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ON CERTAIN TOPICS IN 
THE MATHEMATICAL THEORY OF STATISTICS* 

BY H. L. RIETZ 

1. Introduction. The mathematical theory of statistics 
dates back to the first publicationt relating to Bernoulli's 
theorem in 1713. The line of development started by 
Bernoulli was carried forward by DeMoivre,$ Stirling, § 
Maclaurin,|| and Eulerff culminating in the formulation 
of the Bernoulli theorem by Laplace** in substantially the 
form in which it still holds a fundamental place in mathe­
matical statistics. 

The Théorie Analytique des Probabilités of Laplace is un­
doubtedly the most significant publication at the basis of 
the development of mathematical statistics. Strangely 
enough, for a period of more than fifty years following 
the publication of the work of Laplace in 1812, little of 
importance was contributed to the subject. To be sure, 
the second law of error of Laplace was developed by Gauss 
and given its important place in the adjustment of observa­
tions, but there was on the whole relatively little progress. 
Perhaps a complex of causes was involved, but three fairly 
plausible reasons may be assigned for the lack of contri­
butions to mathematical statistics at this period. First, La­
place left many of his results in the form of approximations 

* A Keport presented by request of the Program Committee at the 
symposium held in Chicago, April 25, 1924. 

f James Bernoulli, Ars Conjectandi, 1713, pp. 210-39 (published 
eight years after his death). 

X A. DeMoivre, Doctrine of Chances (3rd ed. 1756) pp. 243-54. 
Miscellanea Analytica, 1730, pp. 191-97, Supplement. 

§ J. Stirling, Methodus Differentialis, 1730, p. 135. 
|| C. Maclaurin, A Treatise on Fluxions, 1742, p. 672. 
IT L. Euler, COMM. ACAD. PETKOP. 6, 1732-33, ed. 1738, pp. 88-97. 
** P. S. Laplace, Theorie Analytique des Probabilités, 3ième éd., 

1820, vol. II, Chap. Ill, pp. 280-85*. 
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that would not form the basis for further development. More­
over, many of his theorems were not demonstrated with 
even a fair degree of rigor, and it required the work of 
Cauchy and others to supply proofs of the theorems. This 
was important work, but it did not, in general, lead to new 
results of importance in mathematical statistics. Second, 
the followers of Gauss promulgated the idea that the de­
viations from his law of error are due to lack of data, and 
this attitude was not conducive to the creation of general­
ized frequency functions. Third, Quetelet* was busy as a 
popularizer of mathematical statistics. His somewhat sensa­
tional language about the stability of social statistics, say 
of the number of suicides from year to year, caught the 
imagination; but unfortunately he often asserted the 
existence of stability on insufficient evidence. The activity 
of Quetelet cast upon statistics a suspicion of quackery, 
which still exists to some extent. Moreover, it will probably 
always be found that those statisticians who use mathematical 
formulas without guarding well their limitations are likely 
to have influence productive of an evil very similar to that 
produced by Quetelet. 

An important step in advance was taken in 1877, only 
three years after the death of Quetelet, in the publication 
of the theory of Lexist for the classification of statistical 
distributions with respect to normal, supernormal, and sub­
normal dispersion. This theory is based on urn schemata 
of different constitutions, and pays much attention to the 
degree of constancy of statistical ratios obtained from 
different parts of the field of observation. CharlierJ states 
that this theory of Lexis is the first essential step forward 
in mathematical statistics since the days of Laplace. J. M. 

* A. Quetelet, Lettres sur la Théorie des Probabilités Appliquée aux 
sciences, Morales et Politiques, 1846. 

f W. Lexis, Zur Theorie der Massenerscheinungen in der mensch-
lichen Gesellschaft, 1877, p. 95. 

X C. V. L. Charlier, Vorlesungen iiber die Grundzüge der mathema-
tischen Statistik, 1920, p. 5. 
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Keynes* expresses a somewhat similar view. These may, 
however, be extreme views, when we take into account 
the fact that the inequality of Tchebychef was published 
earlier than the theory of Lexis. 

The development of generalized frequency curves and a 
theory of correlation in the decade 1890 to 1900 started 
the period of activity in mathematical statistics in which 
we find ourselves at present. 

After a first survey of various topics in the mathematical 
theory of statistics for consideration in this symposium, 
it seemed desirable to adopt some principle of selection 
or elimination of topics. But I have discovered no satis­
factory principle of selection except a sort of principle of 
personal interest which leads me to restrict my remarks 
to certain points of interest under the following general 
headings: 

I. Generalized frequency curves. 
II. Correlation. 

III. Frequency surfaces. 
IV. Theory of random sampling. 

No claim is made that the topics selected are more 
appropriate for consideration in this symposium than others 
which could easily be named, particularly if we should draw 
upon recent activities in the special fields of economist 
mortality, J and stellar § statistics. My interest in the 
general theory of statistics would lead me to include the 
theory of Lexis with the recent generalization by J. L. 
Coolidge,|| except for the fact that this theory has become 
readily accessible to members of the Society. 

* A Treatise on Probability, 1920, p. 393. 
t Irving Fisher, The Making of Index Number, 1922. 
t James W. Glover, Ü. 8. Life Tables, 1921. 

Arne Fisher, Frequency Curves, 1922. 
§ K. Gr. Malmquisfc, On some relations in stellar statistics, ARCHIV 

FOR MATEMATIK, ASTRONOMI OCH FYSIK, vol. 16, No. 23, 1923. 

|| This BULLETIN, vol. 27 (1920-21), p. 439. 
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I. GENERALIZED FREQUENCY CURVES 

2. Introduction. In the decade from 1890 to 1900, it 
became well established experimentally that the Gaussian 
probability function is inadequate to represent all frequency 
distributions which arise in biological data. When the 
problem of developing generalized frequency curves wras 
finally attacked, the attack was made from several different 
directions. Thiele* and Charliert in Scandinavian coun­
tries, Pearson^ and Edgeworth§ in England, Fechner|| 
and Bruns 51 in Germany developed theories of generalized 
frequency curves from viewpoints which give very different 
degrees of prominence to the Gaussian probability curve 
in the development of a more general theory. Among other 
things, I hope to give a brief exposition of the most striking 
differences in these viewpoints while considering certain 
properties of the two systems of frequency curves to which 
I shall direct special attention—the Pearson system and 
the Charlier system. 

3. The Pearson System of Generalized Frequency Curves. 
Pearson's first memoir** dealing with generalized frequency 
curves appeared in 1895. In this paper he gave four types 
of frequency curves in addition to the normal curve, with 
three sub-types under his Type I and two sub-types under 
his Type III. He published a supplementary memoirtt in 

* T. H. Thiele, Almindelig Iagttagelseslaere, Copenhagen, 1889. 
t C. V. L. Charlier, Ueber das Fehlergesetz, ARCHIV FOE MATEMATIK, 

ASTRONOMI OCH FYSIK, vol. 2, No. 8, 1905, pp. 1-9. 

Die zweite Form des Fehlergesetzes, ARCHIV, vol. 2, No. 15, 
1905, pp. 1-8. 

Î Karl Pearson, Mathematical contributions to the theory of evolu­
tion, PHILOSOPHICAL TRANSACTIONS, A, vol. 186 (1895), pp. 343-414. 

§ F. W. Edgeworth, The asymmetrical probability-curve. PHILOSO­
PHICAL MAGAZINE, vol. 41 (1896), pp. 90-99. 

|| G. T. Fechner, Kollektivmasslehre (edited by G. E,. Lipps), 1897. 
^[ H. Bruns, Ueber die Darstellung von Fehlergesetzen, ASTRO­

NOMISCHE NACHRICHTEN, vol. 143 (1897). 

** Loc. cit., pp. 343-414. 
f t PHILOSOPHICAL TRANSACTIONS, A, vol. 197 (1901), pp. 443-56. 
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1901 which presented two further types. A second supple­
mentary memoir* which was published in 1916 gave five 
additional types. Pearson's curves, which are widely different 
in general appearance, are so well known and so accessible 
that we shall take no time to comment on them as graduation 
curves for a great variety of frequency distributions, but 
we shall attempt to indicate the genesis of the curves with 
special reference to the methods by which they are grounded 
on or associated with underlying probabilities. 

