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(18) Ca = - ^ . 

£)(n-l)/2 

Now by a well known property of Jacobians,* 

(19) t^~-0. 

Hence, if in (19) the expressions on the right of (18) be sub­
stituted for Cu, we will have the differential equation satis­
fied by U(i) alone. I t is readily seen that the form of this 
equation is independent of the index (i) and hence the n 
functions 

U™, W2\ • • • , I/™ 

satisfy the same differential equation, which may be looked 
upon as a generalization of Laplace's equation to curved 
w-space. 

WESLEYAN UNIVERSITY 

T H E NON-EXISTENCE OF A CERTAIN T Y P E OF 
REGULAR POINT SETf 

BY R. L. WILDER 

In a paper not yet published,} I have shown that a regular§ 
connected point set which consists of more than one point 
and remains connected upon the omission of any connected 
subset, is a simple closed (Jordan) curve. As a simple closed 
curve is a bounded point set, it is clear that there does not 
exist any unbounded regular connected point set which 
remains connected upon the omission of any connected subset. 

* Muir, Theory of Determinants, vol. 2, p. 230. 
t Presented to the Society, December 29, 1926. 
t See, however, this Bulletin, vol. 32 (1926), p. 591, paper No. 35. 
§ That is, connected im kleinen. 
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In the present paper I propose to consider the following 
question: Does there exist any unbounded regular connected 
point set which remains connected upon the omission of any 
bounded connected subset? If the additional restriction that 
it be closed is imposed upon the point set, J. R. Kline has 
shown* that the answer to this question is negative. In 
his proof Kline is able to make use of known properties 
of continuous curves. For the general case of non-closed 
sets these properties are not available, but by establishing 
certain properties of connected and regular point sets it is 
possible, as shown below, to give a negative answer to the 
above question. 

DEFINITION. If M is a regular point set, a region of M 
is defined as follows: P being any point of ikf, and C a 
circle with center at P , then the set of all points of M which 
lie, with P , in a connected subset of M which lies within C 
is a region of M. I t is clear that the set of all points of M 
which lie in a certain neighborhood of P are in a region of M. 

DEFINITION. If A and B are two distinct points of a 
regular set M, a simple chain of regions of M from A to 
B is a finite sequence of regions of Af, Pi, P2, • • • , Rn, 
such that (1) Pi and P 2 contain A and B, respectively, 
(2) Ri (i^l, n) has points in common with P;_i and 2?»+i, 
but not with any other region of the sequence, (3) Pi and 
Rn have points in common with P 2 and Rn-u respectively, 
but not with any other region of the sequence. 

THEOREM 1. If A and B are any two distinct points of a 
regular connected point set M, then there exists a simple chain 
of regions of M from A to B. 

The proof of Theorem 1 is similar to the proof of Theorem 
10 of R. L. Moore's On the foundations of plane analysis 
situs.f 

* Closed connected sets which remain connected upon the removal of certain 
connected subsets, Fundamenta Mathematicae, vol. 5 (1924), pp, 3-10. 

f Transactions of this Society, vol. 17 (1916), pp. 131-164. 



I92J.] REGULAR POINT SETS 441 

THEOREM 2. If M is a regular point set, then any region 
of M is a regular point set. 

THEOREM 3. If M is a regular connected point set, bounded 
or unbounded, and A and B are any two distinct points of M, 
then both A and B lie in a bounded, regular, connected subset 
of M. 

Theorem 3 is a consequence of Theorems 1 and 2. 

THEOREM 4. Let C\ and C2 be two mutually exclusive 
point sets, and M a regular connected point set which has at 
least one point in common with each of the sets C\ and d, 
and such that the set of points common to M and Ci (i = 1, 2) 
is closed in M. Then there exists a point set K, subset of M, 
such that K is connected and bounded and contains no point 
of either C\ or C2, but such that G and Ci each contain at least 
one point of M which is a limit point of K. 

