A DEFINITION OF AN UNKNOTTED SIMPLE CLOSED CURVE*

BY T. C. BENTON

Mazurkiewicz and Strasziewicz have given a definition of interlacability.† That this definition can be altered to apply to a single curve so as to test for a knot in the curve will be shown in what follows.

Consider a three-dimensional, euclidean space. If for each point of the interval $t_1 \le t \le t_2$ we let the continuous function f(t) define a point in the space, the set of points so formed will be a continuous curve. If $f(t_1) = f(t_2)$ the curve is a closed curve. If f(t') = f(t'') implies that either $t' = t_1$, $t'' = t_2$ or $t' = t_2$, $t'' = t_1$ or t' = t'', then the curve is a simple closed curve and will be denoted by the symbol $[f(t); t_1, t_2]$.

DEFINITION. If $[f(t); t_1, t_2]$ is a simple closed curve and if a uniformly continuous function $f(t, \lambda)$, where $t_1 \le t \le t_2$, $0 \le \lambda \le 1$, can be found having the following properties:

$$(1) f(t,1) = f(t);$$

(2)
$$f(t,0) = f_0, \quad a \ constant;$$

$$(3) f(t', \lambda') = f(t'', \lambda''),$$

if and only if (i) $\lambda' = \lambda'' = 0$, or (ii) $\lambda' = \lambda'' \neq 0$, and one of the following hold: (a) t' = t'', or (b) $t' = t_1$, $t'' = t_2$, or (c) $t' = t_2$, $t'' = t_1$; then the simple closed curve $[f(t); t_1, t_2]$ is unknotted.

It must now be shown that the ordinary properties of knots are impossible for curves satisfying this definition; that is, no knotted curve can be a subset of a set which is in 1–1 continuous correspondence with a plane and every unknotted curve can be exhibited as a subset of such a set.

^{*} Presented to the Society, March 30, 1929.

[†] Mazurkiewicz and Strasziewicz, Sur les coupures de l'espace, Fundamenta Mathematicae, vol. 9, p. 205.

THEOREM 1. An unknotted simple closed curve can be exhibited as a subset of a set which is in 1-1 continuous correspondence with a plane.

PROOF. Consider the set $[f(\bar{t},\lambda)]$, where \bar{t} is a constant and λ varies. If \bar{t} , $t'(\neq \bar{t})$ are not both members of the pair of values t_1 , t_2 , this set $[f(\bar{t},\lambda)]$ has no point in common with $[f(t',\lambda)]$ except f_0 . Also each of these sets is an arc from f_0 to a point of $[f(t); t_1, t_2]$ since their points are in 1-1 continuous correspondence with the points of the segment $0 \leq \lambda \leq 1$, and $f(\bar{t},0) = f(t',0) = f_0$.

From the fact that $f(t, \lambda)$ is uniformly continuous, it is necessary that the system of arcs $[f(t, \lambda)]$, $t_1 \le t \le t_2$, be self-compact. Moreover the arcs $[f(t_1, \lambda)]$ and $[f(t_2, \lambda)]$ are identical.