We shall consider a frequency function y = Fix) of 
one variable, where F(x)dx differs at most by an infini­
tesimal of higher order from the probability that x taken 
at random falls into the interval x to x-\-dx. Pearson's 
types of curves y = F(x) are obtained by integration of 
the differential equation 

/JN dy_ = yfr + a) 
dx c0 + C\X + c2x

2 ' 

and by giving attention to the interval on x in which 
y = F(x) is positive. Obviously, the Gaussian curve is 
given by the special case c± = c2 = 0. We may easily 
obtain a clear view of the genesis of the system of Pearson 
curves in relation to laws of probability by following the 
early steps in the development of equation (1). The deve­
lopment is started by representing the probabilities of 
successes in n trials given by the terms of the symmetric 
point binomial (1/2 + 1 / 2 ) n as ordinates of a frequency 
polygon at intervals Ax. It is then proved that the slope 
Ay/Ax of any side of this polygon is 

where x and y, respectively, are the mean abscissa and 
the mean ordinate of the side of the polygon. By passing 
to the limiting situation, we may write 

^ = -kty(x+a)9 

* PHILOSOPHICAL TRANSACTIONS, A, vol. 216 (1916), pp. 431-57. 
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from which we obtain the Gaussian curve. The next step 
consists in dealing with the asymmetric point binomial 
(p + q)n in a manner analogous to that used in the case 
of the symmetric point binomial. This procedure gives the 
differential equation 

dy y(x-\-a) 
dx c0-\- c±x 

from which we obtain the Pearson Type III curve 

That is, with respect to the slope property, this curve stands 
in the same relation to the a priori most probable values 
given by the asymmetric binomial polygon as the normal 
curve does to a priori most probable values given by the 
symmetric binomial. Thus far the underlying probability 
of success has been assumed constant. The next step consists 
in taking up a probability problem in which the chance of 
success is not constant, but depends upon what has happened 
previously in a set of trials. Thus, the chances of getting 
r,r—1, r—2, . . . , 0 black balls from a bag containing 
pn black and qn white balls in drawing r balls one at a 
time without replacements are given by the successive terms 

,=»(£)(aw),(îm)r-* 

S Mr 
of a hypergeometric series. When the terms of this series 
are represented as ordinates of a frequency polygon, and 
the slope of a side is found in a manner analogous to that 
used in the case of the point binomial, we obtain the 
differential equation (1) from which the Pearson curves are 
obtained by integration. 

The idea of obtaining a suitable basis for frequency 
curves in the probabilities given by terms of a hyper­
geometric series is the main principle which supports the 
Pearson curves as statistical probability or frequency curves 
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rather than as mere graduation curves. That is to say, it 
is assumed in this system, that the distribution of statistical 
material may be likened to the law of probability represented 
by terms of a hypergeometric series. In examining the 
source of the Pearson curves, the fact should not be over­
looked that the Gaussian probability curve can be derived 
from hypotheses containing much broader implications than 
are involved in a slope condition of the side of a sym­
metric binomial polygon. Can the generalized curves like­
wise be derived from hypotheses involving broader implica­
tions than are contained in the slope condition based on 
the probabilities given by a hypergeometric series? The 
answer seems to be unknown. 

The method of moments plays an essential role in the 
Pearson system of frequency curves not only in the deter­
mination of the parameters but also in providing criteria 
for selecting the appropriate type of curve. Pearson has 
attempted to provide a set of curves such that some one 
of the set would agree with any observational or theoret­
ical frequency curve of positive ordinates to the extent of 
having equal areas and equal first, second, third, and fourth 
moments of area about a centroidal axis. 

Let (is be the sth moment coefficient about a centroid 
vertical taken as the ^/-axis. That is, let 

(is = J Fix) xsdx. 
— 00 

Next, let fix = (*\l(i\ and fi2 = i*Ji*\ • Then it is Pearson's 
thesis that the conditions (i0 = 1? ^1 = 0 together with 
the equality of the numbers ^2? fil9 and fi2 for the observed 
and theoretical curves lead to equations whose solutions 
give such values to the parameters of the frequency function 
that we almost invariably obtain excellency of fit by using 
the appropriate one of the curves of his system to fit the 
data, and that badness of fit can be traced, in general, to 
heterogeneity of data, or to the difficulty in the deter­
mination of moments from the data as in the case of J 
and U shaped curves. 
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Let us next examine the nature of the criteria by which to 
pass judgment on the type of curve to use in any numerical 
case. Obviously, the form which the integral y = F{x) 
obtained from (1) takes, depends on the nature of the zeros of 
the quadratic function in the denominator. An examination 
of the discriminant of this quadratic function leads to 
equalities and inequalities involving fi± and j3a which serve 
as criteria in the selection of the type of function to be 
used. A systematic procedure for applying criteria has 
been thoroughly developed.* The relations between fix and 
fi2 are represented by curves in the AA-plane. To illus­
trate, the normal curve corresponds to the point & = 0, 
fit = 3 in this plane. Type III is to be chosen when the 
point (fil9 fi2) is on the line 2/?2—3A.—6 = 0; and Type V, 
when (A, /?2) is on the cubic 

A(A + 3)a = 4(4/Sa-3A)(2A—3A—6). 
In considering sub-types under Type I, the biquadratic 

A(8A—9A— 12)(A + 3)a = (10A —12A — 1 8 ) W 2 —3A) 
separates the area of J curves or modeless curves from the 
area of limited range modal curves and the area of U curves. 
Without going into further detail about criteria for the 
selection of the type of curve, we may summarize by say­
ing that curves traced on the A/Vplane provide the means 
of selecting the Pearson type of frequency curve appro­
priate to the given distribution in so far as the necessary 
conditions expressed by relations between fix and fi2 turn 
out to be sufficient to determine a suitable type of curve. 

4. Generalized Normal Curve.—Charlier System. As in­
dicated in § 3, the Pearson system of frequency curves 
assigns only a point in the A/^-plane for the region of 
applications of the Gaussian law in fitting frequency dis­
tributions. It seems not unnatural, however, to have some 

* A. Bhind, BIOMETRIKA, vol. 7 (1909-10), pp. 127-35; cf. Tables 
for Statisticians and Biometricians1 1914, pp. ix-ixx, and pp. 66-67 ; 
see also, Karl Pearson, loc. cit., PHILOSOPHICAL TRANSACTIONS, A, 
vol. 216 (1916), pp. 429-57. 
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doubt about the Gaussian curve taking such a small place 
in the representation of frequency, and to turn with con­
siderable interest to the Charlier system of representation 
of frequency which gives great prominence to the Gaussian 
probability function 

1 {x — W 
y = —y= e 2<f» 
J (ÏV2TV 

Among the early contributors to the theory of the general­
ized normal curve we find Gram,* Thiele?t Edgeworth,! 
Bruns § and Charlier. || Of the various contributions to the 
subject, those of Charlier are particularly elegant and note­
worthy. Charlier has shown by extensions of the Laplace 
theory based on the hypothesis of elementary errors that 
the law of error assumes one of the following two forms: 
TYPE A. 
F(x) = ao0(x) + a30>°%) + a4G>i4)(x)-] han®(n)(x) + • • -, 
where 1 _ ^ 

œ(x) = FS^y' 
and 0in)(x) is the nth. derivative of 0(x) with respect to x. 
TYPE B. 

F(x) = c0V(x) + dAWix) + c2A
2W(x) -\ h cnA

nW(x) + • • •, 
where 

{X)~~e ' 7t \x (x—l)l!+fe—2)2! (x—3)3! h ' " 

x 
the Poisson exponential for non-negative integral values of x. 

* J. P. Gram, On Raekkeudvidlinger, bestemte ved Hjaelp af de minste 
Kradvaters Methode (Doctor's dissertation), Copenhagen, 1879. 

f T. N. Thiele, Almindlig lagttagelseslaere, 1889 ; cf. Thiele, Theory 
of Observations, 1903. 

