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6. Conclusion. This method of analysis of straight-line nets by
the contiguous segments, as herein extended to all the lines in
the system, regardless of their relation to a pentagon, hexagon,
or other basal polygon, is applicable to any number # of straight
lines and is even not restricted to the case that only m =2 lines
shall pass through a point. The method furnishes a necessary and
sufficient test for the equivalence or the non-equivalence of two
systems of straight lines, and in the case of two equivalent sys-
tems this method simplifies the discovery of the substitution
which transforms the one system into the other system.
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1. Introduction. In previous papers one of the writers de-
veloped a general theory for the concrete representation of arbi-
trary operations and relations in a finite class of elements.f Let
» be a prime, and let ¢ mod p denote the least positive integer
obtained from integer ¢ by dropping multiples of p. Consider
the function f(x) given by

(1) f®) =co+ x4+ - -+ cpra?l mod p,

where x ranges over the complete system of p-residues0, 1, - - -,
p—1, and where the coefficients ¢; are among the p-residues.
The general theory is based on the fact that any unary operation
in a class K of p elements, the operation satisfying the condition
of closure, can be represented by a polynomial of form (1). But
when the number of elements in K is large, the calculation of (1)
by the method of the general theory is very laborious, for the
work involves, for a class of p elements, the computation modulo
p of p determinants each of order p—1. For an m-ary operation
or an m-adic relation where m >2, the calculation of the repre-
sentation by the method of the general theory is very laborious

* Presented to the Society, April 5, 1930.
t See the Proceedings of the International Mathematical Congress,
Toronto, 1924, p. 207, and this Bulletin, vol. 32, p. 533.
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even when p is as small as 3. Moreover, the method of the
theory is not at all adapted to cases in which p is a letter in-
stead of a given number. The present paper gives a method of
obtaining with extreme ease the representations of the theory
for operations and relations of any complexity and for p literal
or a number of any magnitude.

2. The Unit-Zero Functions. The method of the present
paper makes fundamental the notion of unit-zero function. A
function f(x) will be called a unit-zero function with respect to a
if f(x) =1 or 0, according as x =a or x>a. In general, a function

Sy, %2, + - -, %) will be called a unit-zero function with respect
to the sequence ai, az, -+« , @m if f(x1, %2, - - -, ¥n)=1o0r 0, ac-
cording as the equalities x;=a;, (¢1=1,2, - - -, m), do or do not

all hold. The functions with which our theory is concerned are
all polynomials modulo p, where p is prime. A unit-zero function

with respect to the sequence a1, @, - - + , @, if the function be a
polynomial modulo ¢ in x1, %3, - - -, X, will be denoted by
(xly Xoy * * 0y Xy Q1y A2y * ¢+, am)p-

The wunit-zero functions (x;a), and (%1, %3 - - -, %u;
@1, A3, * * +, Gm)p can be readily written down. Indeed, by
Fermat's theorem, we have
(2) (x; a)p =1- (¢ — a)p—l: mod p,

p—1
2" =14 (p — 1) Da*xr"=* mod p.
k=0

And, evidently,
(3) (%1, @2y + =+, Fm; @1, G2y * +, Ay
= (%1; 01)p(%2; @2)p * - * (%m; Gm)p-
From the nature of the unit-zero function we have

(4) a’(xh X2, * "y Xm;y G1y Qg * * a’m)p

+ b(x1, X9y -+, %m; b1, boy - ¢, bu)p = @, Or b, or 0,

according as x;=a; all hold, or x;=0b; all hold, or neither x;=a;
all hold nor x;=5; all hold, (¢=1, 2, - - -, m).

3. Representations. The method of representing finite opera-
tions and relations by means of unit-zero functions can now be
stated. Let K be a finite class of n elements. These elements
may be denoted by 0,1,:--,n—1. The representations of
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operations O and relations R in K are given in cases (A)-(E)
below.