Theorem 4 is a generalization of the result contained in 
my paper A theorem on connected point sets which are con­
nected im kleinen* Its proof, after an application of Theorem 
3, is very similar to the proof of the result of the latter paper. 

THEOREM 5. If P is a point of a connected and regular 
point set M such that M — P is the sum of two mutually 
separated^ sets M\ and ikf2, then M±+P and M2+P are con­
nected and regular sets. 

PROOF. Let K be any circle with center at P . Since M 
is regular, there exists a circle T concentric with K, such that 
all points of M interior to T lie with P in a connected subset 
of M which lies wholly interior to K. Denote by k the set 
of all points of M that lie with P in a connected subset of 
M which lies wholly interior to K, and by / the set of all 
points of M that lie interior to T. Clearly t is a subset of k. 

* This Bulletin, vol. 32 (1926), pp. 338-340. 
f Two sets are said to be mutually separated if they are mutually 

exclusive and neither contains a limit point of the other. 
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By a theorem due to Knaster and Kuratowski,* Mi+P 
and M2+P are connected sets. Denote the set of points 
common to k and Mi ( i = l , 2) by k{. Neither of these sets 
is vacuous, since both Mi and Mi have points in common 
with t, and hence with k. Clearly k— P is the sum of the 
two mutually separated sets k\ and ki. That is, P is a cut-
point of k. 

I t follows by the theorem of Knaster and Kuratowski 
referred to above that ki+P and k2+P are connected sets. 
If x is any point of Mi interior to T, then x is a point of k 
and a fortiori of k\. Then there exists a connected subset 
of M\+P, namely k\+P, which contains both x and P 
and lies wholly within K. Tha t is, the set o fa l l points 
of Mi+P which lie interior to T lie, with P , in a connected 
subset of Mi+P which lies wholly interior to K. Hence 
Mi+P is regular at P. That it is regular at all other points 
is easily seen. Similarly, M2+P is regular. 

THEOREM 6. If M is a regular point set, R a region of M, 
and P a point of R, then if k is a maximal connected subset 
of R — P, k+P is a regular connected point set. 

PROOF. If R— (k+P) is vacuous, k+P is a regular con­
nected set by Theorem 2. If R— (k+P) is not vacuous, 
denote it by q. Then R — P is the sum of the two mutually 
separated sets k and q, and hence, by Theorem 5, k+P is 
connected and regular. 

DEFINITION. If M is a point set, and G and G are mutually 
exclusive point sets, and H is a connected subset of M 
which has no point in common with either G or G, but has 
limit points which are points of M in both G and G, then H, 
together with those points of M in G + G which are limit 
points of H, will be called a set K(CU C2)M.f If the set 

* B. Knaster and C. Kuratowski, Sur les ensembles connexes, Funda-
menta Mathematicae, vol. 2 (1921), pp. 206-255, Theorem 6. 

t I have made use of the sort of set defined here in other connections. 
See my paper A property which characterizes continuous curves, Proceedings 
of the National Academy, vol. 11 (1925), pp. 725-728. Also see this 
Bulletin, vol. 32 (1926), p. 218, paper 4. 
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H is identical with that maximal connected subset of 
M-MXC1 — MXC2 determined by H, then H together with 
those points of M in C1+C2 which are limit points of H, 
will be called a maximal set K(d,C2)M or, for the sake of 
brevity, a set K'(Clf C2)M. 

DEFINITION. If M is a regular point set, P a point of M 
and C a circle enclosing P , then a branch of M with respect to 
P and C is a set K'(P, C)M. 

THEOREM 7. There does not exist, in the plane, a regular, 
connected, unbounded point set which remains connected upon 
the omission of any bounded connected subset. 

PROOF. Suppose there does exist such a set. Denote 
it by M. 

1. If C is any circle, and P a point of M within C, say for 
convenience at the center of C, then I shall show that there 
exist infinitely many distinct branches of M with respect to 
P and C such that any two of these are, except for P , mutu­
ally separated. 