X F. Y. Edgeworth, loc. cit; also The law of error, CAMBRIDGE 
PHILOSOPHICAL TRANSACTIONS, vol.20 (1904), pp. 36-65, 113-41. 

§ H. Bruns, loc. cit ; also Wahrscheinlichkeitsrechnung %md Kellektiv-
masslehre, 1906. 

|| C. V. L. Charlier, loc. cit; also TJeber Darstellung luillkürlicher 
Functioned AECHIV FÖR MATEMATIK, ASTRONOMI OCH FYSIK, vol. 2, 

No. 20, 1905, pp. 1-35. 

1 > 
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The Type A series represents an arbitrary function F(x) 
subject to certain conditions of continuity* and vanishing 
at infinity. The coefficients an in Type A may be expressed 
in terms of moments of area under the given frequency 
curve because the functions Q>{n){x) and the Hermite poly­
nomials Hn(x) defined by the equation 

Q(n)(x) = (—lY>Hn(x)0(x) 

form a biorthogonal system. Thus 

J—irj^ooF(x)Hn(x)dx 
an~~ n\ 

Since Hn{x) is a polynomial of degree n in x, the co­
efficients an are thus given in terms of moments of area 
under the frequency curve. Moreover, the value of any 
coefficient thus obtained is the same as that obtained by 
finding the best approximation to F(x) in the sense of 
a certain least squares criterion by the first s terms of 
the series (s^n). In the Type B series, the coefficients 
may be determined by the method of moments or by means 
of the semi-invariantst of Thiele. 

To be of practical value in fitting given numerical distri­
butions, it is essential that only a few terms of the series 
in Type A be required to fit the distribution. The closeness 
with which the first few terms will represent a given func­
tion F{x) depends much on the extent to which the gene­
rating function ®(x) is a fair approximation to the distri­
bution. In case the generating function Q(x) is not even 
a rough approximation to the distribution, it may be pos­
sible to introduce in place of Q) (x) a function of approxi­
mation 0(x) as a generating function in the series. N. R. 
JorgensenJ has used the function 

* Wera Myller-Lebedeff, MATHEMATISCHE ANNALEN, vol. 64 (1907), 

p. 338; and H. Weyl, MATHEMATISCHE ANNALEN, vol. 66 (1908), p. 306. 

f Arne Fisher, The Mathematical Theory of Probabilities, 1922. 
p. 271. 

% Undersögeiser over Frequensflader og Korrelation, 1916, pp. 177-93. 
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1 (log a?—m)2 

@(x) = , r e 2<x* 
GV27T 

as a generating function and has by this means succeeded 
in representing closely some remarkably skew distributions. 
H. C. Carver* and Emeterio Roa have done some work on 
this plan of representation by introducing various types 
of generating functions. 

With respect to the selection of Type A or Typé B of 
Charlier to represent given data, no criterion has been 
given which enables one to distinguish sharply between 
cases in which to apply one of these types in preference 
to the other, but Type B applies in general, to decidedly 
skew distributions, and particularly to those defined only 
at integral values of the variable when the Poisson ex­
ponential is the generating function. While the systematic 
procedure in fitting Charlier curves to data is thus not so 
well standardized as the methods used in fitting curves of 
the Pearson system to data, tables of CD (t), where t is in 
units of standard deviation, of its integral p0O(t)dt, and 
of its second to eighth derivatives are given to five decimal 
places for t = 0 to t = 5 at intervals of .01 by James 
W. Glover, t and tables of the function, its integral and 
first six derivatives are given by N. E. Jorgensenij: to 
seven decimal places for t = 0 to t = 4. 

The question naturally arises as to the arguments which 
support the Charlier system of representation in comparison 
with the Pearson system. The Charlier system is surely 
the better grounded in the theory of probability, and is 
adapted to the representation of an arbitrary function subject 
to reasonable conditions of continuity and vanishing at in­
finity. A disadvantage of the system is found in the fact 
that its application to numerical distributions is likely to 
be laborious, and the probable errors of the coefficients of 

* Cited in Handbook of Mathematical Statistics, by H. L. Rietz 
and others, 1924, p. 116, 

t Tables of Applied Mathematics, 1923, pp. 392-411. 
J Loc. cit., p. 178-93. 
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the series are large if we find it necessary to use more 
than three or four significant terms. But even if the 
representation by the Charlier system proves to be so 
laborious that it is rarely used with the more common 
numerical distributions, the series is nevertheless of great 
value in the representation of laws of probability. To 
illustrate, take the problem of the distribution of the sum 
of n numbers selected at random from a uniform distribution. 
Laplace gave an approximate solution of the problem adapted 
to computation for the case when n is large, and applied the 
result of his theory to the question of the random distribution 
of the orbits of comets. The method of Laplace in obtaining 
the approximation is of doubtful validity. Cauchy* put 
Laplace's approximation on a much more rigorous basis 
in a memoir published in 1841. In a paper which the 
writer presented to the Society last April, it is shown that the 
representation is given by the Type À function of Charlier, 
and that each additional term improves the approximation 
in the sense of a certain least squares criterion. Again, 
B. H. Camp in a recent papert on certain important problems 
in sampling has made much use of the Type A representation 
in his theory. The point in citing these illustrations is that 
the Charlier representation is likely to be found very useful 
in the general theory of probability, apart from the fitting 
of frequency curves to numerical data. 

5. Transformation of Frequency Functions. Bef ore leaving 
the subject of frequency functions of one variable, let us 
consider briefly the idea of regarding certain frequency 
functions as the result of transformation of the independent 
variable in simple frequency functions. F. Y. EdgeworthJ 

* A. L. Cauchy, JOURNAL DE L'ECOLE POLYTECHNIQUE, Cahier 28, 

vol. 21 (1841), pp. 147-248. 
t JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, vol. 18 

(1923), pp. 964-77. 
J JOURNAL OF THE EOYAL STATISTICAL SOCIETY, vol. 61 (1898), 

pp. 670-700. 
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and J. C. Kapteyn* proposed that skew frequency curves 
should be regarded as transformations of the Gaussian curve. 
It seems that this idea would accord with what happens 
in certain natural phenomena, although it is difficult to 
predict its generality. That is to say, if certain values are 
distributed normally, we inquire into the distribution of 
certain simple functions of these values. For example, the 
writer gave in a recent papert certain properties of fre­
quency curves obtained when the values of a normally 
distributed variable, oCj are transformed by 

rst ——— LT'Y' % 
lAy ftt/y . 

It is shown that the form and properties of the resulting 
distribution differ widely according as n < 0, O^n^c 1, and 
n>l. As another example, N. E. Jorgensen has made 
x -— log x in the Gaussian frequency function thus obtaining 

ay 2TV 

He found the semi-invariants of Thiele for this function 
and showed that the function may replace the Gaussian 
function as a generating function in the Charlier series of 
Type A for the representation of certain skew distributions. 
Thus, it seems that functions arising from the transformation 
of variables may be found to be useful. 

II. CORRELATION 

6. Simple Correlation. It seems that Francis Galton f 
was the first to deal with correlation among direct obser­
vations. If we should follow the historical development 
of correlation, we should simply give Galton's definition 
of correlation and his ideas of the regression of one variable 
on another before proceeding to correlation surfaces in 
three dimensions. For example, the mathematical solution 
of the special correlation problem proposed by Francis 

* Skew Frequency Curves in Biology and Statistics, Groningen, 1903. 
t H. L. Rietz, ANNALS OF MATHEMATICS, vol. 23 (1922), pp. 292-300. 
t PROCEEDINGS OF THE ROYAL SOCIETY, vol. 40 (1886), p. 42. 



