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THE FREQUENCY LAW OF A FUNCTION OF 
ONE VARIABLE* 

BY E. L. DODD 

1. Introduction. If the probalility that a variable X will 
take on a value not greater than x is 

nx 
O {a) = I <p(x)dx, 

€./ — 00 

then <D(x) is the cumulative frequency law, "Verteilung", 
for X\ whereas the frequency law is <P'(#), which is equal 
to çp(x) at a point of continuity of <?(#). Two closely related 
problems will be treated in this paper: 
(1) Given the frequency law <p(x) for a variable X, to find 
the frequency law tp(y) for a function Y of X; 
(2) Given <p(x) and ty(y\ to find F. 

Under (1), where F = /(X) is given as a continuous in­
creasing function, no special difficulty arises, t When, how­
ever, f{X) has an infinitely multiple-valued inverse g(Y), 
the expression naturally assignable to ip(y) will not be 
valid without restriction. 

Two real functions <p(x) and f(x) will be introduced 
defined for all real values of x. In case a given g>(#) or 
f{x) is undefined outside a finite interval, the value zero 
may be assigned to it outside this interval. 

As the foregoing problems belong essentially to general 
analysis, the two theorems to be stated will avoid the 
language of probability. 

* Presented to the Society, December 30, 1924. 
t Mayr, Wahrscheinlichkeitsfunktionen una ihre Anwendungen, Mo-

NATSHEFTE FUR MATHEMATIK XJND PHYSIK, vol. 30 (1920), pp. 17-43. 

Eietz, Frequency distributions obtained by certain transformations 
of normally distributed variâtes, ANNALS OF MATHEMATICS, (2), vol. 23 
(1922), pp. 292-300. 
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2. The Determination of the Frequency Latv for a Function. 
THEOREM I. Let 

(1) z = <p(x) 

be a single-valued real function of x, integrable over the real 
continuum. Let 
(2) y = fix) 

be a continuous single-valued real function, defined for all 
real values of x, with an inverse function, 

(3) x = g(y), 

in general multiple-valued. In a formal manner, set 

(4) ip{y) =2v[giy)] \ff'(y)\, 
where a term is to appear in the sum for each x corre­
sponding to the given y, and ivhere ipiy) = O if there is 
no such x\ and set 

(5) W{r\) = I cP(x)dx, 

this definite integral to be taken over those portions of the 
x-axis for which f{x)<rj, and to be zero if fix) *> y iden­
tically. Given a real number rj for which f(x) — r\ has at 
least one zero, suppose that y\g{rj)] is continuous f or each 
corresponding x. Postulate, further, either Condition A or 
Condition B, below. Then we shall have 

(6) WW = VW. 
CONDITION A. fix)—r\ vanishes for but a finite number 

of values xi of x\ and each ƒ ' te ) exists and is not zero. 
CONDITION B. (1) There is a constant M such that for 

small enough Ay 
(7) W(v+0Ari)\<M, | 0 | ^ 1 . 

(2) The lengths of intervals between consecutive zeros of 
fix)—r\ have a positive lower bound b. 
(3) yix) has but a finite number of discontinuities. 
(4) When \x\ is sufficiently large, fix) does not change 
sign, and \<pix)\ does not increase with \x\. 
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PROOF. Under Condition A and also under Condition B, 
because of 2°, the intersections xi of y = f(x) with y = rç 
are isolated. The curve—see 1°—cuts y = % and is not 
merely tangent to it. We may suppose, then, that for xi 
with even subscripts, g'irf^O, and for odd subscripts #'0?)2^0. 
With i even, take v% so that Xi<Vi<.Xi±i9—this becomes 
simply Xi<vi in case xi is the greatest abscissa of inter­
section. Set 

(8) m (p(x)dxi iH-i-i = I (/>(x)dx. 

Then from (5), using all values of i involved, odd and even, 

(9) win) = 2m. 

