representa­
tion of R'', obtained as in (D), be the equation modulo p 

(8) 4>(xi, x2, • • • , xm) = 1. 

The representation of R is equation (8), with the %i ranging over 
the K-elements 0, 1, • • • , n— 1. 

Thus, the representation of the relation R defined by 

0 1 2 3 

(xi) 
+ + + 
- + + 
- - + 

is the representation of the relation R defined by 

(xii) 
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3 

4 

0 

— 

— 

— 

1 2 3 

+ + + 
- + + 
- - + 

4 

— 

— 

-

with x, y ranging over the elements 0, 1, 2, 3. 
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