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since 6 varies from 0 to 2ir when 2 describes C. Moreover 
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We know that N(6) is real; hence [log i\T(ô)]0
2r = 0. On the 

other hand, the variation of the argument of [N'(0)+iN(d)] 
as 0 changes from 0 to 2w is zero, so that log [(N'(d) 
+ iN(0))]$T = 0. Hence e = l. This proves the theorem. 
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1. Introduction. In his studies in general analysis, E. H. 
Moore has developed! a theory of the linear functional equa­
tion 

£ + JK£ = rj. 

Here £ and rj denote functions (the latter given, the former to 
be determined) belonging to a clasc Wl of real-valued func­
tions on a general range $ . The kernel function K belongs 
to a class $ which is well defined in terms of the funda­
mental class $)î. A sufficient foundation for the theory is 
laid by means of postulates upon the class 9K and the func­
tional operation J. 

The purpose of the present paper is to consider the linear 
inequality 

(1) É + / K É > 0 , 

* Presented to the Society, September 8, 1927. 
t On the foundations of the theory of linear integral equations, this Bulle­

tin, vol. 18, pp. 334-362. 
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a type which includes the non-homogeneous inequality in a 
sense indicated in § 5. 

The most interesting feature is the relationship between 
the inequality (1) and the adjoint equation 

jJL + J/JLK = 0 , 

as expressed in the theorem of § 4. For the proof of this 
theorem, two postulates are introduced in addition to those 
used by Professor Moore. 

2. The Basis. As a basis we assume Moore's £ 5 :* 

(21 ; Ç ; Sft ; $ s WWl)* ; / on « to 21), 

where 21 is the class of real numbers; $ is a general class of 
elements p; 9K is a class of functions (/*, J, 77, 7r) on $ to 21, 
having the properties L, C, D; and the operator J has the 
properties L and M. 

3. 4 ^ Equation Equivalent to the Inequality. The inequality 
(1) is obviously equivalent to an equation 

(2) Ï + M = ir, 

where w is any function of 99? which is everywhere positive 
on ty. This situation suggests an additional postulate upon 
the class 9JÎ, namely that it contain at least one positive 
function. We shall find it desirable presently to make a 
more comprehensive postulate. 

Equation (2) is of the Fredholm type treated by Moore. 
Its solution depends upon the Fredholm determinant FK of 
the kernel K. In case F^O, the equation admits the solution 

(3) £ = 7T + / \7r , 

* Loc. cit., p . 349. We might have assumed the basis ^ e (p. 352) which 
differs from ]£s in the presence of two classes of functions 9ft' and 9ft" on 
two conceptually distinct ranges $ ' and $ " . The basis ]>̂ 6 reduces to 
5^6 if <$' = <il$" and 9ft' = 9ft". Our choice is in the interest of typographical 
simplicity. We were influenced also by the fact that we have discovered 
no instance involving distinct ranges ty' and Ç " in which our postulate 
E (§4) is satisfied. 
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where X is the reciprocal kernel (resolvent) for K. The 
inequality (1) then admits, in this case, the solution (3) 
where T is any positive function of 9ÏÎ. 

Of more interest is the exceptional case in which FK = 0. 
The theory of equation (2) for this case (without the restric­
tion that 7T be positive) has been treated in detail by Hilde-
brandt.* The facts are entirely analogous to those well 
known in the theory of ordinary integral equations. The 
equation (2) in general admits no solution. The corre­
sponding homogeneous equation 

£ + jK£ = 0 

admits a finite number of linearly independent solutions 
£i> £2, • • • , £mî and the adjoint homogeneous equation 

(4) M + JfiK = 0 

admits the same number of linearly independent solutions 
Mi» M2> * • • , Mm. A necessary and sufficient condition that 
the equation (2) admit a solution is that IT be orthogonal 
to each of the functions fX{. That is, that 

(5) J/jLiw = 0 , (i = 1,2, • • • ,w). 

The solution of (2) is then 
m 

£ = TT + J\W + 2 C& 
t - 1 

where X is a pseudo-resolvent for K, and the C{ are arbitrary 
constants. 

To apply these results to the inequality (1), we note that 
the kernel K is given; and if FK — 0, the set of fundamental 
solutions jiti, jLt2, • • • , Mm of the adjoint equation (4) can 
be determined. The problem of the inequality then reduces 
to the determination of a positive function T in S0Î which 
satisfies conditions (5). 

* On pseudo-resolvents of linear integral equations in general analysis. 
Annals of Mathematics, vol. 21 (1920), pp. 323-330. 
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The machinery which suffices for the theory of the 
functional equation apparently affords no means of attack on 
this problem. We therefore introduce in the next section new 
postulates which are sufficient to secure our desired result. 

