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]£<$ — 4^Jsin2-^ = 2<2'(1—cosc^) = 2 (m—mn), 

and rx has the value 

But this reckoning does not seem to lead to any particularly 
simple geometric interpretation for r. It may turn out, in 
some circumstances at least, that rt is the more significant 
measure after all. 

T H E U N I V E R S I T Y OF MINNESOTA 

METHODS FOR FINDING 
FACTORS OF LARGE INTEGERS* 

BY H. S. VANDIVER 

1. Introduction. We shall examine, in this paper, the 
problem of finding factors of integers beyond the range of 
Lehmer's factor tables, by methods shorter than that of 
dividing the integer by all the primes less than its square root. 

Three methods will be proposed here. The first two 
depend on the representation of the integer as a definite 
quadratic form, and the third on the representation as an 
indefinite quadratic form. As I hope to devote another paper 
to the development of the last two methods, only outlines 
and a few examples will be given in connection with them. 

The theory of quadratic forms has been applied in several 
different ways to the problem, t 

In particular, Seelhoff * gave an expeditious method with 
the use of tables, which, however, is limited in application, 

* Presented to the Society, September 7, 1923, under the title 
A method of finding factors of integers of the form 8 n + 1 . The 
author was enabled to carry out this investigation through a grant 
from the Heckscher Foundation for the Advancement of Eesearch. 

f Dickson, History of the Theory of Numbers, vol. 1, pp. 361-66. 
% AMERICAN JOURNAL, vol. 7, p. 264; vol. 8, p, 26. 
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since if the integer is composite, it does not always enable 
us to determine the factors. 

The first method explained in the present paper applies 
only to integers of the form 8 w + 1 and 1 2 ^ + 1 which are 
the product of two distinct primes. Although the process 
will always yield the factors in a finite number of steps, 
it is impracticable on account of its length if the integer 
is as large as 107. Unlike other methods, however, the parti-
cular forms used are always the same. Hence they lend 
themselves conveniently to the construction of tables with 
a view of lessening the amount of computation involved. The 
theory of indefinite forms has been applied by Tchebycheff * 
to our problem, but the method is quite different from the 
one given here which involves indefinite forms. 

2. First Method of Factorization. Suppose that we have 
an integer m of the form 8 n + 1 which is the product of 
two distinct prime factors. It is immediately seen that each 
factor has the same residue modulo 8, otherwise the pro­
duct would not be of the form 8n + l. If both are of the 
form 8n + l or both of the form 8w + 5 then m maybe 
presented in more than one way in the form x2 + y2, x and y 
prime to each other. Similarly if both are of the form 
8w + 3 then m may be represented in more than one way 
in the form x2Jr 2y2, x and y prime to each other. In the 
case where both are of the form 8n + 7 it will now be 
shown that m may be represented in at least two different 
ways in the form 2x2—y2, where x and y are each <Vm 
and prime to each other. 

In a paper which appeared in this BULLETIN (vol. 22 (1915), 
pp. 61-66) I proved that if p is a prime and a is a positive 
integer prime to p, then there is at least one and not more 
than two sets (x, y) such that 

ay = ± # (modjp) 

when x and y _are positive integers prime to each other 
and Q<x<cVp, 0<y<]fp. 

* LIOUVILLE, (1), vol. 16, p. 257. 
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On page 64 of the same article, I remarked that the 
existence of at least one set (x, y) satisfying the conditions 

(1) ay = Azx (modm) 

where m is composite followed also from the reasoning used. 
If two sets (xx yt) and (x2y2) are regarded as the same if 
and only if xxy2 = x2yx then for m any integer there are 
not more than two sets, a fact which was pointed out to 
me by Dr. C. F. Gummer. 
If 

J kxi = 2/1 (modm), 
1 kx2 = y% (modm), 

where |#i|, \yx\, \x2\ and \y2\ are each < Vp, then from the 
first congruence 

kxxx2 = x2yx (modm); 

and from the second 

y2x±—x2y± = 0 (modm). 

