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FUNCTIONAL EQUATIONS FOR TOTIENTS* 

BY E. T. BELL 

1. Totient Functions. Let pu • • • , pa be the distinct prime 
factors of n. The number of different sets of k equal or distinct 
positive integers less than or equal to n whose G. C. D. is prime 
to n is the Jordan totient <f>k (n) of order k, and 

(1) 0t(f,) s »*(1 - #1-*) . . . (1 - J - * ) . 

If k is complex, 0*(w) is defined by (1). The special case fe = l 
gives Euler's <j>(n). The case k = 0 is trivial and will be ignored. 

We say that the numerical function fzsf(n) is factorable if 
/ ( l ) == 1 (which is adjoined to the definition of ƒ(«) if ƒ(w) is 
defined arithmetically for w > l but not for w = l ) , and if fimri) 
=f(m) f(n) for all pairs of coprime integers m, n. 

Factorability is distinct from separability, which we define 
as follows. Let a denote a variable integer > 0 and p a fixed but 
arbitrary prime. Write pa=y, p^x, and regard x, y as indepen­
dent variables. Then the factorable numerical function ƒ is 
separable if there exist numerical functions g, h such that 
f(pa) =g(x) h(y). For example, <t>k is separable; ak, where <Th(n) 
is the sum of the feth powers of all the divisors of w, is not. 

If ƒ is separable, sa.yf(pa) =g(x) h(y), and if further h(y) is of 
the form ]C/-i (#/3;7+&/3r'0> w n e r e the ay, bj are constants and 
aJb95*0, we say that ƒ is simply separable of extent s. Thus <j>k is 
simply separable of extent 1. Regarding f\pa) as a function of x 
and y, we shall write f (pa) =ƒ(#, y). 

It is well known that <f>h is the unique solution ƒ of the func­
tional equation 

(2) Zf(d) = n*, ( n = 1, 2, . . . ) • 
d\n 

Although a proof of this will not be required, we give one to 
contrast the algebra involved with another, which will be used. 

* Presented to the Society, November 29, 1930. 
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Write ur(n)^nr for all integers n>0. Then* (2) is Uof=Uk, 
which is linear in ƒ and hence has the unique solution ƒ = UkU<rl 

= UkfJL (/x^Möbius' function). Hence, by ( 1 ) , / = 0 A ; is the unique 
solution of (2). 

When k is a positive rational integer, (2) can be obtained at 
once from the arithmetical definition of <i>k{n)y and in fact one 
of the usual ways of deriving the properties of Euler's <j>(n) 
(k = l) is by first proving (2) directly from the definition of 
0(n) . Another functional equation for <£&, stated in (3), of which 
<j>k is again the unique solution, conceals some more recondite 
arithmetical property of totients. In itself it is remarkable 
enough to merit independent notice. I t also gives an example in 
a new algebra, devised by D. H. Lehmer, which is isomorphic 
with common algebra (the theory of an abstract infinite field), 
and which reveals interesting new aspects of numerical func­
tions radically different from those depending ultimately upon 
Dirichlet multiplication, as was the case with the algebra cited 
in the preceding footnote. In this algebra, since it is isomorphic 
with a field, multiplication has a unique inverse and a unique 
identity element ; multiplication and division are the operations 
of greatest arithmetical interest. Applied to simply separable 
functions the new multiplication gives the second characteristic 
equation (3) for 0&. A third characteristic equation is given in 

All that will be required of Lehmer's algebra is the definition 
of multiplication. Let tn, n1 r be positive integers. The number 
of sets (m, n) suèh that the L. C. M. of m, n has the constant 
value r is finite. Let ƒ, g be numerical functions, and let the 
summation refer to all of the pairs (my n) just defined. Then 
^2if(/yn)g{n) is a numerical function of r, say h(r), and 

ZfMg(n) = h(r), (r = 1, 2, - • • ), 

is written (fg)=h, which defines the product (fg). As stated, 
the multiplication (fg) is associative and commutative, and has 
a unique inverse. The last implies that if ƒ is any numerical 
function other than the identically zero function, there exists 

* For the algebra (symbolic method) used, see Outline of a theory, etc., 
Journal Indian Mathematical Society, vol. 17 (1928), where references to 
previous papers are given. If/, g are numerical functions, f—g means that 
f(n)~g(n), ( n - 1 , 2, . . . ) . 
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a unique numerical function u (the same for all ƒ) such that 
(ƒ#) =w has a unique solution g. 