430 H. L. RIETZ [October, 

Galton to J.D. Hamilton Dickson in 1886* consisted simply 
in giving the equation of a normal frequency surface to 
correspond to given standard deviations and regression 
lines. Furthermore, the early contributions of Karl Pearson 
to correlation theory involving the influence of selection 
were concerned with frequency surfaces, t But, beginning 
with a paper by G. Udny Yule in 1897, the theory of 
correlation has been developed without limitation to a 
particular type of frequency surface. It is of some interest 
that Yule returned very close to the primary ideas of 
Galton, by placing the emphasis on the lines of regression. 
This method of Yule may be appropriately called the 
regression method of approaching correlation in con­
trast to the frequency surface method. It is our purpose 
to present enough of the elements of the regression method 
to give a basis for a brief exposition of the nature of 
certain recent contributions to correlation from the re­
gression standpoint. Special attention will be directed (1) 
to the general method of determining the successive terms 
of a non-linear regression equation, (2) to the connection of 
the correlation coefficient and regression curves with some 
simple problems of a priori probabilities, (3) to the deve­
lopment of a theory of correlation of n variables in the 
case of non-linear regression by means of multiple and 
partial correlation ratios. 

To introduce a convenient notation let (Xi, Ti), (X2, Y2),..., 
(XJST, Yjsf) be pairs of real numbers such that at least two 
of the X's are unequal and at least two of the given F's 
are unequal. Let X, Y be the arithmetic means of the 
given values of X's and F's respectively. 

Then let 
— x*~ * — Yj—Y 

where ax and ay are respectively standard deviations (root-

* PROCEEDINGS OF THE EOYAL SOCIETY, vol. 40 (1886), p. 63. 

t PHILOSOPHICAL TRANSACTIONS, vol. 187 (1896), pp. 253-318. 
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mean-squares) of X's and F's, so that each deviation is 
expressed by its ratio to the standard deviation of the system 
to which it belongs. Then the correlation coefficient r 
is defined by 

1 N 

(1) r =>-j^^x®i. 

By writing (1) in the form 

and 
1 N 

(3) r = - l + -±j2{xt + yi)t, 

it follows at once that - — l S r ^ l ? and that the X/s and 
Y/s are linearly related when r = 1 or — 1 . In papers 
by Huntington* and Jackson?t the significance of r is 
brought out in interesting ways by interpretations of 

N 

2(xi—yi)2/(2N) in (2). 

In the sense of a certain least squares criterion, we may 
obtain the values of y corresponding to assigned values of 
x more accurately from y = rx than from any other linear 
equation. The line y = rx is called the line of regression 
of y on x. The mean square of the errors involved in 
using values of y = rx for the given ?/'s is s2

y = 1 —r2. 
Thus, 
(4) r 2 = l — 4 . 

Let us now conceive of dividing the whole interval along 
the #-axis which includes our data into suitable equal class 
intervals Ax. Then the y's which correspond to the a?'s 
in the interval Ax are called an ^-array of y's. When the 
means of the arrays of y's are on the line of regression 
y = rx, the regression of y on x is said to be linear. When 

* E. V. Huntington, AMERICAN MATHEMATICAL MONTHLY, vol. 26 

(1919), p. 425. 
t Dunham Jackson, AMERICAN MATHEMATICAL MONTHLY, vol. 31 

(1924), p. 117. 
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the means of the arrays of y's are far from the line of 
regression, the yalue of the correlation coefficient is likely 
to be misleading. For example, we * may have r = 0 for 
variables x and y when y is a simple periodic function of x. 
To characterize correlation in such situations, Karl Pearson 
devised t a measure of correlation called the correlation 
ratio, which we shall now describe briefly. By analogy 
with (4), we define 

(5) < r = l - # 

as the correlation ratio of y on x, where s'J* is the mean 
square of deviations of y's from the means of arrays, and 
these means of arrays need not lie on or near a straight 
line. The s'y in (5) agrees with the sy in (4) only when 
the regression is linear and Ax->0. It is obvious that when 
s'y is small in comparison to unity there is a tendency for 
the points of the scatter diagram to concentrate in a narrow 
band along the regression curve, and we have a high degree 
of correlation. It is an easy step from (5) to deduce 

(6) yyoc=<fyx, 

where <tyx is the standard deviation of means of .x-arrays 
of T's when the square of each deviation of a mean of an 
array is weighted with the number in the array. It is 
easily shown that 

1 > ^ 2 > r 2 

and that the equality ifyx = r2 holds only in the case of 
linear regression. It may be noted from (6) that the corre­
lation ratio of y on x is the ratio 0yj<fy, if the unit for 
measuring values of y is not (fy. 

As early as 1905, the parameters of the special regression 
curves given by polynomials y=f{x) of the second and 

* See H. L. Rietz, Q U A B T E B L Y PUBLICATION, AMEBICAN STATISTICAL 

ASSOCIATION, vol. 16 (1919), pp. 472-76. 
f On the general theory of skew correlation and non-linear regression, 

D B A P E B S ' COMPANY R E S E A B C H MEMOIBS, B I O M E T B I C S E B I E S I I ( 1 9 0 5 ) , 

pp. 1-54. 
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third degrees were determined in terms of power moments 
and product moments. In 1921, Karl Pearson* published 
a general method of determining successive terms of the 
regression curve of the form 

(7) V = f (pc) = «oVo + axipi + • • • + anipn, 

where a0, al9 . . . , an are constants to be determined and 
ips is an orthogonal function of x. That is, 

if the summation ^ be taken for all values of x corres­
ponding to a,n arbitrary system of arrays with frequency 
in an #-array given by Nx. 

7. Simple Correlation and Probability. Thus far in this 
lecture correlation has been discussed by means of averages, 
ratios of averages, and by the correspondence between an 
assigned value of one variable and an average value of 
another. Probability theory has not entered in explicit 
form. Before leaving simple correlation, I wish to say that 
it has seemed important to me to construct urn schemata 
which would give a meaning to the correlation coefficient 
in pure chance. In a paper f published in 1920, certain 
urn schemata were devised which give linear regression 
and very simple values for the correlation coefficient. Other 
schemata apparently equally simple give non-linear re­
gression. The general plan of the schemata consisted in 
requiring certain elements to be common in successive ran­
dom drawings. By means of partial correlation coefficients, 
J. R. Musselman^ recently gave simple and interesting proofs 
of values of the correlation coefficients for those of my 
urn schemata in which the regression is linear. His method 
does not, however, replace my method because he assumes 
the existence of linear regression, which is proved in my 

* B I O M E T R I K A , vol. 13 (1921), p. 296. 

f H. L. Kietz, A N N A L S OF MATHEMATICS, vol. 21 (1920), pp. 307-22. 
% J O U R N A L OF THE AMERICAN STATISTICAL ASSOCIATION, vol. 18 

(1923), pp. 908-11. 

28 
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paper. It is hoped that further contributions to correlation 
involving urn schemata will give the theory of correlation 
a more prominent place in the pure theory of probability. 

8. Multiple Correlation. Given N sets of values* of n 
real variables xux2, . *.,xn, where any variable, XJ, is referred 
to the arithmetic mean of its N given values as an origin, 
and is measured in units of the standard deviation, <Sj, of 
its N given values. Let rpq be the correlation coefficient 
of the N given values of xp and xq. Then we seek to determine 
the parameters in the linear regression equation 

(8) x = b12x2 + frisks H h oinxn + c 
so that x computed from (8) will give the "best" estimates 
of the values of x± to correspond to assigned values of 
X2j X§j . . . , Xn* 

Adopting a least squares criterion ,t we determine the 
coefficients in (8) so that 

(XX D12X2 b13Xs hlnXn cf 

shall be a minimum. This gives for the regression equation 
of xx on x2, x$, . . . , xn 

(9) 
2> = 2 - « ' l l 

Xp, 

where Bpq is the cofactor of the pth row and qth column 
of the determinant 

(10) 

1 r12 r13 

r2i 1 r2 3 

n± rS2 1 

Tm 

The correlation coefficient n^s-.w between the observed 
values of xt and its corresponding estimated values x 

* We assume that at least two of the N given values of a variable xx 

are unequal. 
t G. Udny Yule, JOURNAL OF THE KOYAL STATISTICAL SOCIETY, 

vol. 60 (1897), p. 812. 
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calculated from the linear function (9) of #2> ̂ s? • • • > %n is 
called the multiple correlation coefficient of xx with the 
other n — 1 variables. The multiple correlation coefficient 
ri-28.-» is expressible in terms of simple correlation co­
efficients by the formula 

(11) ^ . 8 3 . ^ = ^ 1 — j ^ ~ . 