This gives, on account of the range of values for the x's 
and ?/'s, 

y2Xi—x2yi = ± m or y2xx—x2yt = 0, 

and the last relation can exist only if we regard the sets 
(x±, yx) and (a*, y%) as the same. If the first relation holds 
and therefore the two sets exist, then a third set different 
from them cannot exist. To show this we note in (2) that 
we may take both xx and x2 positive, and if this is done 
then it follows, using the relation y2xx—x2yx = ± m , that 
yt and y2 have opposite signs. Hence we may write 

kxx = yx (modm), 
kxs = 2/3 (modm), 

where xx and xs are positive and yx and yB have the same 
sign. It follows as before that 

ysXt—xsyi^-- ± m , 

and this is impossible since the expression on the left is, 
in absolute value, less than m. 
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Now consider the solution of 
(3) u2—2 = 0 (modm), 
where m is the product of two distinct prime factors each 
of the form 8n-{-7. There are four incongruent roots of 
the congruence which we will designate by a, —a, b, —b, 
where a =|E ±_ b. According to the theorem first proved 
we may write 

av = w (modm), 
iwi = wi (modm), 

where | v |, | w |, | v± |, | iv± | are each less than Y m. Squaring 
and using (3) we have 

( , J 2v2—iv2 = 0 (modm), 

1 2v2—wl = 0 (modm), 
or, 

2v ivi = 2 i w (modm), 
and since m is odd, 
(5) (VW-L—viw)(vwi~\-viiv) = 0 (modm). 
Also from (4) we have 

(6) \2/r^rm' 
[ zvi—wi = m. 

We shall now show that in (5) one of the factors on the 
left is divisible by a factor of m but not by m. For if 

w0i + #iw = O (modm), 
then, since v, w, vi9 wx are all prime to m, we have, from 
(4), since m is not divisible by a square, 

— = (modm), 
W Wi 

or 
a = —b (modm), 

contrary to hypothesis; and if 
vwi—ViW = 0 (modm), 

then 

a = b (modm), 

which is also contrary to hypothesis. 
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Consequently, by taking the smallest positive factor 
in (5), and finding the greatest common divisor of it and m, 
we obtain a factor of m. 

THEOREM. If a number m of the form 8^ + 1 is the 
product of tivo distinct primes then it is expressible in at 
least two different ways by one of the forms x2-\-y2, x2-\-2y2, 
and 2y2—x2, where x and y are each positive and < K m . 
It is also possible to find tivo such representations which 
yield, by a direct process, a factor of m. 

This theorem gives the following scheme for finding 
a factor of an integer of the form 8n-\-l. 

(1.) Divide the integer by all primes less than its cube 
root. If it is divisible by a prime within this limit which 
is not of the form 8 w + l , the process cannot be carried 
further. Otherwise wTe may proceed as follows. 

(2.) Extract the square root of the possibly new number m. 
If it is a perfect square, all the factors of m are known, 
as it cannot have more than two distinct prime factors 
other than unity. If m is not a perfect square we proceed 
to the third step. 

(3.) Find by Gauss' method of exclusion all representations 
of m in the form x2 + y2. If there is but one representation, 
then m is prime. If there is more than one, then the factors 
of m may be found from the several representations. If there 
are no representations then proceed to the next step. 

(4.) Find by the method of exclusion all the representations 
of m in the form 2y2—x2, where x and y are each < Vm. 
It cannot have a unique representation, as it follows from 
this that m is prime, and this would have been detected in 
step 3. If there is more than one representation then the 
factors of m may be found from them. If there are no 
representations then we use the fifth step. 

(5.) Find by the method of exclusion all the representations 
of m in the form x2-\-2y2. The factors of m are obtained 
from the several representations. 
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3. Example. Let us show how to factor 532481 = N. 
Divide by all the primes < 82, since [VN] = 81. It is found 
that N is not divisible by any of these primes. Also 2Vis 
not a square. Hence it is prime, or is the product of two 
distinct primes. We seek first all the values x, y, such that 