We write (Jf) = (f), (p)(n)^f(n). If ƒ is separable, say 
f(Pa)—f(%,y)^g(x)h(y), and if n=piai • • • pa°

a, where £1, 
• • • , pa are distinct primes, then 

ƒ(») = /(£ia0 • ' • f(pa°») = g(*i) • • • g(*«)*(yi) ' * * *(y«), 

where Xj=p3-, y^pfi. Hence it is sufficient to discuss the equa­
tion ƒ (s, y) =g(x) h(y). 

If ƒ is separable,/2 in general is not separable. In §2 we deter­
mine all simply separable ƒ such that p is separable. The prob­
lem of determining all separable ƒ (not merely simply separable 
ƒ) such t h a t / 2 is separable, leads to a functional equation which 
appears to be quite intractable. When ƒ is simply separable and 
p is separable, we shall see t h a t / 2 also is simply separable. 

If both ƒ , / 2 are separable, say 

ƒ(*> y) = g(%)Ky), P(x, y) = G(x)H(y), 

then also (k is any complex number 5^0), 

ƒ(**, yh) = g(xh)h(yk), p(xh, yk) s G(xk)H(yk), 

and conversely this implies the preceding. It is sufficient there­
fore to consider the case h = 1. The second characteristic equa­
tion of <j>k is given by the next theorem. 

THEOREM 1. The unique simply separable solution f (x, y) of 

(3) fix, y) = / (* 2 , y>) 

is ƒ=0*, where k is an arbitrary complex number 7*0. 

This theorem, proved in §2, end, originated in an at tempt to 
relate the following astonishing property of (<j>k<t>i) to Jordan's 
original definition when k, I are positive integers: if k, I are 
any complex numbers other than zero, (<£&$z) ~<t>k+h This is 
due to von Sterneck.* It is shown in §3 that this property gives 
a third functional equation for totients. 

2. Simply Separable f and p. As in §1, write p^x, pa^y (p 

* Monatshefte für Mathematik, vol. 5 (1894), pp;̂  255-266. 
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prime, a an arbitrary positive integer), and define Q, • • • , Tj 
by 

8 

Q(y) - E ( « t f ' + b,y-0, a,b. * 0; 

A(x) m {[(xi - 1), Ai(x) m A(x)/(x>- - 1); 

*,(*) m - &_ , (* - ' + 1M_K*), 0" = 0, 1, • • • , S - 1); 

SO) ~A(x) + P(s) 2 ( J y - ai%*)Ai(%)\ 

7\(x) » ay(*' + l)Ai(x), (j = 1, . • • , s). 

Then, if the function ƒ(#, y) is simply separable of extent s, and 
ƒ(*, 3i)sP(*)0(3i), we have 

P(x)Q(y)r £} 

/2(*, y) = - - ~ - f P(*) 5X(*)y' + vs(x)y 
A\x)y* L y=o 

+ P O ) 

For, from the definition of Lehmer's product (hg) in terms of 
L. C. M., where h, g are any numerical functions, 

(hg)(p«) = Kr)[i + è*(#o] 

+ g(^)[l + i>(£0J - Kp«)g(p«). 

In this take h = g=f, f(x, y)=P(x) Q(y). Then, by a short re­
duction, 

ƒ»(*, y) s P(*)G(y)[2 + P(*) LIMA*, )̂ + *M*rl, r1)}], 

*y(s, y) s y-/(l + of' - 2^0/(1 - *0-

Reducing this to a common denominator we find the form 
stated. 