If the scatter oi.28.-w of the observed values of x± from 
the regression hyperplane (9) is defined as the square root 
of mean square, that is, 

01-28 • • n — Jy , 

it can be proved that 

(12) oi.28..n = y - g - , 

and from (11) and (12) that 
2 2 

(13) OÏ.28. •n= 1—n.23 . .*. 
9. Partial Correlation. It is often important to obtain 

the degree of correlation between two variables x± and x2 

when the other variables #8, #4, . . . , asn have assigned values. 
To illustrate, we may have found a correlation between 
characteristics A and B. A plausible interpretation may be 
that the correlation thus found is due to the correlation 
of each of them with (7. In this case we could remove 
the influence of C if we have an unlimited amount of data 
by restricting our data to a universe of A and B corres­
ponding to an assigned C. But usually the data are not 
readily available for such a procedure. Instead of thus 
restricting data, we would often make use of a partial 
correlation coefficient. We define r12.^..n as the partial 
correlation coefficient between x± and x2 when we have 
eliminated the influences of the variables xs, x^ . . . , xn in 
so far as they can be eliminated by means of a linear 
function of these variables. That is, the partial correlation 
^i2.S4-.» is the correlation between residuals 

28* 
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Xi .34 . = - n — & I B - # 8 — • ~bm*%n> 
and 

in estimating #i and x2 by means of linear functions of 
and this partial correlation is said to be of 

order n—2, the number of variables held constant. It 
would ordinarily involve a large amount of labor to apply 
this definition directly to data. Fortunately the partial 
correlation coefficient is expressible directly in terms of 
simple correlation coefficients by the formula 

—-B12 
(14) r12.M..n = -1/-5—fur • 

V MiiJtl22 
An important relation between partial and multiple cor­

relation coefficients may now be derived. From (11) and (14), 

1 r2 _ 
1 ' 1 • 28 • • W 

Hence we have 

1 — 

JX JXi2 

3 u ' '12'84 ••n~VR^' 

2 ^ 1 1 ^ 2 2 ^ 1 2 
r i2 • 34 • • n 7? 7? 

- n / l l Z t 2 2 

By a well known theorem of determinants,* 

RnB12 

^ 1 2 ^ 2 2 

Hence we have 

(15) l-rl2.u..n 

-^11-"^22 ^ 1 2 - ^ - ^ 1 1 2 2 ' 

£ 
B-B1122 Rn 1 ^.28-•» 

7? /? 7? i r 2 
^ 1 1 ^ 2 2 -/X22 X / l - 3 4 - - / i 

R 1122 

Thus we can express the partial correlation coefficient 
n2-34 • • n of order n—2 in terms of the multiple correlation 
coefficient r i . 2 8 . . w of order n — 1 and the multiple cor­
relation coefficient ri.84..» of order n—2. 

* Maxime Bôcher, Introduction to Higher Algebra, 1912, p. 33. 
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10. Non-linear Regression in n Variables.—Multiple Cor­
relation Ratio. L. Isserlis* and Karl Pearsont have deve­
loped a theory of non-linear regression in the case of more 
than two variables. Consider the variables xly x2,x8,..., xn, 
and we have an array of observed values of xt whose 
mean value xx.2S ->n we may appropriately call the partial 
mean value of x's for constant x2, x3,... ,#». Then we may 
define the multiple correlation ratio rj1.28.-n of xx on x2, 
xs,...,xn by writing 

2 2 ' ' ' 2 (-̂ 28 • • n l̂-28 • • n) 
(16) 

(17) 

v2 

V l - 2 3 ' N 

Ml. 33 • 

where c~t . is the standard deviation of the means of 
arrays computed by weighting the squares of the deviations 
of these means from the mean xx = 0 of all #'s with the 
number N2$.. ^ in the array. It may be observed from 
(17) that çi.as..» is the ratio « ^ . „ . . « / Ö I » if the unit for 
measuring values of x± is not a±. We now define ci-28- -n 
by the equation 

2 2 ' " 2 {-#«8 • • n{x1 — Si. 28 • . nf) 
(18) tf 

72 

1-28 • # 

the mean$ square of standard deviations of arrays of x± 

for assigned values of other n—1 variables x2j x8,..., xn. 
From (16) and (18), we find 

( 1 9 ) *i?28.-»= 1—Î1-28- -li­

l t may be recalled that our definition of r\X2 for two vari­
ables is such that 1—i\\2 is the mean square of standard 
deviations of the arrays of xx which correspond to assigned 
values of x2. Next consider n variables, and let xx be 

* BIOMETRIKA, vol. 10 (1914 15), pp. 393-411. 
t PROCEEDINGS OF THE ROYAL SOCIETY, A, vol. 91 (1915), pp. 492-98. 
t The square of each standard deviation is weighted with the number 

in the arrav. 
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limited to those JV34.. n values for which xs, x±,..., xn are 
assigned. Then consider the expression 

(20) 4.u..n (1-^2.34. . n)> 
2 

where 01.34..^ is the mean square of standard deviations 
of arrays of x± for assigned values of x%1 x±,..,, xn. In this 
restricted universe, we deal with two variables, x1 and x2, 
and (20) is the mean square deviation for assigned values 
of where ^12.34. • n is the partial correlation 
ratio of xx on x2 for constant x%, xà,..., xn. That is 
( 2 1 ) a'lu..n{1— ^12.34.. n) = 1 " ^ 2 1 . 2 3 . . ^ 

Analogous to (19), we may write 

(22) < 2 S4. . M = l - t f . 8 4 . -n-

Hence from (21) and (22), we have 

(23) 1 - Î Î 2 . 3 4 . . » 
•34 . 

From (23), we note that the partial correlation ratio of 
order n—2 can be expressed in terms of multiple cor­
relations of order n—1 and n—2 in a form exactly ana­
logous to that for expressing partial correlation coefficients 
in terms of multiple correlation coefficients. While the 
method of computing f/3.23..» is simple in principle, it is 
unfortunately laborious from the arithmetic standpoint. It 
is important as a next step in the investigation to discover 
a way of expressing multiple correlation ratios in terms 
of simple correlation ratios just as* we know how to express 
multiple correlation coefficients in terms of simple cor­
relation coefficients. L. Isserlis has taken a step in this 
direction by showing that, for a certain type of quadric 
regression surface, the direct calculation of the multiple 
correlation ratio may be replaced by the calculation of four 
simple correlation ratios. But the general problem of ex­
pressing the multiple correlation ratio in terms of simple 
correlation ratios is still unsolved. 
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III. FREQUENCY FUNCTIONS OF n VARIABLES— 

CORRELATION SURFACES 

11. Normal Correlation Surfaces. The function 

Z = f(xu X2, . . . , Xn) 

is called a frequency* function of the n variables 
X\^ X2j . . . j Xn It 

z dxi dx2 • • • dxn 

gives to within infinitesimals of higher order the probability 
that a set values of xu x2j . . . , xn taken at random will 
fall respectively into the intervals x± to xi + ^i? x2 to 
x2 + dx2, . . . , a^ to ;rw + ötew. With the notation of § 7 on 
multiple correlation, the natural extension of the Gaussian 
frequency function of one variable to the case of n nor­
mally correlated variables xu x2, ..., xn gives a frequency 
function of the exponential type 

(1) z=Zoe-&, 

where O is a homogeneous quadratic function of the n 
variables and may be written in the form 

(2) 0> = ~ (Enxl + E22x
2

2 + . • • + 222,2^2 + • • • ) , 

the determinant E with correlation coefficients as elements 
and its cofactors Epp and Epq being defined in § 7. 

Karl Pearsont published the general equation of this 
frequency surface in n + 1 dimensions and dealt with certain 
of its important properties in 1896. F. Y. EdgeworthJ had 
partially developed the theory of this surface as early as 
1892. In three and four dimensions the form of the surface 
dates back to Bravais § in 1846, but not as a surface of 
distribution of directly observed statistical measurements. 