It will now be shown that the system of arcs is an equicontinuous system.* Suppose they do not form such a system. This means that there exists an ϵ such that no matter how small $\delta_{\epsilon 1}$ we choose, it must be possible to find an arc of the system which contains two points $f(t_1', \lambda_{11}), f(t_1', \lambda_{12})$ such that these points are at a distance $<\delta_{\epsilon 1}$ apart, but there exists a value λ_{13} where $\lambda_{11} < \lambda_{13} < \lambda_{12}$, and the distance from $f(t_1', \lambda_{13})$ to $f(t_1', \lambda_{11})$ is $> \epsilon$. For the arc $[f(t'_1, \lambda)]$, however, there exists a δ_1 such that for all values of $\delta < \delta_1$ every pair of points at distance $\leq \delta$ apart can be joined by an arc of length $\langle \epsilon, \rangle$ which joining arc is a subarc of the original. Hence if we choose $\delta_{\epsilon 2}$ less than the smaller of the two δ_1 , $\delta_{\epsilon 1}$, we can be sure that there is an arc $[f(t_2', \lambda)]$ distinct from $[f(t_1', \lambda)]$ for which there are two points $f(t_2', \lambda_{21})$, $f(t_2', \lambda_{22})$ at a distance $\langle \delta_{\epsilon 2}$ apart but on which there also exists a point $f(t_2', \lambda_{23})$ such that $\lambda_{21} < \lambda_{23} < \lambda_{22}$ and the distance from $f(t_2', \lambda_{23})$ to $f(t_2', \lambda_{21})$ is greater than ϵ . By a proper choice of $\delta_{\epsilon 3}$ we proceed with this process and since the set of arcs was supposed not equicontinuous we must arrive at an infinite set of arcs. Since all values of t lie between t_1 and t_2 , the sequence t_1' , t_2' , t_3' , \cdots must have a limit T. As we can discard members of this sequence until T is the only limit, it will be supposed that this has been done and that T is the sequential limit of the sequence t_1', \cdots . In the same way it may be supposed that the sequence λ_{1i} , λ_{2i} , λ_{3i} , \cdots must have

^{*} For definition see R. L. Moore, On the generation of a surface, Fundamenta Mathematicae, vol. 4, p. 106, footnote 3.

a unique limit Λ_i for i=1, 2, 3. Now on the arc $[f(T,\lambda)]$ we can make the point $f(T,\Lambda_1)$ the same as the point $f(T,\Lambda_2)$ because the sequence $\delta_{\epsilon 1}, \delta_{\epsilon 2}, \delta_{\epsilon 3}, \cdots$ can be chosen to converge to zero and still satisfy all other conditions so far imposed on it, and then $|\lambda_{j1}-\lambda_{j2}|\to 0$ as $j\to\infty$. But since we choose $\lambda_{j1}<\lambda_{j3}<\lambda_{j2}$ we must also have $\Lambda_3=\Lambda_1$. This, however, contradicts the fact that the distance from $f(t_i',\lambda_{j1})$ to $f(t_j',\lambda_{j2})$ was chosen greater than ϵ for every j, because this choice means that the smallest possible distance from $f(T,\Lambda_1)$ to $f(T,\Lambda_3)$ is ϵ . This shows that the assumption that the arcs do not form an equicontinuous system is false.

By a theorem due to R. L. Moore* this set of arcs $[f(t, \lambda)]$ is in 1-1 continuous correspondence with a plane set composed of a circle plus its interior. From this the theorem follows.

THEOREM 2. Any simple closed curve M in a set S, which set S is in 1-1 continuous correspondence with a plane set S' consisting of a circle plus its interior, must be unknotted.

PROOF. Let S' be a circle C of radius one about the point O, together with its interior. Let M' denote the set of points in S'that correspond to M under the given correspondence. Let the set of points of S that correspond to the interior of M' in the plane be called the interior of M. By a theorem due to Schönflies it is possible to make M plus its interior correspond to C plus its interior.† Then the straight line segment from O to a point of C will correspond to an arc from f_0 (which can be made the correspondent of O) to that point of M which is the correspondent of the point of C on the straight line segment. These segments enable us to set up a polar coordinate system on the set S'. If f is the function which gives the correspondence between S and S', we see that if a point (θ, r) is given on S', $f(\theta, r)$ will be its correspondent on S. Since $f(0, r) = f(2\pi, r)$ and the other properties of the function used in the definition of an unknotted curve are satisfied if $0 \le \theta \le 2\pi$ and $0 \le r \le 1$, M must be unknotted.

YALE UNIVERSITY

^{*} R. L. Moore, On the generation of a surface, loc. cit., p. 117, Theorem 3. † See J. R. Kline, Proceedings of the National Academy of Sciences, vol. 6 (1920), p. 530, for a statement of this theorem.