x2 + y2 = N. 
Either x or y is odd* and each is <730. Suppose x is odd. 
Also N=2 (mod 3). This gives x = + 1 (mod 3), since if 
x = 0 (mod 3) we find y2 = 2 (mod 3), which is impossible. 
Hence since x is odd, we have x = ± 1 (mod 6). Now N= 1 
(mod 5); and, in a similar way, we find x = 0, + 1 (mod 5). 
Therefore x = 1, 5,11,19, 25, 29 (mod 30). We have N= 5 
(mod 7), and x = ± 1 , ± 2 (mod 7). Modulo 210, x has the 
possible residues 1, 5, 19, 29, 41, 55, 61, 65, 71, 79, 89, 
121, 125, 131, 139, 145, 149, 155, 169, 181, 191, 205, 209. 
Similarly x has the possible residuesO, ± 1 , ± 2 , ± 5 (modll); 
and we then set down the least possible residues of x modulo 
11 • 210, which are less than 730. We find 68 numbers. 
Using the modulus 16, we may exclude numbers of the 
form 3, 5, 11 and 13, modulo 16. Similarly we may exclude 
numbers of the form 1, 4, 6, 11, 14, 19, 21, 24, modulo 25, 
and 3, 4, 5, 10, 11, 12, modulo 13. This leaves 12 possible 
values for x which we may test directly, and we find none 
that will give a representation of N in the required form. 

We now proceed to step 4 and find all representations 
of the form _ 9 9 ,T 

where x and £/ are each < VN. In this relation 516 < y < 730. 
Also y = 1 (mod 2). Possible values of y satisfy y = 0, ± 1 
(mod 5), y = 0, + 1 (mod 7). Modulo 70, y has therefore 
the possible residues 1, 15, 21, 29, 35, 49, 55, and 69. We 
find similarly y = 0, ± 3 , ± 4 (mod 9). We then write down 
the integers between 516 and 730 having the above properties 
and find 519, 525, 545, 561, 581, 589, 609, 615, 645, 651, 
679, 699, 715. 

* The work could have been made shorter here by taking x even 
and noting that x = 0 (mod 4). 

35* 
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Now y cannot be congruent to 0, 4, 5, 6 or 7 (mod 11), 
and we may exclude integers of this type from the above 
set, leaving 519, 525, 581, 615, 651, 679. Actual trial of 
all these gives only two representations, 

2 . 5252—1372 = 2 . 5192—792 =,N, 
and 

525-79 — 519-137 = 29628. 

The greatest common divisor of N and 29628 is 823. Hence 
N= 823 - 647, each of which is a prime. 

A similar method may be applied to integers of the form 
1 2 n + 1 . If -A îs of this form and the product of two distinct 
primes, then each has the same residue, modulo 12. If both 
are of the form 12w + l, or 12^ + 5, then Nis expressible 
as the sum of two squares. If each is of the form 
12w + 7 then N = x2 + 3?/2. If each is of the form 12n + 1 1 
then it may be_shown that 2N = 3y2—x2, where x and y 
are each < VN. For in case the congruence a2—3 = 0 
(mod N) is solvable and if a is one of its roots then rna = k 
(mod N) where m and k are each < VN, and therefore 
3m2—k2 = 0 (mod N) and 3m2—k2 = N or 2JV". But the 
first case is impossible, since N= 1 (mod 3). We then have 
all the material necessary to carry through a method for 
factoring integers of the form 12n-\-l analogous to that 
described for the case 8 w + l . 

4. Second Method of Factorization. The second method 
of factorization is briefly as follows. Find by known 
methods a negative integer —a which is a quadratic 
residue of n, the integer to be factored (n not a perfect 
power). From a known result in the theory of quadratic 
forms it follows that, corresponding to every root u of the 
congruence u2=—a (modn) there is a set of. integers 
x, y and k such that 
(1) x2Jr ay2 = kn, 

k< 2 Y a/3, x and y prime to each other.* From (1) 
* This theorem was used hy H. J. S. Smith, WOEKS, vol. 1, p. 148 

in the solution of the quadratic congruence. 
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we have (—a/h) = 1 where Jct is any divisor of Tc, and 
(W«i) = 1 where ax is any divisor of a. We select the fc's 
satisfying these conditions, and also &< 2 Va/3 and we 
find the possible forms 

a%+ay* = Jc8h, 

s = 1, 2 , . . . , i. Find by Gauss' method of exclusion or 
other schemes all actual representations of this type ; then 
all factors of n may be found from them, by known 
methods. 