* Charlier calls ƒ (asi, a?2,..., xn) a correlation function. See AKCHIV 
FÖE MATEMATIK, ASTRONOMI OCH FYSIK, vol. 8, No. 4 (1912). 

f PHILOSOPHICAL TRANSACTIONS, A, vol. 187 (1896), pp. 253-318. 
X PHILOSOPHICAL MAGAZINE, (5), vol. 34 (1892), pp. 190-204. 
§ Sur les probabilités des erreurs de situation d'un point, MÉMOIRES 

PAR DIVERS SAVANTS, vol. 9 (1846), pp. 255-332. 
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Bravais considered the distribution of linear functions of 
independent errors in observed quantities rather than directly 
observed correlated variables. J. L. Coolidge* recently 
derived the Gaussian law of error for n variables by stating 
explicitly a set of underlying assumptions. He obtained 
a surface of the form (1), and determined the parameters 
by expressing moments of actual errors in terms of moments 
of residuals. 

In our notation for simple correlation, § 6, the surface (I) 
in three dimensions takes the well known form 

(3) z = ±=- fW^»**-*"». 
2rcVl—r2 

The equal-frequency curves obtained by making z take con­
stant values are an infinite system of homothetic ellipses, 
any one of which has an equation of the form 

(4) x2-\-y2—2rxy = I2. 

When these ellipses are represented on the #y-plane 
(scatter-diagram plane), the probability that an (x, y) taken 
at random will lie within the ellipse (4) is given by 

(5) l—e 2 ( 1-^. 

The particular ellipse of the system such that the proba­
bility that an (x,y) taken at random will fall within it is 
one-half, is called the probable ellipse and has been frequently 
discussed. In a paper published in 1912, the writert defined 
the ellipse of maximum probability as that ellipse of the 
system along which, for a given small ring dl, we expect 
a greater frequency than along any other ellipse of the 
system. This ellipse is given by making I2 = 1—r2 in (4). 
It is a fact of some interest that this ellipse is the locus 
of parabolic points of the correlation surface. 

One of the most interesting problems I have studied in 
connection with this surface relates to the determination of 

* TRANSACTIONS OF THIS SOCIETY, vol. 24 (1922), pp. 135-43. 
f H. L. Bietz, ANNALS OF MATHEMATICS, vol. 13 (1912), pp. 187-99. 
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the locus along which the frequency or density of points 
on the plane of distribution (scatter diagram) bears a simple 
relation to the corresponding density under independence. 
Thus, we seek the curve along which dots of the scatter 
diagram are k times as frequent as they would be under 
independence where it is a constant. Equating z in (3) to k 
times the corresponding value of z when r = 0 in (3)? we 
obtain the hyperbola 

(6) x2 + y2— — xy = ^~rP log(fc«— fcV). 

Karl Pearson had dealt* with the particular case of this 
curve for k = 1. I was impressed by the fact that the 
density of distribution at the centroid in (3) is l /Vl—r2 

times as much as it would be under independence and was 
naturally inclined to inquire about the locus of all points 
for which k = 1/1/" 1— r2 in (6). It turns out that in this 
case the hyperbola degenerates into straight lines 

(7) y = —x(l±VT=l*). 

These lines separate the plane of distribution into four 
compartments such that 1/4 is the probability that a pair 
of values (x, y) taken at random will give a point falling 
into any prescribed one of these compartments. Although 
no further discussion of the properties of normal correlation 
surfaces will be attempted in this paper, certain properties 
analogous to those mentioned for the surface in three 
dimensions would probably follow rather readily in the case 
of the surfaces in higher dimensions. The system of ellipsoids 
of equal frequencies has been studied to some extent, t In 
a recent paper by James McMahon, % the connection between 
the geometry of the hypersphere and the theory of normal 

* DRAPERS' COMPANY RESEARCH MEMOIRS, BIOMETRIC SERIES I, 

vol. 13, p. 10. 
t See E. Czuber, Theorie der Beob achturig s fehler, 1891, pp. 355-82. 
% BIOMETRIKA, vol. 15 (1923), pp. 192-208, paper edited by 

F. W. Owens after the death of Professor McMahon. 
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frequency functions of n variables is established by linearly 
transforming the hyperellipsoids of equal frequency into 
a family of hyperspherical surfaces, and by applying the 
formulas of hyperspherical goniometry to obtain theorems 
in multiple and partial correlations. 

12. Generalized Frequency Surfaces. The history of the 
difficulties which have been encountered in efforts to reach 
general skew frequency surfaces has been given recently by 
Karl Pearson.* He tells us that in 1895 after the publication 
of his memoir on skew frequency curves, he proceeded to the 
problem of skew frequency surfaces, and gave much time to 
attempting its solution. He became convinced on experimental 
grounds that a generalized frequency surface could not be 
obtained by taking the product of two of his skew frequency 
functions and transforming coordinates. Pearson next ap­
proached the problem by endeavouring to determine surfaces 
which should grow out of the double hypergeometric series 
in a way analogous to that by which his skew frequency 
curves arise from the single hypergeometric series. He 
obtained the differential equations from the series, but he 
tells us he has failed to integrate them although he has 
returned to them again and again for nearly thirty years. 
In 1901, Pearson put the problem before L. N. Gr. Filon, 
who made some progress by obtaining certain special sur­
faces. Pearson had also obtained a special surface for 
linear regression and for what he calls parabolic variance. 
In 1914, Pearson put his differential equations before 
L. Isserlis. In a paper on the application of Solid hyper­
geometric series to frequency distributions of spaced, Isserlis 
solved the problem of fitting a double hypergeometric series 
to certain distributions of two variables. 

In 1923, Seimatsu Narumi—a Japanese mathematician— 
published £ an important contribution to the solution of the 

* BIOMETRIKA, vol. 15 (1923), p. 222. 
f PHILOSOPHICAL MAGAZINE, (6), vol. 28 (1914), p. 279. 

Î BIOMETRIKA, vol. 15 (1923), pp. 77-88; pp. 208-221. 
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problem. It appears that Pearson suggested* to Narumi 
the problem of working from functional equations, with 
assumed forms of regression and scedastic functions, back 
to the frequency surface. All I shall attempt here is to 
give a general idea of this method of approach, and to state 
a few of the most interesting results. Let the regression 
curve of y on x be y =f2(x), and that of x on y be x =fx(y). 
Narumi gives 

(8) z = 0t(y) ^ [{x-My)}FM] 
= 0*(x)Wa[{y-f*{x)}Fa(x)], 

as the general functional equation of the frequency surfaces. 
One way of regarding this equation is to consider Ot(y) 
as giving the relative frequency of values existing for 
a total array curve corresponding to an assigned y. With 
the array curve assigned, *P±[{x—fiiy^F^y)] would give 
relative frequencies at any point along the array curve in 
units on such a scale from array to array as to produce 
homoscedasticity because of the character of F±(y). That 
is, F±(y) andi^fe) are variable scales of measurement which 
when used to multiply standard deviations produce homo­
scedasticity. The method may be made clearer by dealing 
with some special cases. 

(a) Given linear regression and constant homoscedasticity, 
we have/1(2/) = m1y + ci,/20£) = w2# + C2, where F±(y) and 
F2(x) are constants. The solution of the special functional 
equation leads to the normal correlation surface. 

(b) Given linear regression and linear heteroscedasticity, 
we have fx{y) = mxy-\-cu f2(x) = m2^ + c2, and 

Then (8) takes the form 

\iiy+(h k) Uzx+oz hy 
where gx = mxai — c± and g2 = m2a2 — c2. 

* BIOMETKIKA, vol. 15 (1923), p. 224. 
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The solution of the special functional equation leads to 

(9) g = %>&+9i)Px(y+g*)p* 
'{(gi— a2)(y+a1) + (g2— ai)(x+a2)}^? 

where pXj p2 and q are arbitrary constants. This is the 
general frequency surface with linear regression both ways 
and linear heteroscedasticity. The array curves both ways 
are Pearson curves of Type I. If ^—a2->0 in (9), by simple 
transformations, the equation may be put into the form 

(10) z = Zo(x + g^y + g2)v*e«'y±^-, 
x~f gi 

where p[ = px-\-q9 q' = (g1—a^q/tg2—#i)« This special 
case has for arrays one way Pearson curves of Type III 
and the other way Pearson curves of Type VI. 

