
LINEAR ^ -DIFFERENCE EQUATIONS* 

BY C. R. ADAMS 

1. Introduction. Recent years have seen the publication by 
Nörlund,t Carmichael,J and Pincherle§ of several papers whose 
aim is to describe the state of development attained by the differ
ence calculus and the theory of difference equations. Scant at
tention, however, has been paid to the subject of g-difference 
equations, which not only is closely kin to, but may properly be 
regarded as a part of, the field of difference equations. I t may 
therefore be of some interest to present here a brief summary of 
what has been done in the theory of linear g-difference equa
tions, together with indications of certain extensions. 

The linear difference equation 

n 

(1) ^2,ai(x)f{x + n — i) = b(x) 

is a particular case of a functional equation which is linear in the 
unknown function ƒ, and in which the argument of ƒ is repeat
edly subjected to the non-singular linear fractional substitution 
{x, (ax+b)/(cx+d)}. This more general type of functional 
equation, however, can always be reduced by means of a linear 
fractional transformation of the independent variable x to one 
of two normal forms, the first being (1) and the second 

n 

(2) J^a^fiq^x) = b(x). 

* An address presented to the Society at the request of the program com
mittee, February 28, 1931. 

f Nörlund, Sur Vital actuel de la théorie des équations aux différences finies, 
Bulletin des Sciences Mathématiques, (2), vol. 44 (1920), pp. 174-192, 200-
220; Neuere Untersuchungen uber Differenzengleichungen, Encyklopâdie der 
Mathematischen Wissenschaften, vol. II C 7 (1923), pp. 675-721. See also 
Vorlesungen über Differenzenrechnung, 1924, 9+551 pp. 

î Carmichael, The present state of the difference calculus and the prospect for 
the future, American Mathematical Monthly, vol. 31 (1924), pp. 169-183. 

§ Pincherle, II calcolo délie differenze finite, Bollettino dell' Unione Mate-
matica Italiana, vol. 5 (1926), pp. 233-242, and Atti délia Società per il Pro-
gresso delle Scienze, vol. 15 (1927), pp. 153-162. 
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Essentially this fact was proved by Pincherle* in 1880, although 
this precise formulation of the statement appears to have been 
first made by Stridsbergf in 1910. The normal form is of the 
type (1) or of the type (2) according as the double points of the 
substitution x'= (ax + b)/(cx-\-d) are coincident or distinct. 
Hence it may be said that in general the functional equation of 
more general type is reducible by a linear fractional transforma
tion to the normal form (2), while in particular it may be so 
reducible to the normal form (1). 

The equation (2) is commonly termed a linear ^-difference 
equation,J and its close relationship to the equation (1) is 
manifest. Indeed it is apparent that by the transformation 
x — qz the equation (2) is carried over into an equation of type 
(1); consequently if solutions can be found for the equation (2) 
when the coefficient functions a,i(x) and b(x) are of a certain 
class of functions of x, the problem of obtaining solutions of (1) 
when the coefficients belong to the same class of functions of the 
argument qx is solved. Likewise the inverse transformation car
ries the equation (1) into one of type (2). 

The equation (2) is said to be of order n, homogeneous or non-
homogeneous according as b(x) is or is not identically zero; for 
brevity we shall denote the respective cases by (2h) and (2n). I t is 
clear that the substitution q' = l/q immediately reduces either 
of the cases |<Z | > 1, |g | < 1 to the other; the theory of the equa
tion for \q I = 1 differs essentially from that for |# | ̂  1 and un
less otherwise specified it is to be understood throughout this 
paper that \q\ is 7^1. The cases in which the coefficients ai{x) 
and b(x) are of a certain character at x = 0 and of the same char
acter at x = oo are reducible each to the other by the substitution 
x' = l/x; we shall therefore in general restrict ourselves to the 

* Pincherle, Ricerche sopra una classe importante di funzioni monodrome, 
Giornale di Matematiche, vol. 18 (1880), pp. 92-136. 

t Stridsberg, Contributions à V étude des fonctions algêbrico-transcendentes qui 
satisfont à certaines équations fonctionnelles algébriques, Arkiv för Matematik, 
Astronomi och Fysik, vol. 6, no. 15, 1910, 31 pp.; vol. 6, no. 18, 1910, 25 pp. 
See also Carmichael, The general theory of linear q-difference equations, American 
Journal of Mathematics, vol. 34 (1912), pp. 147-168. 