In order thatf*(x, y) be separable it is therefore necessary and 
sufficient that 

P(X) XX-Wr + 2S(*)r + P(X) 2>,(*)y+' - L(x)M(y), 
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identically in x and y> where L{x)} M(y) are functions of x and 
of y alone respectively. The trivial cases where one of P(x), 
L(x), M(y) is identically zero are excluded. Hence it is necessary 
and sufficient that 

P(x)R,(x) s <*£{%), 0' = 0, • • • , 5 - 1); 

S(x) s /3£(s) ; 

P(x)Ti(x) *syiL(x), (* = 1, • • • , s ) , 

where the a, /3, y are constants not all zero. The first and third 
of these are 

- b-i(x*-i + l)A8„j(x)P(x) s ajL(x), 0' = 0, • • • , s - 1); 

«<(*< + l)i4<(*)P(*) s ytL(x), (i = 1, • • • , s). 

By a simple contradiction it is seen from the first that either all 
the b's are zero or precisely one is not zero. For, since j<$, 
the first identity gives for some j 

{x*~i + l)/(x->' - 1) s ^L(x)P(*)A4(>), 

where 5j is a constant. If 5? = 0, (i = 0, • • • , 5 — 1), then ö,_/ = 0, 
(j = 0, • • • , 5—1). Suppose next that 5 ,^0 when j—ju j=J2> 
ji7éJ2> Then the corresponding left members can differ only by 
a constant factor 09*0, and we have 

(3.-/1 4. i)(s«-/t - 1) == ô(x*~J'i - 1) (*•-'• + 1). 

Now 2s—ji—j27
é0t since j i < 5 , j2<s. Moreover, s—ji5*s—j2 

since ji7*j2; s-j17*2s-ji-j2\ s-j25*2s-ji-j2; (s-ji)(s-j2) 
9*0. Thus we may equate coefficients and get 0 = 1; whence 
x*-h = #«-'2, and we have the contradiction jx =j2. 

Similarly for the second identity and the a's. There are thus 
four possibilities, of which one is trivial; the remaining three 
are as follows. 

All b's and a's are zero, and all but one a are zero. 
All but one of the b's are zero, and all the a's and 7-s are zero. 
All but one of the b's and all but one of the a's are zero. 
Obviously the first two are identical on a suitable change of 

notation. We shall consider only the third in detail, as a similar 
argument shows that the conclusion reached includes the other 
possibilities as limiting cases. 

Let then b8^3ai9*0 for a particular j and i. Write — &,_/ssc,_y. 
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Then from the two identities we have, on comparing the values 
which they give for P(x), 

ajai(x*-i+i + x*-* — x* - 1) = yiCe-jix'-'+t — x°-> + x{ - 1). 

Now Q^j<s, 0<i^s. Hence i(s—j)(s—j+i)7*0, and there­
fore the apparent constant terms in the above are the actual 
constant terms, so that ce/#t = Yi£«-/. It follows thence from the 
last identity that 5 —j = i. 

To find L(x) and hence P{x) apply this conclusion to S(x). 
We find thus 

A(x){%*+1) 
L(x) s 

P(x) ^ 

*KP + y<) + 08 + *i) 

yi(x{ - 1) 

aity(fi + yù + (& + ",)] 

Combining all results we have the following result. 

THEOREM 2. The unique simply separable f(xf y) such that 
P{x,y) is separable, is 

xr - 1 

(a + 6)xr + (6 + c) 

where r is an arbitrary constant integer T^O, and a, b, c are con­
stants not all zero;p(x, y) is also simply separable, 

P(*> y) s r7—r^TZTTT^ (ayr " ^ r ) ( a y " + 2b + cy-'). [(a + b) xr + (b + c)]2 

If the further condition (3) be imposed we find immediately 
Theorem 1. 

3. Third Functional Equation for <£&. Let /, k, I be constants, 
tkl7*0. With x, y as in preceding sections, let ƒ be a numerical 
function and define the numerical functions ƒ&, ƒ*, j by 

ƒ*(*, JO = y*/(**), (ƒ*ƒ*) ^ / M . 
Then by a shorter argurfient similar to that of §2, we find the 
following theorem. 

THEOREM. If fk,i(x, y)-ytF{xt)1 then necessarily t~k-\-l, 
F=fandf(x) = 1 —xr*, where r is an arbitrary constant 5^0. Hence 
fk=4>k is the unique solution of the functional equation. 
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