Let S be the region of M which is determined by P and C. 
Since M is regular, there exists a circle T with center at P 
such that all points of M interior to T lie in S. Denote 
the set of all points of M interior to T by Pi. 

The set S — P is not connected. For if it were, then 
M—(S — P) would, by hypothesis, be connected, which 
is impossible since this set contains no point of Pi except P . 
Then S — P is the sum of two mutually separated sets Si and 
6*2. The sets S i + P and S2+P are connected, and by 
Theorems 2 and 5 are regular. If x is a point of Si, then by 
Theorem 4 the set S i + P contains a set K(P, x) ( S i + P ) . 
Denote this set by k\. The set M—P being unbounded, 
connected (by hypothesis) and regular, contains a set 
K(x, C) (M—P). Call this set &2. Denote that portion 
of k2 which is not on C by k{. The set kl is connected and, 
since it contains x, is a subset of Si. Denote the set &1+&2 
by *. Then k is a set K(P, C)M. If to the set ki+k2 be 
added all those points of that maximal connected subset 
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oî S — P determined by oc j as well as the limit points of these 
points which are in M and on C, the resulting set is a set 
K'(P, C)M, which will be denoted by Kx. Denote the set 
of points Kx-P- KiXC by Hi. Then Hi is a connected 
subset of Si. 

In a similar way it can be shown that there exists a 
set H2 which is a subset of S2, and which, together with 
P and its limit points on C that belong to M, forms a set 
K'(P, C)M which will be denoted by K2. The sets Ht 

and H2 are mutually separated. 
(a) If Ki — P and K2 — P are not mutually separated, 

their sum forms a connected set N. 
(b) If K1 — P and K2 — P are mutually separated, let the 

set of all points of Ki {i — 1, 2) which lie between and on the 
circles C and T be denoted by Bi. The sets Bi and B2 are 
closed in M— P and mutually exclusive. Hence, by Theorem 
4, there exists a set K(Bi, B2) {M — P) which is bounded. 
Denote this set by Nx. Then (K1-P) + (K2-P)+N1 is a 
bounded connected subset oî M—P which will be denoted 
by N. 

In either case (a) or (b), then, there exists a circle G 
concentric with C, whose radius is greater than the radius 
of C, and which encloses a connected subset, N, of M—P, 
which contains Ki — P and K2 — P. If g is the region of M 
determined by P and G, then g — P is the sum of two mutu­
ally separated sets gi and g2l and gi+P and g2+P are con­
nected and regular. As N+P is connected and lies within G, 
it is clear that it is a subset of g. Hence N is a subset of 
gi+g2 and being connected is a subset of one of the sets 
gu g2, say gi. As above, we can show that M contains a 
set kz which is a branch of M with respect to P and G, and 
which, except for P and its points on G, is a maximal con­
nected subset of g2. If hz denotes that portion of kz which is 
not on G, then the set hz+P is regular, by Theorem 6, 
and hence contains a set K'(P, C)M which will be denoted 
by Kz. I t is clear that the sets K2 and Kz are, except for P , 
mutually separated. Denote the set Kz — P — KzXC by Hs. 



1927-1 REGULAR POINT SETS 445 

By means of Theorem 4, it can be shown that there exists 
a circle Gx of radius greater than the radius of G, such that 
the sets Ki — P ( i = l , 2, 3) all lie in a connected subset, F, 
of M, which lies within Gi. If q is the region of M determined 
by P and Gi, then q — P is the sum of two mutually separated 
sets, qi and q2l one of which, say gi, contains F. Then a 
subset i£4 of q2+P may be found which is a set K'(P> C)M. 

Continuing as indicated above, the existence of an in­
finite sequence of sets K2, Kz, K4, • • • , such that for every 
positive integer n> 1, Kn is a set K'(P, C)M, and such that 
any two of these sets are, except for P , mutually separated, 
is established. 

