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THE PROBLEM OF DEPRECIATION IN THE 
CALCULUS OF VARIATIONS* 

BY C. F. ROOSf 

1. Introduction. In a recent article Hotelling has shown 
that the older treatments of depreciation involve a number 
of serious errors of reasoning and has formulated the problem 
in such a way tha t many of these errors are overcome.J 
His view-point is that the owner of a machine will do 
everything in his power to maximize the present value of the 
sum of the anticipated rentals which the machine will 
yield from the present time h to some future time h plus the 
present value of the salvage value of the machine at the 
time h when it is salvaged. Although the depreciation 
problem appears to be a Lagrange problem in the calculus 
of variations,! Hotelling has chosen to consider it as a prob­
lem in the theory of ordinary maxima of functions. 

If, in the light of recent developments in the new dynam­
ical economics,II the depreciation problem is formulated as a 
Lagrange problem with variable end-points, the resulting 
problem is sufficiently general to include as special cases 
all of the existing depreciation theories, i.e., such theories 
as the straight line, the compound interest, the sinking fund, 
the unit-cost-plus, and the theory due to Hotelling. In 

* Presented to the Society, September 9, 1927. 
t National Research Fellow in Mathematics. 
% H. Hotelling, A general mathematical theory of depreciation, Journal 

of the American Statistical Association, September, 1925. 
§ Bliss, Lectures on the Calculus of Variations, University of Chicago, 

Summer, 1925, mimeographed by O. E. Brown, Northwestern University, 
Evanston, 111. 

|| Roos, Dynamical economics, Proceedings of the National Academy, 
vol. 13, No. 3 (March, 1927); Roos, A dynamical theory of economics, 
Journal of Political Economy, October, 1927. See also, Roos, A mathe­
matical theory of competition, American Journal of Mathematics, vol. 57, 
No. 3, July, 1925, and G. C. Evans, Dynamics of monopoly, American 
Mathematical Monthly, vol. 31 (1924), No. 2. 
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as much as existing depreciation theories assume a constant 
rate of production, the importance of a calculus of variations 
treatment which allows the rate of production to vary, is 
immediately evident. 

2. The Value of a Machine. In order to obtain an ex­
pression for the operating expense or cost of production for 
a machine or other property, mathematical economists, 
following the example set by Walras, define certain quanti­
ties called coefficients of production. These coefficients are 
defined as the quantities of the services of the factors of 
production, i.e. services of land, services of persons and 
services of capital, that enter into the manufacture of a 
unit of a given commodity.* For the static case Walras 
assumes these quantities to be constant. For the dynamic 
case an obvious extension would be to suppose the coefficients 
to be functions of the time, but this is not enough. There 
seems to be justification for writing the coefficients of 
production for a commodity C as functions of the rate of 
production of C, the selling price of C and the first derivatives 
of these quantities with respect to time.f In this paper we 
will, therefore, suppose the coefficients of production to be 
functions of the rate of production of C, the price of C, and 
the first derivatives of these quantities with respect to the 
time. 

If there is one producer manufacturing an amount u{t) of 
C in unit time and if, furthermore, the selling price of one 
unit of C is p(t)> the coefficients of production are functions 

faiuy.p.p'.t), {a = 1, • • • ,w), 

where m is the number of services required to manufacture 
one unit of C and primes denote derivatives with respect 
to time. If we denote the prices of the m services required 
to produce one unit of C by pa(t)y then by the definition 

* V. Pareto, Manuel d'Economie Politique, pp. 607. 
t Roos, Dynamical economics, loc. cit. 
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of the coefficients of production the cost of producing u(t) 
units of C is 

m 

(1) 1>(u9u'fp,p',pu • • • ,pm,t) =Yïi<i)M*>"',P,P',i)P«®-

This gives the cost of production before depreciation has 
been taken into account. 

The profit or rent which will be obtained from a machine 
in unit time will, therefore, be 

R(t) = p(t)u(t) - M*,*',P,p',Pu ' • ' ,pm,0-
Now, the value of a machine to its operator at a time h is 
the sum of the anticipated rentals which it will yield from 
the time h to a time co at which it is to be salvaged each 
multiplied by a discount factor to allow for interest plus 
the salvage value also discounted. In the most general case 
the interest will vary with the time. We can, therefore, for 
the general case write the value of a machine to its operator 
at a time h as 

(2) V - f[pu - Muy,p,p',Pi, • • • ,p.,t)]e~J*ii9}â'dt 

where ö(v) is the force of interest, which is defined as the rate 
of increase of an invested sum 5 divided by s, and 5 is the 
salvage value of the machine at the time co.* This salvage 
value S is the cost price K of the machine at the time h 
minus the depreciation in the market value of the machine 
after it has been operated for the period of time h to o>. 
The depreciation in the market value of the machine is in 
general a functional of the rate of production, of the price 
of the article produced and of the time derivatives of these 
quantities. We may, therefore, write 