(c) Given that the regression curves are certain equilateral 
hyperbolas both ways and that the standard deviations of 
arrays are of the form l/(y~\-gi) and ll(x-\-f2\ respectively, 
it follows that the functional equation (8) takes the form 

g=01(yW1{{y+g1)x+f1y+ci} 
= ^(xWA(x+f2)y + g%x + c9}, 

and its solution is /(#+ƒ,) 

(11) z = goix+fiYtiy + giY'e1^, 

which gives Pearson's Type III curves as array curves 
both ways. 

The special cases we have given are to be regarded 
merely as illustrative. Narumi derives a considerable 
number of other surfaces. The publications of Narumi on 
this subject are to consist of Part I, II, and III. Part III 
has not thus far reached me. 

13. Extension of the Charlier System of Representation 
to Functions of Two Variables. While great difficulties 
have been encountered in attempts to pass naturally from 
the Pearson system of generalized frequency curves to 
analogous surfaces for the characterization of frequency 
with respect to two variables, it appears that the way is 
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theoretically fairly clear for the extension of the Charlier 
system of representation to frequency functions of two or more 
variables. N.R. Jorgensen* has contributed to the solution of 
this problem. For simplicity, let us consider a continuous fre­
quency function F(x, y) of only two variables x and y measured 
from their respective mean values and in standard deviations 
as units as in § 6. Then the normal correlation function 

1 -~\4>{x,y) 

where ®(x,y) = (x2-\-y2— 2rxy)/{l—r2) plays a role in 
the representation of F(x,y) analogous to that taken by 
the simple Gaussian function in the Charlier theory. The 
series to be considered is of the form 

^(oc,y). 

m,nj (12) F(x,y)=2Am,ne * 'v TJ< 

where TJm,n is a Hermitet polynomial defined by the equation 

-l<P(x-h,y-k) -iCP(a?,y) ^ i hmkn
 TT 

e —e Zd —r~T t ^ n . 
mini 

Let W(x,y) = (x2+y2Jr2rxy)/(l — r2l and define Vm,n by 
the equation 

eh*+jcy = ^d-t-) 2; JUL. y 
mini 

In 1920, A. Guldbergl directed attention to the fact that 
the coefficient Am,n is readily expressible in moments of the 
given frequency function F(x,y) by use of the well known 
fact that the functions e"^^(XlV) üm,n and Ym>n form a 
biorthogonal system. That is, if we may assume the series (12) 
uniformly convergent, we find the coefficient 

(13) ^ » = ^ + T ^ y - J _ M J_x F{x,y)Vm,ndxdy. 

Since Ym^n is a polynomial in x and y, the coefficients 

* Loc. cit., p. 86. 
t COMPTES RENDUS, vol. 58 (Jan., 1864) ; cf. Oeuvres de Charles 

Hermite, vol. 2, 1908, pp. 301-5. 
t JOURNAL OF THE ROYAL STATISTICAL SOCIETY, vol. 83, p. 127. 
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Am,n are expressible as moments of F(x,y). The series 
represents the fonction subject to conditions of continuity 
and vanishing at infinity given by Wera Myller Lebedeff.* 
The question of representing data by the first few terms of the 
series has not been answered and can probably be answered 
only by experiments with a wide range of distributions. 

IV. THE THEORY OF EANDOM SAMPLING 

14. Introduction. The theory of random sampling deals 
with problems of drawing inferences concerning the con­
stitution of a statistical aggregate or class of things from the 
nature of a representative part taken as a random sample. 
The drawing of such statistical inferences about a class of 
individuals from the analysis of a sample is fundamental 
in the applications of mathematical statistics in insurance, 
in biology, and in other branches of science. That is to 
say, past experience with limited samples has been applied 
very widely to predict future events among the class from 
which the sample was drawn. But when we undertake 
the exact formulation of the theory which supports the 
applications even in the case of the simplest statistical 
ratios, we may find ourselves involved in the disputes about 
the validity of the theory of inverse probabilities. It is 
not my purpose here to enter upon a discussion of this 
well known controversy. I mention it simply because it 
seems desirable to direct attention to two recent interesting 
papers on the subject by E. T.Whittakert and Karl Pearson£ 
both published in 1920 as well as to the renewed attack on 
the theory by J. M. Keynes in his book published in 1921. 

The Pearson school of statisticians has accepted the theory 
of inductive probability, and the statisticians of this school 
have been very active in dealing with the problems of 
sampling errors in various kinds of averages, statistical 
coefficients and parameters of frequency curves. Among 

* Loc. cit., p. 415. 

t TEANSACTIONS OF THE FACULTY OF ACTUABIES, vol. 8 (1920), p. 163. 

* BIOMETBIKA, vol. 13 (1920-21), p. 1. 
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the various sampling problems dealt with recently, the 
most interesting to me are the problems of the distribution 
of certain averages and coefficients obtained from small 
samples, and the extensions of the theorem of Tchebychef. 
I shall give the remaining time to these two topics. 

15. Fluctuations of Certain Averages obtained from Small 
Samples. In the development of the theory of sampling, 
the assumption has usually been made that the sample con­
tains a large number of individuals. But the lower bound 
of large numbers has remained poorly defined in this con­
nection. For example, the usual probable error formulas 
have been applied to as few as ten observations. If there is 
a misapplication of formulas due to smallness of the sample, 
the source of the error would probably lie in the fact that the 
statistical constants from small samples are not distributed 
even roughly in accord with a Gaussian probability curve. 

Beginning with a paper by Student* in 1908 there have 
been important experimental and theoretical results obtained 
on the distribution of arithmetic means, standard deviations, 
and correlation coefficients obtained from small samples. 
The material used in the experiments to which I refer 
consisted of 3000 pairs of measurements. The measurements 
were written on 3000 cardboards which were shuffled and 
from which 750 sets of 4 were taken. These provided two 
sets of 750 standard deviations each calculated from only 
four values, and 750 correlation coefficients each calculated 
from only four pairs of values. The distribution of the given 
3000 values was roughly Gaussian in character. The simple 
inspection of the frequency distribution made it fairly obvious 
that the standard deviations experimentally obtained from 
sets of four were not distributed in accord with the Gaussian 
curve. Student found by empirical methods that the curve 

_ 1U3?L 
(1) y = yoxn~2e 2<T% 

seemed appropriate to give the distribution of standard 

* BlOMETRIKA, VOl. 5 (1908), p . 1. 
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deviations s obtained from samples of n, where a is the 
standard deviation of the infinite population from which 
the samples are drawn. 

In 1915, Karl Pearson* took an important step in advance 
by obtaining the distribution of the standard deviations of 
samples of n variâtes from an infinite population distributed 
in accord with the Gaussian curve. He obtained from 
theoretical considerations the distribution of s identical with 
that which Student found experimentally. 

Moreover, by tabulating fiu j32 and the measure of skewness 
for integral values of n from 4 to 100, Pearson shows that 
(1) approaches the Gaussian curve as n increases provided we 
accept certain necessary conditions, that is fi± = 0, fi2 = 3, 
and skewness equal to zero, as sufficient for practical approach 
to this curve. 

From this table, Pearson concludes that for samples of 
50 the usual theory of probable error of the standard 
deviation holds satisfactorily, and that to apply it to samples 
of 25 would not lead to any error of importance in the 
majority of statistical problems. On the other hand, if a 
small sample, n < 20 say, of a population be taken, 
the value of the standard deviation found from it will be 
usually less than the standard deviation of the population. 

