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FUNCTIONAL EQUATIONS FOR TOTIENTS*

BY E. T. BELL

1. Totient Functions. Let py1, - - -, pa be the distinct prime
factors of #. The number of different sets of k equal or distinct
positive integers less than or equal to #» whose G. C. D. is prime
to n is the Jordan totient ¢x(n) of order k, and

(1) or(n) = n*(1 — pr¥) - - (1 — pa¥).

If k is complex, ¢x(n) is defined by (1). The special case k=1
gives Euler’s ¢(n). The case k=0 is trivial and will be ignored.

We say that the numerical function f=f(n) is factorable if
f(1)=1 (which is adjoined to the definition of f(n) if f(n) is
defined arithmetically for »>1 but not for n=1), and if f(mn)
=f(m) f(n) for all pairs of coprime integers m, n.

Factorability is distinct from separability, which we define
as follows. Let a denote a variable integer >0 and p a fixed but
arbitrary prime. Write p*=y, p=x, and regard x, y asindepen-
dent variables. Then the factorable numerical function f is
separable if there exist numerical functions g, % such that
f(@®) =g(x) k(y). For example, ¢; is separable; oy, where oi(n)
is the sum of the kth powers of all the divisors of #, is not.

If f is separable, say f(p*) =g(x) h(y), and if further k(y) is of
the form Y jm; (a7 +b;y~7), where the a;, b; are constants and
ab,#0, we say that f is simply separable of extent s. Thus ¢y is
simply separable of extent 1. Regarding f(p*) as a function of x
and y, we shall write f(p*) =f(x, y).

It is well known that ¢ is the unique solution f of the func-
tional equation

2) 2_f(d) = n*, (n=1,2,---).

din

Although a proof of this will not be required, we give one to
contrast the algebra involved with another, which will be used.

* Presented to the Society, November 29, 1930.
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Write u,(n)=n" for all integers #>0. Then* (2) is uof =ux,
which is linear in f and hence has the unique solution f=wuzus*
=uu (u=Mébius’ function). Hence, by (1), f =¢ is the unique
solution of (2).

When £ is a positive rational integer, (2) can be obtained at
once from the arithmetical definition of ¢x(n), and in fact one
of the usual ways of deriving the properties of Euler’s ¢(n)
(k=1) is by first proving (2) directly from the definition of
¢(n). Another functional equation for ¢, stated in (3), of which
¢ is again the unique solution, conceals some more recondite
arithmetical property of totients. In itself it is remarkable
enough to merit independent notice. It also gives an example in
a new algebra, devised by D. H. Lehmer, which is isomorphic
with common algebra (the theory of an abstract infinite field),
and which reveals interesting new aspects of numerical func-
tions radically different from those depending ultimately upon
Dirichlet multiplication, as was the case with the algebra cited
in the preceding footnote. In this algebra, since it is isomorphic
with a field, multiplication has a unique inverse and a unique
identity element; multiplication and division are the operations
of greatest arithmetical interest. Applied to simply separable
functions the new multiplication gives the second characteristic
equation (3) for ¢x. A third characteristic equation is given in
§3.

All that will be required of Lehmer’s algebra is the definition
of multiplication. Let m, n, » be positive integers. The number
of sets (m, n) such that the L. C. M. of m, » has the constant
value 7 is finite. Let f, g be numerical functions, and let the
summation refer to all of the pairs (m, n) just defined. Then
D f(m)g(n) is a numerical function of 7, say k(r), and

Zf(m)g(”) = h(r), (r= L2, )’

is written (fg) =h, which defines the product (fg). As stated,
the multiplication (fg) is associative and commutative, and has
a unique inverse. The last implies that if f is any numerical
function other than the identically zero function, there exists

* For the algebra (symbolic method) used, see Outline of a theory, etc.,
Journal Indian Mathematical Society, vol. 17 (1928), where references to
previous papers are given. If f, g are numerical functions, f=g means that
f(”) =g(n), (”=11 2, )-
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a wunigque numerical function # (the same for all f) such that
(fg) =u has a unique solution g.
We write (ff)=(?), (H(n)=f(n). If f is separable, say
f@) =f(x,y) =gx) h(y), and if n=p1 - - - ps%, where pi,
-+ +, pearedistinct primes, then

fn) = f(pr™) - - - f(pa®e) = g(&1) - - - g(x)h(y1) - - - B(ya),

where x;=p;, y;=p;%. Hence it is sufficient to discuss the equa-
tion f(x, y) =g(x) h(y).

If f is separable, f2 in general is not separable. In §2 we deter-
mine all simply separable f such that f?is separable. The prob-
lem of determining all separable f (not merely simply separable
f) such that f2 is separable, leads to a functional equation which
appears to be quite intractable. When f is simply separable and
f? is separable, we shall see that f2 also is simply separable.

If both f, f? are separable, say

f(x, 9) = g(x)i(y), fH=,y) =G(x)H(y),
then also (% is any complex number #0),
f(xk, y%) = g(&B)h(y®), A=k, y¥) = G(=M)H(y"),

and conversely this implies the preceding. It is sufficient there-
fore to consider the case k=1. The second characteristic equa-
tion of ¢; is given by the next theorem.

THEOREM 1. The unique simply separable solution f(x, y) of
(3) A=, ) = f(«? %)
is f =¢r, where k is an arbitrary complex number 0.

This theorem, proved in §2, end, originated in an attempt to
relate the following astonishing property of (¢x¢:) to Jordan’s
original definition when %, ! are positive integers: if k, I are
any complex numbers other than zero, (¢pr¢:) =¢r+:. Thisis
due to von Sterneck.* Itis shown in §3 that this property gives
a third functional equation for totients.