2. Consider in particular the sets K2, K3, i£4, and K$. 
For each i, (i = 2, 3, 4, 5), let Ai be a point of Kt on C. 
Two of these points must separate the other two on C; 
say A2 and A3 separate ^44 and i 6 on C. As M—(^4+^5) 
is connected, by hypothesis, and regular since K4+K5 is 
closed in AT, it follows that there exists, by Theorem 4, 
a bounded set K(À2l Az) (M — K^ — K^) which, together with 
the set of points K2+K3 — P , is a bounded connected subset 
V of M — P. There exists a circle E concentric with C, 
which encloses V and contains no limit points of it. 

Just as the existence of branches of M with respect to 
P and C were established, it can be shown that there exists 
an infinite set Ki(Aj), (i = 1, 2, 3, • • • , j = 4, 5), of branches 
of M with respect to A3- and E. From the definition of a 
branch of M, it is clear that the connected set V+K^+Ks 
must lie wholly in one branch of M with respect to A± and E> 
say in i^i(^44), and in one branch of M with respect to A$ 
and P , say KI(AB). 

As the set V contains no limit points of the set of points 
K4:+Kb+K2(A4)+K2(Ab)1 every point of it is the center 
of a circle which neither encloses any point of the latter 
set nor of E, nor has any point in common with either. The 
sum of the interiors of all such circles is a connected domain 
and this domain contains an arc h from A2 to A3. Clearly 
t\ and ^ 4 + ^ 5 + ^ 2 ( ^ 4 ) +K2(A5) are mutually separated. 
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The points sets K2+K3 and K2(A4)+K2(A5) are mutu­
ally separated. Denote by U the set of points consisting of 
K2(A4)+K2(A5) together with its limit points. Then 
K2+Kz and U are mutually exclusive. Let C(A2) and 
C(A3) be circles with centers at A2 and Az, respectively, 
and enclosing no point of U. If a* (i = 2, 3) is a point of Hi 
lying within C(A{), there exists an arc bi joining Ai and a» 
which lies entirely within C(Ai), and except for Ai lies 
wholly within C. As H2+Hz+P is a connected subset of 
C containing a2 and a3 but no point of U, there exists, 
by Theorem H of my paper On a certain type of connected 
set which cuts the plane,* an arc b\ which joins a2 and a%, 
contains no point of Z7, and lies wholly within C. Clearly 
the continuous curve consisting of the arcs bu b2, and bz 

contains an arc t2 which joins A2 and Az, lies except for 
these points entirely within C, and contains no point of U. 
Similarly, since K4-\-K$ and t\ are mutually separated, 
there exists an arc tz joining A4 and A5, lying except for 
these points entirely within C, and having no point in 
common with t\. 

By the corollary to Theorem D of the paper referred to 
in the preceding paragraph,! there exists a simple closed 
curve J which is a subset of h+t2 and separates the plane 
between A4 and A5. However, J has no points in common 
with either ir2(^44), K2(A5) or E, and yet the sum of these 
three sets is a connected set containing A4 and A&. Thus 
a contradiction is established and the theorem is proved. 

THE UNIVERSITY OF MICHIGAN 

* To appear in the Proceedings of the International Mathematical 
Congress at Toronto. Theorem H of this paper is the following: Let G 
be a bounded domain, K any closed set of points and N a connected subset 
of G which contains no points of K. Then every pair of distinct points of 
K are the end-points of an arc which lies in G and contains no points of K. 

t The corollary referred to here is the following: If A and B separate 
C and D o n a simple closed curve K, AB and CD are arcs joining A,B and 
C,D, respectively, and lying, except for their end-points, interior to K, 
and / is an arc from A to B that contains no points of CD, then there exists 
a simple closed curve J which is a subset of A B-\-t, such that C is interior 
to / and D exterior to / , or vice versa. 