(3) 5 = K - f*D(uy,p,p',t)e~J'*9Wd'dt 

* Hotelling, A general mathematical theory of depreciation, loc. cit., p. 342. 
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where D(u, u'', p, p', t) is the rate of depreciation. If we 
substitute the value of S defined by (3) in equation (2), we 
obtain on transposing the second term of the right-hand 
member 

[7-zX I W J ']- f [pu 
-f'èWà, 

- ifr(u,u',P,p'9pi, ' • • ,pm,t) - D(u,u''9p,p'',t)]e * V ' dt. 

The quantity represented by the second term of the left hand 
member is the value at h of a sum K necessary to replace the 
machine at the time fe. In order to simplify notation in the 
work which follows let us write this last expression in the form 

'• f* 
(4) ƒ = (Ë[pu-Q(*,u',P,P',pi, ' ' • ,fr.,0]«"* l ( ' )d ,<8, 

where 

(?(«, «', £> £', ^i, • • • , ^m, 0 
= ^(«, tt', A ƒ>', £l, • • • , £m, t)+D(u,u', p, p', t). 

3. Equations of Demand and Supply. For the commodity 
produced by the machine there will be a function J defining 
the rate of demand. As I have already pointed out, this rate 
of demand in its most general form will be a functional of 
the type 

£ = g(u,u'',p,p'\t) + I H(u,u',p,p',t,s)ds 

where as before primes indicate derivatives with respect to 
time and 5 is a parameter of integration.* 

If as many units are sold as are produced, the demand per 
unit time will be u{t) so that the demand equation will be 

(5) <Ku,u',p,p',t) = f H(u,u',p,p',t,s)ds 

* Roos, A dynamical theory of economics, loc. cit. 
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where as notation <f>(u, ur
y p, p'f f)=u — g(u, u', py p', t). 

When the rate of demand depends only slightly upon the his­
tory of prices and rates of production, we are justified in 
writing H^O. For this case we obtain a first order dif­
ferential equation of demand 

(6) <l>(u,u',p,p'yt) = 0 (hgtgh). 

In as much as this last form of the demand equation is 
sufficiently general to include as special cases all forms of the 
demand equation now used in statistical investigations, it 
will be sufficiently general for the purposes of this paper. 

4. Necessary Conditions f or a Solution. A likely assumption 
to make regarding the operation of the machine is that the 
operator will endeavor to maximize the expression (4), 
which is the difference between the value of the machine at 
the time h and the discounted cost price. This assumption 
is not equivalent to the assumption that the operator will 
endeavour to maximize V, for h is a variable end-value, but 
it has the advantage of simplicity.* We will find it conven­
ient to introduce the notation yi(t)=u(t) and y<L(t)=p(t) 
in this paragraph in stating the problem of depreciation and 
in writing the conditions necessary for a solution. Under 
the hypothesis that (4) is to be maximized, we may state 
the problem of depreciation as that of choosing the rate 
of production yi(t) and the price y2(t) satisfying a differential 
equation of demand 

4>(yi,y{ ,y*,yi,t) = 0 (h^tgh), 

and having end-points which satisfy end-equations 

9Ati,yi(h),y2(h),h,yi(k),y2(t2)]= 0, (/x « 1, • • • ,» â 6), 

so that they maximize the integral 

* Hotelling assumes that V is to be maximized, but assumes u(t) and 
p(t) to be known functions; see A general mathematical theory of depreciation, 
loc. cit., p. 343. In a paper entitled A general problem of maximizing an 
integral with discontinuous integrand to be offered to the Transactions of 
this Society, I have given the mathematical analysis necessary to solve 
the problem under the assumption that V is to be maximized. 
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7 = I [yiy%-Q(yi,yl ,yi,yi ,pi, • • • fpmft)]fh6i9)dPdt9 

with piy • • • , pm considered as known functions of /. 
In order to obtain a solution we assume further that 
(1) the functions y%(t)9 ( i = l , 2), defining the maximizing 

arc Eu are continuous on the interval i\t%% and this interval 
can be sub-divided into a finite number of parts on each of 
which the functions have continuous derivatives, 

(2) in a neighborhood R of the values t, yi, y{, y%, yi on 
the maximizing arc E i 2 the functions Q and </> have continuous 
derivatives up to and including those of the second order, 
and 

(3) the functions 0M have continuous derivatives up to 
and including those of the second order near the end-values 
Oi» yi(h), yi(h), h, yi(h), y2(h)), and at these values the 6n-
dimensional matrix 

Il Oui Om(tù e»t* ewdt,) || has rank n. 