It is best to select a, if possible, so that it contains 
several small primes as factors since this will diminish 
the number of possible values of Jc. 

5. Example 1. n = 532481. In order to find values 
of a as described above, expand Vn as a continued 
fraction. We have the corresponding values given in the 
following table. 

Denominator of 
comp. quotient 

1 
1040 = 5-13-42 

419 
608 = 42,2-19 

95 = 5-19 
1280 = 162-5 

97 
160 = 42-2.5 

79 

Terms in cont. 
fraction 

729 
1 
2 
2 
14 
1 

14 
9 
18 

Hence —5-13 is a residue of n, —19-2 is an E (residue), 
5-19 is an B, —5 is an JB, —10 is an JS, whence 2 and 13, 
—19 and —5 are residues. Also 79 is an JS. Hence 
— a = —2-5-13-79 is a residue. Hence 

x2-\-ay2 = Jen, 
where h < 118. From the relations p*—nql=Azdr where 
pr/qr is a convergent and dr a denominator of comp. 
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quotient in development of Vn we have (n/13) = (w/79) 
= {nib) = 1. Hence also (ft/5) = (ft/13) = (ft/79) = 1. 
This gives ft = 0, 1, 4 (mod.5) and ft = 0,1, 3, 4, 9,10,12 
(mod 13). We set down the integers 

1 3 4 9 10 12 13 
14 16 17 22 23 25 26 
27 29 30 35 36 38 39 
40 42 43 48 49 51 52 
53 55 56 61 62 64 65 
66 68 69 74 75 77 78 
79 81 82 87 88 90 91 
92 94 95 100 101 103 104 

105 107 108 113 114 115 117. 

We note also that ftE^ 0, 3, 4, 5 (mod 8); using this with 
ft ^ 2 or 3 (mod 5) we have remaining 

1 9 10 14 25 26 
30 39 49 55 65 
66 74 79 81 90 
94 95 105 114. 

We have 
-2-5.13.79\ = /—2-5.13-79\ = = _ 

\ 3 / \ 7 
Hence ft cannot be a multiple of 3 or 7. Moreover, it is 
evident that ft is not divisible by 52. This leaves 

1 10 26 55 65 
74 79 94 95. 

From x2 + ay* = 10% we have 5 x2 + 2 • 13 • 19y2 — 2w 
whence (13-79/5) = 1 which is incorrect; this excludes 10. 
Similarly 26 is excluded, also 65. We have (74/79) = — 1 
= (94/79) and these are then excluded leaving 1, 55, 79 
and 95 as possible values of ft. Let us now examine 

x2 + ay2 — n. 

Here y ranges from 1 to 7 inclusive, and it must be even, 
which gives us 

7012 +10270- 22 = n. 
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For k = 55, we have hx2 + 2.13 - 79 y2 = lln. Using 
Gauss' method of exclusion we have 

y = ± 2 (mod 5), 
y E|E 0 (mod 3), 

whence 
5.10732 + 2.13.79.72 = l l n 

and the two representations give n = 823-647. 

y = l (mod 2), 
y=t=±2(mod7), 

6. Example 2. w = 13179643 (an 8-flgure number se­
lected at random, except that it is not divisible by small 
integers). 

Denominator of com­
plete quotient 

1 
2743 = 13-211 

132.3.7 = 3549 
2906 

3.17.79 = 4029 
1303 

3-11.173 = 5709 
J 2 • 193 = 386 

Term of cont. 
fraction 

3630 
2 
1 
1 
1 
4 
1 

Hence we may take a = 2-3-7-193 = 8106, 
(1) x2 + ay2 = nk, 
k<2 VöM or k< 104. Also (w/3) = {nil) = (n/193) = 1 
and (ft/3) = (ft/7) = (fc/193) = l. ^ = 0 or 1 (mod 3), 
ft ^ 0 , 1, 2, 4 (mod 7); hence, modulo 21, the residues of 
ft are 1, 4; 7, 9, 15, 16, 18, 21, so the values of ft may be 
written 

4 

( 

Also ft ^ 0, 4, 5, 7, (mod 8). Using these conditions together 
with the methods employed in the last case gives 

ft= 1, 25,42,43,46, 67. 

