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AN APPROXIMATION TO THE LEAST ROOT OF A 
CUBIC EQUATION WITH APPLICATION TO 

THE DETERMINATION OF UNITS 
IN PURE CUBIC FIELDS 

BY T. A. PIERCE 

1. Approximation to the Least Root of a Cubic. Bernoulli's 
method of approximating the largest root of an equation 

(1) xs = ax2+bx+c, 

with real coefficients, is to use (1) as a scale of relation for 
the recursion formula An — dAn-i+bAn-i+cAn-z- Succes­
sive A9 s are calculated starting from any initial values. 
Then An+i/An for increasing values of n approximates that 
root of (1) which has the greatest absolute value if that root 
is real. The method here given for approximating the least 
root of (1) is similar to Bernoulli's. We use three recursion 
formulas 

{ An— aAn-.i + bAn-2 + cAn-3 , 

Bn = aBn-i+bBn„2+cBn-z , 

Cn— aCn-l~\~bCn-2~{-cCn-Z y 

and calculate the successive ^4's, B's, and C's starting from 
the three sets of initial values 

/ ( i l . , , ^ _ i , ^ o ) = (0,0,1) , 

(3) < ( £_« ,B- i ,£o )« (0 ,1 ,0 ) , 
V (C_2,C_i,Co) = ( l ,0 ,0 ) . 

Then the quotient 
I An v n I 

, .* 1 An+1 Cn+1 1 

TÂn Bn I ' 
I An+1 Bn+1 I 
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for increasing values of n, approximates the root of (1) of 
least absolute value if that root is real. 

The recursion formulas (2) are linear difference equations 
and have the solutions 

/ An
s=aiXi-\-a2%2-\-az%'ó , 

(5) < Bn-plXl + Ptxl + Psxi , 

^ Cn= yixi+y2x
n
2+yzxl , 

where X\j x2) Xz are the roots of (1), and where aiy /3t-, 7» are 
determined by (5) using the initial values (3). These latter 
are readily found to be 

ai^x^Xi — x^/D y a2-x2(x3 — x1)/D , 

(6) <; Pi^xlixl-xîî/D , fc = xl(x\-xz)/D , 

7l = = X^X^X^XX^"^ ™%) I -Uf 7 2 = = 2̂*̂ 1̂ 3\*̂ 3"~*" ^ 1 / / U ) 

az = x3(x1 — x2)/D j 

&z-xl(x2 — xx)/D , 

73 = ^3^1^2(^1 — ^ 2 ) ^ , 

D—{oc% — Xi)(xz — Xi)(xz — X2) . 
where 

In the quotient (4) substitute from (5) and simplify. The 
numerator becomes 

<2i72#i#2(#2 ~" # 0+ai73^i^(x3 — Xi) +a27i#2#i(# i ~ X2) 

+«273^2^(^3~ #2) + a37i#3#i(#i — #3) + «372^3^2(^2~ Xz) , 

and the denominator is the same expression with 7< re­
placed by j3». 

If now the roots of (1) are such that | x i | < | x 2 | a n d also 
\xi\ <\xz\ then 

lim 
Xi 

X2 
= 0 , and lim 

Xi 

Xz 
= 0 . 

Hence if the numerator and the denominator of (4) be 
divided by x"x$ the limit as n becomes infinite is 



1926.] LEAST ROOT OF A CUBIC 265 

(«273 — «372) 

(«203--«302) 

but this reduces to X\ on substituting from (6). Thus our 
method is justified. 

The recursion formulas (2) may be thrown into a more 
useful form. From (5) and (6), we find 

= Xl#2#3 = C . 
A.n 

In a similar way the second of the following formulas is 
proved : 

( An+i = aAn+bAn-i+cAn-.2 , 

(7) < Bn+i = bAn+cAn-i , 

These may be written in the form 

(8) j Bn+1 = bAn+Cn , 

2. Application to Units in Pure Cubic Fields, In pure cubic 
fields defined by the real root of xz — R = Q, when R contains 
no square factor and when the field is one of the first species, 
i.e., R^ ±1 (mod 9),* a basis consists of the numbers 1, 
Vi?> V-R2. All algebraic integers of the field are of the 
form 

X+YZ/R + ZVK 

where X, 7, Z are rational integers. The units of the field 
have their norms equal to ± 1 . Hence in order to find the 
units we must solve the Diophantine cubic 

(9) X*+RY*+R2ZZ-3RXYZ= ±1. 

* Dedekind, Über die Anzahl der Idealklassen in reinen kubischen 
Körpem, JOURNAL FÜR MATHEMATIK, 1900, p. 40; Sommer, Vorlesungen 
über Zahlentheorie, p. 261. 
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We shall obtain solutions of this equation when R is of 
certain numerical forms and in special cases obtain the 
fundamental unit of the corresponding field. 