Under these hypotheses, the analysis for the problem of 
Lagrange with variable end-values as arguments of the 
integrand applies to the problem of depreciation. I have 
shown in another paper* that the solution must be such 
that 

(a) Fyi, = Fy.dt + dy (i = 1,2), along the arc JEI2, 

J tx 

where 
F(yu • • • , yi y t, h) =\of(yu • • •, yi, t, k) 

+Xi(0*(yi, •• • , y / , 0 . 

where f(yi, yi, y2l yi, /, h) is the integrand of 7, where the 
Ci are arbitrary, and where the X are Lagrange multipliers ; 

(b) At the end-points all determinants of order w + 1 
of the matrix 

* Roos, A general problem of minimizing an integral with discontinuous 
integrand, to be offered to the Transactions of this Society. 
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\\H(h)-yk>(h)HVk>(h) HVt>(h) H(h)-yv(h)HVk,{h) ffyX^II 

vanish, where as notation 

H(Q = (a - 2)F(h) + (<r - l)F(h) 

+ (\Ftc+FVk{t9)yhf{Q]dx (a - 1,2), 

B,At') = (* - 2)FW ,(0 + (<r - l)Fw,(/ t) + f Fw<i.>*, 

k is used as an umbral index with range 1,2, and subscripts 
yi, y', and tff denote differentiation. 

(c) In addition to the preceding conditions (a) and (b) 
certain second order conditions of the calculus of variations 
must be satisfied by an arc £12 which does actually maximize 
/ . I t is true, however, that if an arc E12, which maximizes I 
does actually exist, it is the one defined by the differential 
equations <j>(yu yl, ^2, yi, t)=0 and the Euler-Lagrange 
equations in the Du Bois-Reymond form (a) and having end-
points satisfying the end-equations 0M(/i, 3>i(£i), 3̂ 2(̂ 1), h, 
yiih), ^2(^2)) = 0 , (JU = 1, • • • , n), and the transversality 
conditions (b). Rather than consider the additional condi­
tions of the calculus of variations, let us assume that there 
does actually exist a maximizing arc E i 2 for the particular 
problem under consideration and that /, u(t), p(t) in the 
space /, u, p give the desired solution. 

We desire next to obtain an expression for depreciation, 
which has been defined as the rate of decrease of value.* 
To do this let us suppose that a machine is operated at a 
rate u(t) which maximizes / , so that in the expression (4) 
the functions u(i) and p{t) and the end-values h and h are 
those defining the maximizing arc. Then the expression (4) 
will define the maximum value of the machine at the time 
h, and the value of the machine at any other time / 
( / i ^ ^ f e ) can be obtained by replacing t\ in (4) by t. We 
obtain 

* H. Hotelling, A general mathematical theory of depreciation, loc. cit. 
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(7) V{t) = f'[pu- Q(u,u',p,p',r)]iJ' Hv)d' dr 

If we let A(t) = ~dV(t)/dt be the depreciation of the 
machine to its operator, we can write by differentiating (7) 
with respect to t: 

(8) A(t) = - dl(t)/dt - b^Ke* HvUv . 

5. Relation to Existing Depreciation Theories. I t is most 
interesting and instructive to see what further hypotheses 
must be made to obtain the various depreciation theories 
now commonly used. If, in equation (2), we suppose the 
salvage value 5 to be a point function of the time h — n at 
which the machine is to be salvaged instead of a functional 
of the rate of production and price as done in this paper, 
then on changing the parameter of integration from t to r 
equation (2) becomes for t2=

:n and h = t 

(9) 7 ( 0 = C[pu - t(u,u',p,p',T)]e~JtV')d'' dr 
J t çU 

+ S{n)e l 

If the cost of production function \//(u, u'\ p, p', r) is a point 
function \p(r) instead of the more general function \p of (9), 
this formula reduces to that given by Hotelling.* 

Now, by (9), Vin) = 5 ( ^ ) , and hence the total depreciation 
of the machine for the period r — t to r = n is evidently 
Vit)—Sin). If we desire only simplicity, we may assume 
that the depreciation per unit time is equal to the average 
depreciation [Vit)—Sin)]/n and obtain the well known 
straight line formula for depreciation. 

Again, if p, u, and \p of (9) are constant for a certain 
number of years of the machine's life and then change 
abruptly at t?4 = n in such a way that it is evident that the 
end of the useful life of the machine has come, and if the 

* See citation (1), p. 343. 
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force of interest ô(t) is a constant equal to 5, we can perform 
the integration in (9) and write 

I _ e-Hn-t) 
(10) V(t) = [pu - t£] + Se-*^-». 