4. Two New Postulates. The postulates to be introduced 
involve a certain property relative to functions, which has 
been used in an earlier paper,* and which may be defined 
as follows: 

A real-valued function is said to be M-deftnite if it is 
somewhere positive and nowhere negative, or somewhere 
negative and nowhere positive on its range ; in other words if 
it is not identically zero and does not change sign. 

Postulate N: If fx is an ikf-definite function of 5DÎ and ir is 
a positive function of 9JÎ, then JJJLT^O. 

Postulate E: If (jm, /x2, • • • , Mm) is a set of functions of 5DÎ 
such that no linear combination of them is ikf-definite, then 
there exists a positive function w in SDÎ such that 

(5) JfXiT = 0, (i = 1,2, • • • , w ) . 

The postulate N is a natural generalization of a simple 
property possessed by the operator J in each of Moore's 
classical instances (I), (II), (III) , and (IV). 

The existential postulate E is not perhaps so natural, 
and it undoubtedly invites further analysis. I t is however 
satisfied in each of the four classical instances, as has been 
shown elsewhere by the author, f This postulate (together 

* See On sets of functions of a general variable, Transactions of this 
Society, vol. 29 (1927), pp. 463-470. 

t For the instance (II), including (I), see Note on certain associated 
systems of linear equalities and inequalities, Annals of Mathematics, vol. 
28 (1926), p. 41, Theorem II. 

For the instance (III), the proof is contained in a paper entitled 
A theorem on orthogonal sequences which will probably be published at an 
early date. 

For the instance (IV), see A theorem on orthogonal functions with an 
application to integral inequalities, which is to appear soon in the Trans­
actions of this Society. 

An equivalent (and in some respects preferable) formulation of the 
postulate may be given in terms of the notion Jkf-rank denned in the paper 
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with the assumption that 9Ji has the property L) implies the 
existence of at least one positive function in 9DÎ. 

5. The InequaUty and its Adjoint Equation. By use of 
the postulates just introduced, we now obtain the following 

T H E O R E M : The inequality 

(1) £ + M>0 

admits a solution, if and only if the adjoint equation 

(6) fJL + JfJLK = 0 

admits no M-definite solution. 

First, we note that the case F ^ O is consistent with the 
theorem, since in that case the inequality (1) admits a solu­
tion (3), and the equation (6) admits only the solution /J = 0 
which is not ikf-definite. 

Suppose then that FK — 0, and consider a fundamental set 
of solutions 

(7) Ml,M2, ' * * ,Mm 

of the adjoint equation (6). Tha t is, the linear combinations 
of this set comprise the totality of solutions of (6). There 
are then two possibilities. 

If the set (7) admits no linear combination which is ikf-
definite, then the equation (6) admits no ikf-definite solution, 
while the inequality (1) admits a solution, since by postulate 
E there is a positive function w satisfying (5). 

If, on the other hand, the set (7) admits an ikf-definite 
linear combination, say ju* = X^JU*, then the equation (6) 
admits the ikf-definite solution /x=/**. And the inequality 
(1) admits no solution. For suppose it did admit a solution 
£ = £*, that is suppose £* + /*£* = 7r, where T is a positive 
function. Then ir must satisfy the conditions JjUi7r = 0, 

referred to in the preceding footnote, namely: If (MI, M2, • • • , Mm) is a 
set 'of functions of ikf-rank zero, then there exists a positive function T in 
9ft such tha t Jmir = 0f (* = 1, 2, • • • , m). 
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and since J has the property L (linearity) it follows that 
JJU*7T = 0, which contradicts postulate N. 

We have shown that (1) admits a solution in those and 
only those cases in which (6) admits no Af-definite solution. 
This establishes the theorem. 

6. The Non-Homogeneous Inequality. The inequality 

(8) l + M>n 

where rj is a given function of 9ft, may be replaced by the two 
simultaneous inequalities 

* + ƒ « * - ! ? * > 0, 

x > 0, 

where x is a real number to be determined. For any solution 
£ = £* of (8) determines a solution (£ = £*, x = l) of (9), and 
conversely any solution (£ = £*, x = x*) of (9) determines a 
solution £ = £*/** of (8). 

By the method of adjunctional composition (see Moore, 
loc. cit., p. 355), the system (9) may be written in the homo­
geneous form 

*' + JK'I' > 0 

relative to a new basis Y*l ' 

(21 ; ^ ; W ; « ' s (9QW)* ; / ; on $ ' to SI). 

This new basis is the adjunctional composite of our general 
basis 2ZB, and the particular and very simple basis 

( a ; ^ 1 ; ^ 1 ^ « ; flis 2121; J1 on ft1 to 31), 

in which <CI is a class containing a single element, 3JÎ1 is the 
class of real numbers, and J1 is the identity operation. 

UNTVERSITV OF SASKATCHEWAN 