(A). O a K-closing m-ary operation, n a prime p. There is a K-
element ey, . . ., for every sequence of m elements as, az, * * +, an
of K. From (4), the representation of O is the function

p—1 p—1 p—1
(5) E tr Z Zeaxar“am(xl; Xoy * * *y Tmj Q1, B2y * * * )am)p'
ay=0 a, =0 ap=0

Thus, the representation of the operation
0 2

1
: 2 1
) 0 2
10

NHOl

0
1
2
is the function f(x, y) given by
() Sz, y) = 2(x, 9;0,1)s + (%, 5;0,2)s + (%, y; 1, 0)s
+ 2(x, 351, 2)2 + 2(x, %; 2, 0)s + (%, 952, s
= x + 2y, mod 3.

(B). Oanm-ary operation not K-closing, n a prime p. There are
sequences

011, 12y * * *, Olimy Q21 Olag, * * * , Olam;y * * * 5 Okly Ok2y * * ° , Okm

to which no K-elements correspond. Let O’ be the operation ob-
tained from O by assigning some K-element, 0 for convenience,
to each of these sequences. Let ¢(x1, %3, - + - , X,) be the func-
tion, obtained as in (A), representing O’. The representation of
O is the function

(6) ¢(x1) Yoy * t xm)
k
+ ZO/{l — (@1, %2, + y Fm; o1, Qigy * 7, aim)p} .
=1
Thus, consider the operation f(x) defined by
x l 0 1 2 3 4
ol 2 — 0 — 1

where f(1) and f(3) do not belong to the class 0, 1, - - -, 4. Take
the operation ¢(x) defined by

(iii)
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, ] 01 23 4

(iv) .
ox)) 2 0 0 0 1

The representation of (iv) is given by

) ¢(x) = 2(x; 0)s + (x; 4)5.

Hence, the representation of (iii) is given by

(Vi) f(®) = ¢(®) + 0/{1 — (%5 1)s} + 0/{1 — (x; 3)s}
=3—-2x*—(x—4)*4+0/(x— 1)*4+ 0/(x —3)%, mod 5.
(C). O an m-ary operation in K, n not prime. Consider a class
K’ of pelements0, 1, ---,n—1,---, p—1,where pisa prime

exceeding n. Let O’ be any operation in K’ identical with O for
all the sequences of m elements taken from the K-elements

0,1, ., n—1. For convenience, we may have O’ assign 0 to
each of the sequences in K’ that are not in K. Let
¢(x1, %9, - - -, xn) be the representation of O’, obtained as in
(A) or (B). The representation of O is the function ¢(x1,
X2, * * * y Xm) T0 Which the x; range over the K-elements 0,1, - - -,
n—1.

Thus, the representation of the operation f(x) defined by

x|0123

(vid) 7 2 1 0 4

is the representation of the operation ¢ (x) defined by

x 101 2 3 4
o(x) 2 1 0 4 0

(viii)

with x ranging over the elements 0, 1, 2, 3.

(D). R an m-adic relation in K, n a prime p. Let the sequences
which satisfy R be

11, 12, © * *, Oim; Q21, O9g, * * * , Qam; * * ¢ j Qkly Ok2, * * * ) Ukm.

The representation of R is the equation modulo p

k
(7) Z(xly x?; Y x’m; A1y O32y * ° aim)p = 1'

=1
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Thus, the representation of the dyadic relation defined by

(ix)

is the modular equation
(X) (x’ y; 0, 1)3+(x: 3’;0,2)3+(x,3’; 1, 2)3=1-

(E). R an m-adic relation in K, n not prime. Consider a class
K'of pelements0,1,---,n—1,---, p—1,where pisa prime
exceeding #n. Let R’ be any m-adic relation in K’ identical with
R for all the sequences of m elements taken from the K-elements
0,1,.--,n—1.For convenience we may have R’ contradicted
for all the sequences in K’ that are not in K. Let the representa-
tion of R/, obtained as in (D), be the equation modulo p

(8) o(x1, %2y - -+, xm) = 1.

The representation of R is equation (8), with the x; ranging over
the K-elements 0, 1, - - - , n—1.
Thus, the representation of the relation R defined by

| o 1 2 3
of—-— + + +
(xi) 1) - - + +
2| - - - +
3|l — — - —
is the representation of the relation R defined by
o 1 2 3 4
ol- + + + -
(xii) N
2| - = = 4+ -
3l — — — - _
4l - - - - -,

with x, ¥ ranging over the elements 0, 1, 2, 3.
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