t The name geometric difference equation has been suggested; see Ryde, 
A contribution to the theory of linear homogeneous geometric difference equations 
{q-difference equations), (Dissertation, Lund), 1921, 45 pp. 
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former. The variable x is in general understood to be complex, 
and the equation 

(3) *o(0)p» + aiWp"- 1 + • • . + an_x(0)P + On(0) = 0, 

is commonly called the characteristic equation of (2h) for x — 0. 
It should be observed that if we define 

A°f(x) = ƒ(*), A/(*) = ƒ(?*) - ƒ(*), A«/(x) = A(A-Y(*)), 

then, precisely as in the case of the usual finite difference oper
ator, Anf(x) is expressible* linearly (with constant coefficients) 
in terms of ƒ(#*#), (i = 0, 1, • • • , n), and likewise ƒ (gn#) linearly 
in terms of A*ƒ(#), (i = 0, 1, • • • , n). Hence a linear equation f in 
Aif(x)1 (i = Q, 1, • • • , n), may always be written in the form (2), 
and vice versa. 

One may properly say that the g-difference equation (2) in 
general presents a simpler problem than does the difference 
equation (1). The notion of asymptotic form, so necessary for 
the analytic theory of (1), has as yet played no role in that of 
(2). I t may therefore appear a little surprising that the develop
ment of the theory of (2) in any general sense preceded by only 
a short space the beginning of the analytic theory of (1), which 
marked the reawakening of an interest, long quiescent, in the 
subject of difference equations. 

2. Periodic Functions. The equation 

(4) A/(*) = 0, 

remarked by BabbageJ in 1815, is among the first g-difference 
equations to appear in the literature. Its solutions are naturally 
of primary importance in the theory of equation (2), since func-

* This fact appears to have been observed first by Thomae, Les séries Hei-
nêennes supérieures, ou . . . , Annali di Matematica, (2), vol. 4 (1870-71), 
pp. 105-138. 

t Equations of this kind were styled "difference equations" at least as early 
as 1847; see Heine, Untersuchungen iiber die Reihe 

( l - ^ X l - g * 3 ) (1 -g« ) ( l - < f " ) ( l -gP)( l -<f+1) o 
+ (1 _ q)(1 - q y ) X ± (1 - fl)(i _ S 2 ) ( 1 _ 27)(i _ 37+i) * + • • • ' 

Journal für Mathematik, vol. 34 (1847), pp. 285-328. 
Î Babbage, An essay towards the calculus of functions, Royal Society of 

London, Philosophical Transactions, 1815, Part 2, pp. 389-423. 
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tions of this character but otherwise arbitrary play for (2) the 
role of arbitrary constants in the theory of linear differential 
equations. These "multiplicatively periodic" functions also are 
of importance for the theory of the generalized hypergeometric 
series studied by Heine* and Thomaef and of the "higher Heine 

series, 

i+ E 

(5) 

- f l - qa+1 1 - g«+n-i 1 -qa> i „a'+l 

1 — 

1 — 

1 — 

q 1 -

QCt'+n— 1 

gb'+n-l 

Ça + n -

<z2 

. . . 

-1 

l 

l 

l -

qa 

q»w 

1 

1 

<?" 

— 

— 

1 -

qa +1 

qbW+i 

q»' 1 - qb' +i 

b(h) + n-l 

investigated by Thomae.J The properties of the solutions of (4) 
were made the object of a rather thorough study by Pincherle§ 
in 1880; these functions were also treated by Rausenberger|| in 
1884. In the following pages the term "periodic function" is to 
be understood as meaning a solution of (4). 

3. q-Finite Integration. The problem of g-finite integration, 
that is, of solving the equation A/(x) = b(x), was examined by 
Goursat^f in 1903-4 in connection with his investigation of a 
problem in the theory of partial differential equations. Goursat 
assumed b(x) analytic for | # | < U and determined, by the 
method of power series with direct convergence proofs, under 
what conditions there exists a solution of like character. He 

* See the second footnote on p. 363. 
f Thomae, Beur age zur Theorie der (Lurch die Heinesche Reihe: 

