
1926.] FINITE OPERATIONS AND RELATIONS 5 3 3 

Various modifications of Theorem III may easily be 
secured. For example, in case we make the additional 
assumptions that the function f(x, y) is bounded and is 
measurable in y for each xy then the set (S may be replaced 
by the interval (a, b). These additional assumptions are 
fulfilled in particular if ƒ is bounded and Borel measurable 
on the square where it is defined. In this case the function 
g(x, x) is Borel measurable on (a, b). As another modifica­
tion we may substitute for the square a^x^b, a^y^b, a 
bounded measurable set @0@o, consisting of those points 
of the plane having x and y each in a linear measurable 
set So. Then the integral is understood to be taken over 
those points of the interval {a, x) contained in @o. 
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A GENERAL THEORY OF REPRESENTATION OF 
F I N I T E OPERATIONS AND RELATIONS* 

BY B. A. BERNSTEIN 

Let a mod n denote the least positive residue modulo n 
of an integer a, i. e., the least positive integer obtained 
from a by rejecting multiples of n. Consider the polynomials 
modulo a prime p 

(1) a0 + ai x + • • • + aP-itf
p~"1, mod p, 

(2) fo(x) +fi(x)y + • • • +fp-i(x)y»~\ mod p9 

where in (1) a» are least positive ^-residues and x ranges 
over the complete system of least positive ^-residues, and 
where (2) is a polynomial modulo p in y whose coefficients 
fi(x) are modular polynomials in x of form (1). In a previous 
paperf I developed a theory of representation of abstract 

* Presented to the Society, San Francisco Section, October 25, 1924. 
t PROCEEDINGS OF THE INTERNATIONAL MATHEMATICAL CONGRESS, 

TORONTO, 1924. 



534 B. A. BERNSTEIN [Sept.-Oct., 

binary operations and dyadic relations in a finite class of 
elements, in which theory the polynomials (2) entered 
fundamentally. I now wish to note the fact that this theory 
can be extended to finite operations and relations in general. 

An ra-ary operation 0 in a class K is a rule which deter­
mines for every ordered set of m if-elements xi, x2, • • • , xm 

what if-element 0 (xi, x2, • • • , xm), if any, corresponds to 
the set. If K is finite, such a rule may always be given by 
an m-dimensional operation table or, when m > l , by 
n tables each of m — \ dimensions. An w-adic relation 
R in K is a rule which states for every ordered set of m 
if-elements xu x2, • • • , xm whether or not these ele­
ments should be associated together in a proposition 
R (#i, x2, • • • , xm)* When K is finite, such a rule may 
always be given by an m-dimensional relation table or by 
n tables each of m— 1 dimensions ( w > l ) , in which the 
fact that R(xi, x2,

 é • • , xm) holds may be indicated by 
" + " and that it does not hold by " - " . * The function 
fundamental in the representation of finite ra-ary operations 
and m-adic relations in general is the modular polynomial 
ƒ (xu x2, - - - , xm) of the form 

(3) /o + / i oom + • • • + fP-iXp
m~ , mod p , 

where p is prime and the coefficients ƒ»• are polynomials 
modulo p in the m — 1 arguments xi, x2, • • • , xm-i. Noting 
that when the iT-elements are n in number they may be 
labeled 0 , l , - - - , n — l , we may state the general theory 
by the propositions A, B, C following. 

PROPOSITION A. Given an arbitrary set of least positive 
w-residues 

(4) £o, ex, - - - } en-\ ; 

if and only if n is prime, a function/(x) of form (1) can always 
be obtained such that 

(5) /(O) - e*, / ( l ) = * i , • • • , / ( » - l ) - «„-i, 

namely (1) in which (modulo n) 

* This " ± " notation has been used by II, M. Shcffer. 
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PROPOSITION B. Given any m-dimensional operation 

table for the i£-elements 0, 1, • • • , w — 1 ; a function 
equivalent to this table may be found having the form 

(7) f+0/<p, 
where ƒ and <p are modular polynomials of form (3), with 
the x's ranging over the i£-elements. 

PROPOSITION C. Given any m-dimensional relation table 
for the -/^-elements 0, 1, • • • , n — 1 ; an equation equiva­
lent to this table may be found having the form 

(8) ƒ = 0, 

where ƒ is a modular polynomial of form (3), with the x's 
ranging over the üT-elements. 

For the proof of Proposition A the reader is referred to 
the paper cited above. 

The second term of (7) is designed to care for operations 
that do not satisfy the conditions of closure. To see the 
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truth of Proposition B, consider several cases, (i) If n 
is prime and the given operation satisfies the condition 
of closure, function (7) is the polynomial of form (3) ob­
tained from the given table by repeated application of 
Proposition A. (ii) If n is prime and the given operation 
does not satisfy the closure condition, consider the table 
got from the given table by assigning iT-elements to the 
sequences xi, x2, • • • , xm, to which no if-element cor­
responds; consider also the table got from the given table 
by assigning 0 to each sequence to which no i£-element 
corresponds and a i£-element not 0 to any other sequence. 
The polynomials (3) equivalent to the derived tables will 
be respectively the ƒ and <p of (7). (iii) If n is composite, 
consider any operation table for a prime number p(>n) 
of elements which will give the original table when the x's 
range over the n elements of K\ the function equivalent 
to this table, with the x's ranging over the iT-elements, 
will be the required function (7). 

To see that Proposition C is true, consider any operation 
table got from the given relation table by changing each 
" + " to 0 and each " — " to some i£-element not 0; the 
function equivalent to this operation table will be the ƒ 
of (8). 

Our theory of representation shows that any finite 
mathematical system, quantitative or non-quantitative, 
can be represented arithmetically (and geometrically). The 
theory also makes clear the nature of operations and rela­
tions, and it brings out the fact that an ra-ary operation 
is the same as an (m + l)-adic relation, and m-adic rela­
tion the same as one or more (m--l)-ary operations ( r a> l ) . * 
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* For other applications and for various illustrations, see the above 
cited paper. See also this BULLETIN, vol. 30 (1924), p. 24, and AMERICAN 
JOURNAL, vol. 46 (1924), p. 110. 