ô 

Now, when ô( / )=5, a constant, the discount factor e~~6 is 
equal to (1+i)"*1, where i is the rate of interest in the 
ordinary sense. We obtain, therefore, 

1 - ( 1 + i)-(n~» 
(ii) v(t) = [pu - *] — - ^ + 5(1 + *)-<*-», 

o 
and, at / = 0, this becomes 
(12) 7(0) = [pu - ^ j 1 " " 1 + ' _ - + 5(1 + *)-». 

If we eliminate [pu — xf/]/ô from the equations (11) and 
(12), we obtain 

v(t) - 5 ( i + ;)<-* l - (i + ; ) ' - n 

7(0) - 5(1 + i)~n 1 - (1 + i)-» 

By adding —S times the second column to the first column, 
then subtracting the second row from the first row and 
expanding, we obtain at once 

,(1 + iY - 1 
7(0) - V{t) = [7(0) - 5(n) K——^ • 

(1 + i)n - 1 
When we introduce the customary notation 

(i + * V - l 
571 = ; ; 

% 
this formula becomes 

(13) 7(0) - 7 ( 0 = [7(0) - S ( « ) ] — , 
«I 

which is the well known formula for the accumulation of 
depreciation allowances at the end of the tih year under the 
sinking-fund method.* 

* Rietz, Crathorne and Rietz, Mathematics of Finance, pp. 112-121. 

0. 
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If now the formula for V(t+1) obtained from (13) by 
replacing thy t+1 be subtracted from (13), we obtain 

(14) V(t) - V(t + 1) = [7(0) - S ( » ) ] < 1 ± ^ . 

This formula states that the depreciation for any year is 
equal to the depreciation charge for the first year at com­
pound interest at the rate of i per annum. This is, therefore, 
the so-called "compound interest method" of providing for 
depreciation. 

If we perform the indicated differentiation in (8), we obtain 
on solving for p 

Q + ôKe~^n~^ -dV(t)/dt 
(15) p = ; 

u 
which is equivalent to the formula by which J. S. Taylor 
defines unit cost plus.* 

From the general theory of this paper we have thus 
derived the popular "sinking fund" or "equal annual pay­
ment" formula for depreciation (13) and the "compound 
interest formula" (14) by assuming that the rate of pro­
duction u, the price p and the cost of production \f/ are 
constant throughout the useful life of the machine. We 
have also seen that the unit cost plus formula can be 
obtained directly from the formula for depreciation as given 
in this paper when the price p and the rate of production u 
are known functions of the time. 

6. Some Generalizations. If instead of the hypothesis of 
§3, we adopt Hotelling's hypothesis that the operator 
of a machine will do everything in his power to maximize 
the present value V(h) of his machine, the problem of 
depreciation for a fixed h is a Mayer problem of a general 
type considered by Bliss.f When h is variable this prob-

* J. S. Taylor, A statistical theory of depreciation based on unit cost, 
Journal of the American Statistical Association, December, 1923. 

t Bliss, The problem of Mayer with variable end points, Transactions of 
this Society, vol. 19 (1918). 
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lem can be made over into the Bliss problem by intro­
ducing a new variable z satisfying the differential equation 
3 = 0 and the end condition z(ti)=h. I t is not, however, 
necessary to complicate matters by introducing another 
variable to obtain the form given by Bliss, for, if we take the 
term in K in (4) under the integral sign, we obtain 

and this is a special case of the general problem referred 
to in §3.* For the conditions (a) and (b) of §3 the 
function f(u, u', p, p', t, h) of that section becomes a 
function f(u, u', p, p', t, h, /2) identically equal to the above 
integrand. 

I have already discussed a related problem for the case of 
several competing machines and I believe that the analysis 
given there can be remodeled after the methods of this 
paper to fit the depreciation problem for several competing 
machines, f 

There is another important possible direction of extension 
of this paper. As I have pointed out in §2, there are 
instances when the more general functional equation of 
demand as given by (5) should replace the differential equa­
tion of demand (6). The resulting problem is a problem in 
the maxima of functionals which would be well worth special 
investigation.} 

T H E UNIVERSITY OF CHICAGO 

* Roos, General problem of minimizing an integral with discontinuous 
integrand, loc. cit. See also E. H. Clarke, On the minimum of the sum of a 
definite integral and a function of a point, Doctoral Dissertation, Uni­
versity of Chicago, and Miss Sinclair, Annals of Mathematics, (2), vol. 10, 
pp. 55-80. 

t Roos, Generalized Lagrange problems in the calculus of variations, 
Transactions of this Society, not yet published. 

$ For a related problem in the maxima of functionals, see Hahn, Über 
die Lagrange1 sche Multiplicatorenmethode, Sitzungsberichte der Akademie 
Wien, vol. 131 (1922), pp. 531-550, 