1 + 
1 -<f 1 

- * + • 
ga 1 _ ga+ 1 

T*2 + 
1 - 2 1 - qc 1 - q 1 - q2 1 — qc 1 - qc+1 

darstellbaren Functionen, Journal für Mathematik, vol. 70 (1869), pp. 258-281. 
% See the first footnote on p. 363. 
§ See the first footnote on p. 362. 
|| Rausenberger, Lehrbuch der Theorie der Periodischen Functionen . . . , 

1884, 8+476 pp.; especially pp. 221 ff. 
% Goursat, Sur un problème relatif à la théorie des équations aux dérivées 

partielles du second ordre, Toulouse Annales, (2), vol. 5 (1903), pp. 405-436; 
vol. 6 (1904), pp. 117-144. 
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observed that for such a solution to exist &(0) must vanish, and 
proved that in the case of &(0) = 0 and \q \ ^ 1 there exists a solu
tion analytic for \x | <R. For \q | = 1 two cases must be dis
tinguished, according as q is or is not a root of unity. In the first 
let m be the least integer for which qm = 1 ; then a solution exists 
if and only if the powers of xm in the Maclaurin expansion of 
b(x) all have coefficients zero. Moreover, when a solution exists 
it is determined only up to an additive arbitrary function of 
xm analytic for \x \ <R. In the second case a solution may or 
may not exist, but this depends upon the nature of arg q rather 
than upon b(x). Goursat also gave a supplementary consider
ation to the problem in the real domain. I t may be remarked 
that definite and indefinite ^-finite integrals of certain elemen
tary functions were found by F. H. Jackson* from 1910 to 1917. 

Further light will be shed on this problem in a later section. 

4. Homogeneous Equations. Case of ao(0)^0, a„ (0 )^0 . The 
equation (IK) of order n > 1 was at first studied only under very 
restrictive hypotheses. In 1847 Heinef showed that a particular 
equation of the second order is satisfied by the "Heine series." 
It was some years later, in 1870-71, that ThomaeJ went further 
in proving that the equation (2h) of order n whose coefficients 
are linear in x and whose characteristic equation has no infinite 
or zero roots can be solved in terms of the series (5) of order 
h = n. In 1909-11 Jackson§ found solutions for several particu
lar equations (2), mainly of the second order and homogeneous; 
most of his solutions also were expressed in power series of the 
generalized hypergeometric type. 

* Jackson, BoreVs integral and q-series, Proceedings of the Royal Society of 
Edinburgh, vol. 30 (1910), pp. 378-385; A q-generalization of Abel's series, 
Palermo Rendiconti, vol. 29 (1910), pp. 340-346; q-difference equations, Ameri
can Journal of Mathematics, vol. 32 (1910), pp. 305-314; On q-definite inte
grals, Quarterly Journal of Mathematics, vol. 41 (1910), pp. 193-203; The 
q-integral analogous to BoreVs integral, Messenger of Mathematics, vol. 47 
(1917), pp. 57-64. 

t See the second footnote on p. 363. 
% See the first footnote on p. 363. 
§ Jackson, Generalization of the differential operative symbol with an extended 

form of Boole's equation, Messenger of Mathematics, vol. 38 (1909), pp. 57-61; 
q-difference equations, American Journal of Mathematics, vol. 32 (1910), pp. 
305-314; The products of q-hy per geometric functions, Messenger of Mathe
matics, vol. 40 (1911), pp. 92-100. 
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Let us now assume the coefficient functions at(x) in (2h) to 
be analytic at x = 0 and hence expressible in the form 

di(x) = aw + aux + ai2x
2 + • • • for | x \ < R, (i = 0, 1, • • •, n); 

the characteristic equation (3) may then be written 

(6) a00pw + flio Pn _ 1 + • • • + 0n-i,op + ano = 0. 

We distinguish two essentially different cases according as the 
roots of (6) are or are not all finite and different from zero; for 
the present we confine ourselves to the former, assuming aoo^O, 
a w 0 ^0 . 