The identity 

**-n M>n On 

An+l Bn+1 Cn+1 

An+2 Bn+2 Cn+2 

An-l Bn-1 Cn-1 

•"•n -Bn ^ n 

An+i Bn+i Cn+l 

is easily proved by substituting from (2) the values of 
An+2, Bn+2, Cn+2 in the left member. Hence by induction 
and from the initial values (3) we find that 

•A-n Jjn ^ n 

An+1 Bn+l Cn+l U - ^ + 2 

An+2 Bn+2 Cn-\-2 

By (7), this becomes 

•"n+1 ^n—1 A . n | ==: Cn 

An+2 An An+1 

Expanding and substituting 

An+2=saAn+i+bAn+cAn„i , 

An+i—aAn—M„-i 
^4n-2 = -

we obtain 

(10) 

An+i+(ab+c)An+âA„-i— (3c—ab)An+iAnAn-i 

2 2 2 

-2aAn+iAn-bAn+iAn„i+(a2-b)An+iAn 
2 2 2 

[ + (ac+b2)AnAn-i+2bcAnAn-1+acAn-iAn+i = cn+1 

In the equation xz = R, set x = y+a. The transformed 
equation is 

/y3= — 3ay2—3a2y+R—a3 . 

Using this as equation (1) for calculating the ,4's, B's, C's, 
we have 

a=—3<*, i = — 3 a 2 , c = R—az . 
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With these values of a, &, c (10) may be written in the form 

[An+l+2aAn+a2An^+R[An+aAn^if+R2Al^i 

- 3 J R [ i f t + i + 2 a i n + a ^ „ . i ] [ i n + a 4 n - i ] 4 « - i = ^ 1 , 

Hence the cubic (9) has the solution 

f X=(An+1+2aAn+aUn^)/c^^ , 

(11) Y=(An+aA^!)/cW , 

| Z = ,4n_iA (n+1) /3 • 

This solution is integral in the three following cases. 
First, let R be of the form mHs ± m. Taking a = ml, we find 

from (8) and (3) 

Ax=-Zml , A2 = 6tn2l2 , Az=-9mHz±m ; 

therefore for n = 2 we have from (11) 

(12) X = l , Y=±3ml2, Z - T 3 J . 

Second, let R be of the form Z3±l. Taking a = /, we 
obtain, for n = 1, the solution 

(13) X=±P, F = + 2 Z , Z = ± l . 

Third, let R be of the form / 3 ± 3 . With a = Z, we obtain, 
for w ~ 2 , 

(14) X = l , F = ± / 2 , Z = + Z . 

If jR = Z3 + l, the unit given by (13), namely, 

r} = P-2l^R'+VR\ 

is the square of the unit e = \ZR—I. The unit t for fields of 
the first species,* that is i ? + ± l (mod 9), and therefore 
Z + 0 (mod 3), is the fundamental unit, all other units being 
expressible as powers of e. When the field is of the second 
species, and Z = 0 (mod 3), then e is either the fundamental 
unit or the square of the fundamental unit and the latter 
alternative can occur in only a finite number of fields. 

* Nagell, Solution complète de quelques équations à deux indéterminées; 
JOURNAL DE MATHÉMATIQUES, 1925, p. 211. 
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This follows immediately from a theorem of Delaunay as 
perfected by Nagell* since e = \/R—I is of the form x+\/Ry 
where x and y are solutions of xz+Ry* = l. In our case 
# = — /, 3> = 1, R — P + l. Note that 0 < e < 1. Corresponding 
results hold when R = l3 — 1; then e = l— \ / i ? . 

When R — mHz+m, the unit given by (12), namely, 

3 / — 3,— ( v ^ — m l ) z
 / 3 / 3,—v 

m 

furnishes a solution of the equation 

tn2x?+(tnHs+l)y*=l , 

viz., x = — Z, 3̂  = 1. I t is easily seen that 0 < r y < 1 . Thusf 
rj — ek where & = 2W with n = 0> 1, 2, • • • , and e is the funda­
mental unit in the field k(0), 0 = Vtn2b2d, where m2lz + l =bd2. 
When m2/3 + l contains no square as a factor, that is, when 
d = l, then k(0)=k(%/R2) is the same field as k (VÏÏ). 

Moreover if m is even and m2P + l is divisible by a number 
of the form Sn—1 or 8w + 5, then 77 is the fundamental unit 
of the ring J (1,0, \/R). The ring reduces to the field k($/R) 
when m2P + l contains no square factor and rj becomes the 
fundamental unit of the field. Corresponding results hold 
when R = mH3 — m ; then 

3/— 3/— (ml-f/R)1 

V=l-3mPVR + 31VR2=- — . 
m 

THE UNIVERSITY OF NEBRASKA 

* Nagell, loc. cit., p. 234. 
t Nagell, loc. cit., p. 249. 
% Nagell, loc. cit. pp. 252-258. 