1 
22 
43 
64 
85 

4 
25 
46 
67 
88 

7 
28 
49 
70 
91 

9 
30 
51 
72 
93 

15 
36 
57 
78 
99 

16 
37 
58 
79 

100 

18 
39 
60 
81 

102. 

21 
42 
63 
84 
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Hence the factors of n may be found by using these values 
of ft in (2). 

For the same value of n, 

n = 36302+13-211, 

we may take a = 13-211. This gives 

ft = 1, 13, 16, 43, 49, 53, 56. 

Letn = 11432767. Herew = 33812+1606; 1606—2.11.73 
Let us now examine 

x2+1606 y2 = kn. 
We find ft = 1, 25, 23 or 38. 

Let n = 236364091, the numerator of the 12th Bernoulli 
number; then 

n = 153742 + 4215, 
Jen = x2 + 3 • 5 • 281 y2, 

whence, using previous methods, ft=l, 16, 31, 39 or 64. 

7. Case of Periodic Continued Fractions. In applying the 
schemes outlined in the second method we may find at the 
beginning that, after a few operations, we have developed 
a period of the continued fraction for Vn. Suppose* that 
the period has 2r terms, say 

/*l? ^2 i • • • 7 ftr—ii v> f*r—1> ftr—2? • • •? Ply c? 

then dr, the denominator of the complete quotient corres­
ponding to & is a divisor of 2n. Since b is not the 
last quotient in a period then (—lYdr^l, and therefore 
(—l)rdr = — 1 , d=2, or some factor of n not unity. Also, 
if the period has an odd number of terms then x2—ny2 = — 1 
has solutions. It then follows that either a factor of n 
has been found, or else n is expressible in one of the forms 
x2Jry2? x2-\-2y2 or 2x2—y2, x and y each <Vrp. In 
cases where the factor is not derived as a divisor of dr, 
however, it is more expeditious to expand the square root 
of some multiple of n as a continued fraction to find suitable 
values for a. 

* Mârcker, ORELLE, vol. 20 (1840), pp. 355-59. 
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8. Example. Let us factor n = 36343817. A period 
in the development of Vn is 1, 1, 2, 1, 1, 12056, and 
ds = 4019, whence n = 4019 • 9043. 

9. Third Method of Factorization. The third method 
depends on representing the number as an indefinite quad­
ratic form. In a paper already cited I proved that there 
exists at least one set of positive integers (x, y) such that 
ay^^zx (modm) where a is any integer prime to the 
integer m, x and y each < Vm. Hence if there exist 
roots of the quadratic congruence p2 = a (mod n) then 
corresponding to each root ^1? we have j t set {x, y) such 
that fay = dt x (mod ri), x and y < Vn, and we have 
ay2—x2 = 0 (mod n) or ay2—x2 = kn where 0 < k< a. 

10. Example. Let us consider n = 13179643. The 
development of Vn as a continued fraction (given above) 
shows that 21 is a quadratic residue of n, and therefore 

21rr2—y2 = kn 

where 0 < & < 2 1 , also x and y<Vn. The continued 
fraction development gives (nil) = 1, (n/3) = 1, hence 
(&/7) = — 1 , (fc/3) = — 1 . Using (k/S) = —1 we have 
as possible values of k 

2 3 5 6 8 9 
11 12 14 15 17 18 

We have k =|= 1, 2, 4 (mod 7) and k E|= 0, 2, 6 (mod 8), 
which leaves 3, 5, 12 and 17 as possible values. Note that 
V(k+l)n/21 >x> VknJ2Ï. 

Since writing what precedes, I have examined Kraïtchek's 
Théorie des Nombres (Paris, 1922). This book contains tables 
that are admirably adapted for use in connection with any 
of the three methods described in this paper. Kraïtchek 
tabulates the incongruent values of x in x2-{-Dy2 = N 
(mod^), where Q assumes various small values. 

CORNELL U N I V E R S I T Y 