Let pj = qri(j = l, 2, • • • , p) be any set of p roots ( £ ^ 1 ) of 
equation (6) satisfying the following conditions : (a) 

ri = ri - mu (j = 2, 3, • • • , p), 

where each ntj is a positive integer or zero and the subscripts of 
the r's are so chosen as to make 

0 ^ mi ^ mz ^ • • • ^ ntP; 

(b) no root of (6) outside this set is equal to qr^+m for m a posi
tive or negative integer or zero. Then there correspond to the 
roots of this set p formal solutions of (lh) : 

xr*P(x), 

x^[P{x) + tP(x)], 

(7) x's [P(x) + tP{x) + t2P(x)], 

xrp[P(x) + tP(x) + t2P(x) + • • • + tv-Wix)], 

where we have set 
log x 

(8) t = ~-> 
log q 

and where P{x) is used in a generic sense to denote a power series 
in x. The coefficients in the several power series P{x) can be 
found immediately by the method of undetermined coefficients, 
upon substituting the series (7) in (2h). Since all the roots of (6) 
can clearly be grouped in sets satisfying the conditions (a) and 
(b), a set of n formal solutions of (2h) is thus obtained. 
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Each of the power series P(x) converges for x in the vicinity 
of the origin, and therefore the existence of n solutions of (2h) 
analytic in this neighborhood follows. The existence and con
vergence of these formal solutions is an immediate consequence 
of a theorem of Grévy,* who in 1894, basing his work on certain 
earlier studies by Königs, investigated a functional equation 
which includes (2h) as a particular case. It also follows from 
Grévy's work that no identical linear relation, with analytic 
coefficients satisfying the equation (4) and not all identically 
zero, exists between these n solutions; hence they are said to 
constitute a fundamental set for the equation (2h). 

When no root of the characteristic equation (6) is equal to an 
integral power of q (including g°) times another, so that none of 
the formal series solutions contain logarithmic terms, the con
vergence of the series and the consequent existence of analytic 
solutions follows also from results obtained in 1912 by Car-
michael.f He employed a method of successive approximation 
analogous to that which he had already used in studying dif
ference equations, J and gave the first treatment of the equation 
(2h) of order n as such with coefficients other than linear in x. 
He remarked that the method of Birkhoff§ for difference equa
tions can also be applied in the case considered ; not only is this 
true, but the same results can be obtained in this way with con
siderably less labor. Carmichael also investigated the case of 
|# | = 1, showing that in general analytic solutions do not exist 

and examining their nature when they do exist. 
In 1915, T. E. Mason|| proved that if \q | is > 1 and the coeffi

cients di{x) are entire functions, with ao(x) = 1, and if the roots 
of (6) are not all zero, there exist one or more solutions of the 
form f(x) =xriEi(x), where Ei(x) is entire. This result was ob
tained by reckoning out the coefficients in the formal series 

* Grévy, Étude sur les équations fonctionnelles, (Dissertation, Paris), 1894; 
reprinted in large part in Annales de l'École Normale Supérieure, (3), vol. 11 
(1894), pp. 249-323. 

f See the second footnote on p. 362. 
t Carmichael, Linear difference equations and their analytic solutions. Trans

actions of this Society, vol. 12 (1911), pp. 99-134. 
§ Birkhoff, General theory of linear difference equations, Transactions of 

this Society, vol. 12 (1911), pp. 243-284. 
|| Mason, On properties of linear q-difference equations with entire function 

coefficients, American Journal of Mathematics, vol. 37 (1915), pp. 439-444. 



368 C. R. ADAMS [June, 

solutions and proving their convergence directly, and it was 
shown that the order of the entire function Ei(x) is not greater 
than the maximum order of the coefficients. 

Direct proof of the convergence of the formal series (7) under 
all conditions was given by Adams* in 1929. This method ap
pears to have some advantage in brevity and simplicity over the 
others which have been used for establishing the existence of 
analytic solutions. It may be remarked that Mason's results can 
now immediately be extended to show that if the coefficients are 
entire functions, with a0(V) = l and | g | > l , each of the power 
series in (7) converges for all finite values of x and represents an 
entire function whose order is not greater than the maximum 
order of the coefficients. 

For brevity let us assume for the moment that \q\ is > 1 . 
Then if the coefficients ai(x) have only isolated singularities in 
the finite plane and a0(x) vanishes only at isolated points, it is 
clear that the solutions can be analytically continued away from 
x = 0 indefinitely by repeated use of the equation (2h) itself. 
Thus it appears that the nearest singularity of any solution to 
the origin is no nearer than the nearest singularity of the func
tions 

aAx) 
(9) - y v (*- 1,2,-••,»), 

and hence the radius of convergence of each power series in the 
set of formal solutions is at least as great as the distance to the 
nearest singularity of the functions (9). Moreover the singulari
ties are isolated (occurring at no points other than qmXi where m 
is a positive integer and x% is any singularity of one or more of 
the functions (9)) and if the functions (9) have no singularities 
other than poles, as is the case when the di(x) are rational func
tions, then the solutions will be analytic except for poles in the 
finite plane away from x = 0. Similar statements hold when \q \ 
is < 1 , except that a0(x) is replaced by an{x). 