But, since y (a?) is continuous at x^ 

, dm (10) ui = — = <p(xi) 
dxi 

dr\ 

Under Condition A, then, (6) follows from (3), (4), (9), and (10). 
Now, under Condition B, we may take r\A so small that, on 

account of 1°, 3°, y(x) is continuous when r\—Ay^y^y + Ay. 
In (8) and (9) we may now think of rj as replaced by any 
y in (rj—A% V~\- Ay) to form terms tu with derivatives ul 
Suppose that 4° is applicable for x^xn—&. Then, by (7), 
(10), and 2°, 

(11) J £ | ui | < M2 19P(a*) I <~r~ y(x)dx 
n n 0 | <Jxn—b 

And, since a similar inequality can be set up for terms 
with i<,—n, and <p(x) is integrable, ]£ui converges; and 
also ^m converges. Thus (6) is also valid under Con­
dition B, by virtue of a theorem* of function theory. 

* Dini, Grundlagen für eine Theorie der Funcüonen einer ver-
anderlichen reellen Grosse, Leipzig, 1892, p. 154. 

Porter, On the differentiation of an infinite series term by term, 
ANNALS OF MATHEMATICS, (2), vol. 3 (1901), pp. 19-20. 
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If (6) fails for not more than a finite number of values of r\ 

(12) W(tj) = J £ > ^ ^ I ^lj) I dy ; 

J~ 00 
and, indeed, less restrictive conditions may be given. 

To show that the conditions of the theorem are not 
altogether superfluous, let us form a block diagram, and 
then round off slightly the corners to make it the graph 
of a single-valued function,— a graph very roughly re­
presenting the wave curve of damped vibration. Suppose, 
then, that rectangles of unit base are placed alternately 
above and below the X-axis, resting upon this axis, and 
each with a vertex upon x2y2 = 1, except near the origin. 
And suppose that cp{x) = \x\~m except near the origin. 
Then tf;/(0) = -foo; but tp{0) = 0, since at each inter­
section, c/(0) = 0. The "curve" just described may be 
modified so as to oscillate about an infinity of lines parallel 
to the X-axis; and thus for an unlimited number of values 
in a finite interval W'iy) 4= ty(y\ 

The application of the theorem to probability is obvious. 
The *P(rj) and ^//(^) in (5) and (6) are respectively the 
cumulative frequency law and the frequency law or "frequency 
density" at rj for the function Y=f(X), when Xis subject 
to (pipe). E. g., if T= cosX, and cp(x) == \l2e~~^x^ 

(13) v(y) = - i _ e - 2 * YT^; 

x0 = arc cos y, 0<,x0<c™, W\ = arc cos y, TI<X1<,2TT, 

for | y | < l ; and ip(y) — 0 for \y\>l. 

3. The Determination of a Function connecting two Fre­
quency Laws. 

THEOREM II. For a<Lx<b, u^y^Lfi, where a, &, a, fi, 
are constants, finite or infinite, let y(x) and ip(y) be positive 
except possibly for isolated values of x or y; and let these 
functions have finite integrals. Set 

(14) <*>(£) = g>(x)dxi v(y) = V(y)dy> 
tja J a 
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Suppose that f or some c<^b, 

(15) W{fi) = 0(c). 

Then there exists a single-valued continuous increasing function, 

(16) Y = F{X), 

defined in the interval {a, c) such that for ang § in (a, c), 

(17) W(ff) = </>(?); n = TO-

PROOF. Set 

(18) ^ = W(rj). 

Then w is a continuous increasing function of rj in (a, fi). 
Hence 
(19) f] = ^ ~ V ) 

is a continuous increasing function of it in [^(a), lP(0)], 
that is, by (15), in [<P(a), <*>(c)]. Hence 

(20) *? = ^_1[<P(?)] = F(£) 

is a continuous increasing function of £ in (a, c). 
This theorem suggests that although a cause X may be 

subject to some generally recognized frequency law y(x), 
its effect Y may be subject to almost any imaginable law 
'*p(y), in the absence of rather definite knowledge of the 
functional relation between X and Y. In this connection, 
not only would F(X) be available, as a possible expression 
of this unknown relation, but an infinite number of func­
tions f(X) to which Theorem I applies. 

4. Conclusion. If the conditions of both theorems are 
satisfied everywhere, then there exists one and only one 
continuous increasing function F(X) whose frequency law 
is identical with that of f{X),—the cumulative law *P(tj), 
indeed, being the same for F(X) and for f{X) if only a 
finite number of points need to be excepted. Thus F(X) may 
be looked upon as the chief representative of a whole class 
of functions f(X) associated with each other through cp(x). 
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