2. Simply Separable f and f2. As in §1, write p=x, pe=y (p

* Monatshefte fiir Mathematik, vol. 5 (1894), pp-255-266.
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prime, « an arbitrary positive integer), and define Q, - - -, T
by
Q) = 2(aiy’ + by, @b, # 0;
j=1

8

A(x) = II(x? = 1), 4,(2) = A(2)/(x" = 1);

Ri(%) = — b_j(a*=7 + 1)4,_i(x), G=0,1,---,5s—1);
S() = A@) + P(e) (b; — ap)d ()3
Ti(x) = a'i(xj + 1)A,(x), (.7 = 1) T S).

Then, if the function f(x, y) is simply separable of extent s, and
f(x, ¥)=P(x)Q(y), we have

P s—1
[, ) = T0W) )[m) SRi(®)y’ + 25(x)y*
A(x)y®

+ P(x) T @y

Ja=1
For, from the definition of Lehmer’s product (kg) in terms of
L. C. M., where %, g are any numerical functions,

(hg)(p) = h(pa)[l + ig(po]

+ g(pa)[l + ij’@’ﬂ — e ().

In this take h=g=f, f(x, y)=P(x) Q(y). Then, by a short re-
duction,

S, 9) = P(x>Q(y)[2 + P(x) 2Abiti(x, 3) + astia, y-1>}],
=1
ti(x, y) = y7i(1 + a7 — 2y9)/(1 — x7).
Reducing this to a common denominator we find the form
stated.

In order that f2(x, ¥) be separable it is therefore necessary and
sufficient that

s—1 s
P(x) 2R (2)y’ + 25(x)y* + P(x) 2 Ti(x)y*+ = L(x)M(y),

jmm0 jem1
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identically in x and y, where L(x), M(y) are functions of x and
of y alone respectively. The trivial cases where one of P(x),
L(x), M(y) is identically zero are excluded. Hence it is necessary
and sufficient that

P(x)Rj(x) = a;L(x), (j=10,---,5s—1);

S(x) = BL(x);
P(2)Ti(x) = v:L(x), (i=1,---,9),

where the a, 3, v are constants not all zero. The first and third
of these are

= be—j(2*7 + 1)4,j(2) P(x) = a;L(x), (G =0,---,5—1);
ai(x* + 1)A;(x)P(x) = v;L(x), (i=1,---,9).

By a simple contradiction it is seen from the first that either all
the b’s are zero or precisely one is not zero. For, since j<s,
the first identity gives for some j

(2= 4+ 1) /(=7 — 1) = §,L(x) P(x)/A (%),

where §; is a constant. If§,=0,(j=0, - - - ,s—1), thend,_; =0,
(7=0, - - -+, s—1). Suppose next that §;5%0 when j=ji, j =/,
J1#js. Then the corresponding left members can differ only by
a constant factor 6520, and we have

(=t 4 V(w2 — 1) = §(x*—n — 1) (22 4 1).

Now 2s—j1—7#0, since j1<s, jo<s. Moreover, s—ji#s—j;
since j1 ;éjz; § —j1 #2s —jl —jz; N —jz# 2s —j1 —jz; (S '—‘]1) (S —jz)
#0. Thus we may equate coefficients and get d=1; whence
x*~h=x*"7% and we have the contradiction j; =j,.

Similarly for the second identity and the a’s. There are thus
four possibilities, of which one is trivial; the remaining three
are as follows.

All &’s and o’s are zero, and all but one a are zero.

All but one of the b’s are zero, and all the a’s and v’s are zero.

All but one of the b’s and all but one of the a’s are zero.

Obviously the first two are identical on a suitable change of
notation. We shall consider only the third in detail, as a similar
argument shows that the conclusion reached includes the other
possibilities as limiting cases.

Let then b,._;a:50 for a particular j and . Write —b,_;=c,—;.
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Then from the two identities we have, on comparing the values
which they give for P(x),
aja(a= 4 s — xf — 1) = g (i — i 4 xi — 1),

Now 0=j<s, 0<s=<s. Hence i(s—j)(s—j+<)#0, and there-
fore the apparent constant terms in the above are the actual
constant terms, so that a;a:="%ic,—;. It follows thence from the
last identity that s —j=1.

To find L(x) and hence P(x) apply this conclusion to S(x).
We find thus

L(x) = A(x)(xt + 1)

©B+7) + B+ ap)
’Yi(xi - 1) )
a{# (B + vi) + (B + a))]

Combining all results we have the following result.

P(x)

|l

THEOREM 2. The unique simply separable f(x, v) such that

x, ) is separable, is
2t — 1
(x: )E (ar_cv—r)'
sy C+ort+o+o 7
where v is an arbitrary constant integer #0, and a, b, ¢ are con-
stants not all zero; f*(x, y) is also simply separable,
2 —1

(®,9) = (ay” — cy™)(ay" + 20 + cy™).
s [(e+0) x + (b + o)

If the further condition (3) be imposed we find immediately
Theorem 1.

3. Third Functional Equation for ¢p. Lett, k, I be constants,
tkl£0. With x, y as in preceding sections, let f be a numerical
function and define the numerical functions f, fx,1 by

iz, 9) = y5f(x®), (faf)) = fu.
Then by a shorter argument similar to that of §2, we find the
following theorem.

THEOREM. If fi(x, v)=y'F(x%), then necessarily t=Fk+1,
F=fandf(x)=1—x"", where r is an arbitrary constant #0. Hence
fr =3k is the unique solution of the functional equation.
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