If the functions a,i(x) are analytic both at x = 0 and x = <*> and 
if the roots of the characteristic equations for both points satisfy 
the restriction imposed by Carmichael, the equation (2h) has 
two sets of fundamental solutions, one of the form xn Ai(x) with 

* Adams, On the linear ordinary q-difference equation, Annals of Mathe
matics, (2), vol. 30 (1929), pp. 195-205. 
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Ai(x) analytic a t x = 0 and the other of like form with Ai(x) an
alytic a t x = oo. Each set of solutions may then be expressed 
linearly in terms of the other with coefficients Pa(x) satisfying 
the equation (4). Employing a system of n equations of the first 
order rather than a single equation (2h) of order n> Carmichael* 
examined these periodic functions and showed that those by 
means of which the solutions associated with # = 0[oo ] are ex
pressed in terms of the solutions associated with x= oo [o] for 
|g | > 1 [ < l ] are analytic away from the points 0 and oo when 

the coefficient functions are polynomials in x and analytic save 
for poles when the coefficients are rational functions of x. 

Necessary and sufficient conditions that the equation (2h) of 
first order have a rational solution were found by Mason f in 
1914. He also showed that the solutions of the equation 

f(qx) - (1 + *)ƒ(*) = 0 

are transcendentally transcendental. 
In 1918 Carmichael J discussed what he termed "repeated so

lutions" of a linear homogeneous equation involving a general 
operator D which includes the differential operator, the ordinary 
difference operator, and the g-difference operator as particular 
cases. By definition ƒ (x) is said to be an f-fold solution when the 
functions xif(x)(i = 0, 1, • • • , r— 1) all satisfy the equation but 
xrf(x) does not.§ Carmichael's chief result for g-difference equa
tions is that a necessary and sufficient condition that a function 
f(x) be a "repeated solution" of a linear homogeneous g-differ-
ence equation of order n (expressed in terms of A*/(x), (i = 0. 
1, • • • , n)) is tha t it satisfy both the equation itself and the 
equation obtained from it by formal differentiation with respect 
to A and the replacement of x by x/q in the coefficient functions. 

* See the second footnote on p. 362. 
t Mason, Character of the solutions of certain functional equations, American 

Journal of Mathematics, vol. 36 (1914), pp. 419-440. 
t Carmichael, Repeated solutions of a certain class of linear functional equa

tions, Tôhoku Mathematical Journal, vol. 13 (1918), pp. 304-313. 
§ That this terminology has a reasonable basis when D represents the differ

ential or difference operator is manifest, but it seems inappropriate when D 
stands for the ^-difference operator, since an equation (2h) with constant co
efficients having ƒ (x) as a particular solution corresponding to a multiple root 
of the characteristic equation has (log x)f(x) as a second solution rather than 
xf(x). 
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He also obtained such a condition in terms of the coefficients 
alone. 

An existence proof quite different from those cited above was 
given in 1921 by Ryde,* who employed the "geometric factorial 
series" f 

°L as 
(10) a0 + 2 ; ; 

He showed first that a necessary and sufficient condition that a 
given function be developable in a series of this type is that this 
function be analytic at x = <*> . The coefficients in (2h) were then 
assumed to be expressed in terms of series of type (10) and it 
was proved that the equation is formally satisfied by series of 
the same kind, multiplied by suitable Heinean functions. The 
existence of analytic solutions was shown by proving the con
vergence of the formal series. 

In 1922 CarmichaelJ indicated how the study of systems of 
algebraic equations may be used as a guide in determining the 
properties of solutions of g-difference equations, ordinary and 
partial, and of integro-g-difference equations, to which one may 
pass from the algebraic systems by suitably chosen limiting 
processes. The independent variable x is assumed to be real and 
the problems of oscillation, comparison, and expansion are the 
ones specially considered. A somewhat detailed treatment of 
these problems, namely, oscillation properties of a fundamental 
system of solutions of (2h) of order 2 and of order n>2, com
parison properties for the solutions of two particular equations 
(2h) of order 2, and expansion properties for adjoint systems of 
order n containing a parameter linearly—was made in a second 
paper by the same author.§ 

* See the third footnote on p. 362. 
t This follows the lines of Nörlund, Sur Vintégration des équations linéaires 

aux différences finies par des séries de facultés, Palermo Rendiconti, vol. 35 
(1913), pp. 177-216. 

t Carmichael, Algebraic guides to transcendental problems, this Bulletin, vol. 
28 (1922), pp. 179-210. 

§ Carmichael, Boundary value and expansion problems', oscillation, compari
son, and expansion theorems, American Journal of Mathematics, vol. 44 (1922), 
pp. 129-152. See also the third footnote on p. 361. 
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5. Generalized Riemann Problem. In 1913 Birkhoff* formulated 
and solved what may be called the generalized Riemann prob
lem for linear g-difference equations. He dealt with a system of 
n equations of the first order rather than a single equation of the 
nth. order, and assumed that all the formal series solutions are 
free from logarithms. As a preliminary step he completely de
termined the periodic functions by means of which the solutions 
associated with x = 0 are expressed in terms of those associated 
with x = oo when the coefficients are polynomials. Denoting the 
respective matrices of solutions by 

Fo(x) = (x'ifaix)), F„(x) = qW*™%-»(*r'*gii(x)), 

where /* denotes the maximum degree of the polynomial coeffi
cients of the system and t is given by (8), and setting 

Fo(x) = P . W P W , P{x) = (Pu(x)), 

he showed that pu(x) has the form 

cjexp- J - y /2 + Ufa + Pi) - - y j ' } ) a{f " ai(i,l)) 

. • . (r(/ - V'.»), 

where a(t) is the Weierstrass sigma function associated with the 
periods 1 and 2w(— l)1/2/log q and 

(11) è ^ , y ) = *i + Pi - / « r ( - l)1/2/log q. 

The 2n+n2(fi + l) numbers 

(12) py, o-/, ^ «i , • • • , aM (*, j = 1, 2, • • • , n), 

of which only n2fx+l are independent, were designated "char
acteristic constants," and it was proved that for any assigned 
set of constants (12) subject to the condition (11) there exists a 
system having this set of characteristic constants or one differ
ing from it only in the replacement of ex, by <Tj + l3-, where the lj 
are integers. 

* Birkhoff, The generalized Riemann problem • • • , Proceedings of the Amer
ican Academy of Arts and Sciences, vol. 49 (1913), pp. 521-568. 
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I t would be of considerable interest to extend these results to 
the case in which some of the formal series solutions contain log
arithms. 

6. Non-homogeneous Equations. In 1915 it was shown by 
Mason* that the equation {2n)} with entire function coefficients, 
\q | > 1 , and ao(x) = l, has an entire function solution whenever 

it has a formal power series solution, and that the order of the 
solution does not exceed the maximum order of the coefficients. 

The first study of the non-homogeneous g-difference equation 
under general hypotheses appears to have been made by Adamsf 
in 1925. He employed a system of n equations of the first order 
in preference to the equation {In) and showed that in a large 
class of cases, when the coefficients have the character of ra
tional functions at x = 0, the system is satisfied formally by a 
series which converges and so represents an analytic solution. 
The method employed makes use of the notion of "variation of 
the constants" and of an evaluation for the operator X) =A _ 1 in 
terms of series. When the coefficients are of such character that 
the system admits two solutions, one associated with x = 0 and 
the other with x = oo, the relation between the solutions was 
studied. 

The equation {In) itself was investigated by the same authorj 
in 1929 on the assumption that the coefficients a%{x) and b{x) 
are all analytic at x = 0. Here again the existence of analytic 
solutions was shown by exhibiting series that formally satisfy 
the equation and proving their convergence directly. These re
sults may be generalized immediately to the case in which b{x) 
in {In) has the form 

m 

(13) b{%) = 2>M*1 / a) , 

where / is given by (8), 5 is a positive integer ^ 1, and each func
tion bj{x1/s) is an analytic function of x1,s a t x = 0. For our 
later purposes it will be convenient to have the following state
ment of this generalization. 

* See the fifth footnote on p. 367. 
t Adams, Note on the existence of analytic solutions of non-homogeneous 

linear a-difference equations, ordinary and partial, Annals of Mathematics, (2), 
vol. 27 (1925), pp. 73-83; vol. 30 (1929), p. 626. 

% See the footnote on p. 368. 