Turning next to the Student t experiment with the dis­
tribution of the 750 correlation coefficients each computed 
from 4 pairs of values mentioned above. The correlation 
coefficient of the whole 3000 pairs from which drawings 
were made was r = . 66. He further selected samples of 8 
and samples of 30 from the population of correlation r =. 66. 
An examination of the experimental results makes it fairly 
obvious that the distributions for samples of 4 and 8 pairs 
are far from normal, and that the average value of r from 
these small samples is smaller than the r = . 66 of the 
total population of 3000 from which the small samples are 

* BIOMETEIKA, vol. 10 (1915), p. 522. 

t BIOMETEIKA, vol. 6 (1908-9), p. 302. 
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drawn. But with samples of 30, the correlation coefficient r 
approaches the correlation coefficient of the total population. 

In a paper published in 1913, H. E. Soper* obtained to 
a second approximation the mean and standard deviation 
of the distribution of the correlation coefficient r from 
samples of n from a population of correlation Q. He con­
cludes that the mean value of the correlation coefficients 
obtained from small samples will be numerically less than 
the true correlation coefficient obtained from the aggregate 
and will be approximately represented by the formula 

where n is the number in the sample. 
In a paper published in 1915, E. A. Fishert dealt with the 

frequency distribution of the correlation coefficient derived 
from samples of n pairs each taken at random from an 
infinite population distributed in accord with the normal 
correlation surface 

1 1 | (x-mi)* . (y—m2y 2^x-m1)(y—m2)\ 
g= e 2(1-/>2)1 ai cr* <Tx<ry f, 

where Q is the correlation coefficient. The frequency 
function obtained for the distribution of r is given by 

n—1 

( 2 ) v _fW_(l-V) 2
 (,_^fr- ^ rarccoBfeyQ] 

V) Vn-Mr)- 7t{n_3) , 1 1 ' ) d{rQ)n-2 [y- jz^v J' 

The derivation of this form of fn (r) would probably be 
found of special interest to those who are seeking applications 
of certain general conceptions derived from the geometry of 
n-dimensional space. The ordinates yn cannot be readily 
calculated from (2) except for small values of n. Moreover 
(2) offers no rapid means of calculating the mean value r, the 
modal value of r, or the standard deviation ar to replace the 
approximations obtained by Soper. In order to investigate 

* BIOMETBIKA, vol. 9 (1913), p. 91. 
t BIOMETBIKA, vol. 10 (1915), p. 507. 
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the approach of (2) to a normal curve as n increases, it seems 
necessary to provide methods for computing the ordinates yn 

and moment coefficients for (2). This is accomplished in a 
joint memoir* by H. E. Soper, A. W.Young, B. M. Cave, 
A. Lee, and Karl Pearson. This memoir involves a tremendous 
amount of laborious numerical computation as well as the 
results of considerable theoretical work in adapting the 
function yn = fn (r) and its moment coefficients to numerical 
calculation. The theoretical part consisted largely in ob­
taining series which converge with sufficient rapidity to be 
used in the numerical calculations. The tabulated values 
show the ordinates yn at intervals of .05 for r from —1 to 
+ 1 , at intervals of .1 for Q from 0 to .9, and for n = 3, 4, 
5, . . . , 25, 50, 100 and 400, making in all 260 frequency 
distributions. The values of fa and fa were computed for 
these distributions to study the approach to the normal curve. 

With respect to the approach of these distributions to the 
Gaussian form with increasing values of w, it is found that 
the necessary conditions fa = 0, fa = 3 for a Gaussian 
distribution are not well fulfilled for samples of 25 or even 50 
whatever the value of Q. For samples of 100, the approach 
to the conditions fa — Q9fa = 3 is fair for low values of Q, 
but f or large values of Q, say # > . 5 , there is considerable 
deviation of fa from 0, and of fa from 3. For samples of 400, 
on the whole, the approach to the necessary conditions fa = 0, 
fa = 3 is close, but there is quite a sensible deviation from 
normality when £^>.8. These results give us a striking 
warning of the dangers of applying the ordinary formula for 
the probable error of r when we have small samples. 

In conclusion, it should not be forgotten that the assumption 
is made, in this theory of the distribution of r from small 
samples, that we have drawn samples from an infinite popu­
lation well described by a normal correlation surface, so 
that the conclusions are not in the strictest sense applicable 
to distributions not normally distributed. 

* BIOMETEIKA, vol. 11 (1915-17), p. 328. 
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16. The Tchebychef Theorem and its Recent Generalizations. 
As the concluding topic of this paper, let us consider the 
recent extensions of the following remarkable theorem of 
Tchebychef which appeared* in the LIOUVILLE JOURNAL 

in 1867: 
THEOREM. If a, b, c, • • • represent the mathematical ex­

pectations of quantities x, y, z, • • • and alf bl9 clf • • • the 
mathematical expectations of their squares x2, y2, z2, • - - the 
probability that the sum x-\-y-\-z-\ is between 

a + b + c-\ yX Va2+b2
L + c\-\ a2—b2—c2 • . . 

and 

a+b + c-\ 1 Va\ + b2 + c2^ a2—b2—c2 • • • 

will always be greater than 1 — 1112, whatever the value oj A. 
Tchebychef proved this theorem by simple algebraic 

methods. One great merit of the theorem lies in its freedom 
from restrictions with respect to the nature of the distribu­
tion of the variables. 

To state the theorem in another form, let us assume the 
frequency distribution of an infinite population with standard 
deviation a. If P(Xa) is the probability that a datum drawn 
at random from this distribution will differ in absolute 
value from the mean of the whole distribution by as much 
as Acr, then 

(3) P{lo) £±, or 1 —P(M) Z1 - ^ 

In 1919, Karl Pearsont published an important general­
ization of the theorem subject to the mathematical condition 
that the frequency function Fix) is such that the integral 

Pa(x—x)28F(x)dx 

exists, where a and b are the lower and upper bounds of 
the distribution. He found 

* Des valeurs moyennes, translated from the Russian by N. M. de 
Khanikof, JOURNAL DE MATHÉMATIQUES, (2), vol. 12, pp. 177-84. 

t BIOMETEIKA, vol. 12 (1919), pp. 284-96. 
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1 T>n*\^1 ^ ^2s 1 02S-2 

l-PM > 1 - ^ ^ i - = 1 ÛT 
or 
(4) W<-^, 

where ^2s is the 2sth moment coefficient about the arith­
metic mean of the area under F(x). If we make 5 = 1, 
we have the special case of the Tchebychef theorem. In 
his proof, Pearson deals with moments pn where n is even. 
Seimatsu Narumi* has pointed out that it is sufficient to 
assume n a positive constant provided the integral 

$™xn{F(x) + F(—x)}dx 
exists. 

It is Pearson's view that, although his inequality is in 
most cases a closer inequality than (3), it is usually not 
close enough to be of practical assistance in drawing 
conclusions. Hence, it becomes important to obtain closer 
inequalities by decreasing the right hand side of (4). This 
was accomplished in papers published almost simultaneously 
by Birger Meidelt and B. H. Camp J by placing certain 
restrictions on the nature of the distribution function F(x). 
But the restrictions are so devised as to leave the distri­
bution function sufficiently free to be useful in the actual 
problems of statistics. The main restriction placed on F{x) 
by Camp is that it is to be a monotonie decreasing function 
of \x\ when \x\ >; cor, c ̂ > 0. The severity of this restriction 
on Fix) varies according to the value of c. Its general 
effect is to exclude distributions which are not represented 
by decreasing functions oi\x\ at points a certain assigned 
distance from the origin. 

With the origin so chosen that zero is at the mean, 
Camp reaches the generalized inequality 

* BIOMETEIKA, vol. 15 (1923), p. 246. 

t COMPTES RENDUS, vol. 175 (1922), p. 806; cf. SKANDINAVISK 

ACTUAEIETIDSKRIET, 1922, p. 210-16. 

X This BULLETIN, vol. 28 (1922), p. 427. 
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2s 

£+ 
A2s l + y ' 1 + y-

(5) P(Acr) ^ •%*• ^ È ^ + T X T ^ H 

where 
2s \2s 

I 2 ^ + 1 

With c = 0, the formula (5) is exactly Pearson's divided 
by [l+l/(2s)]2s . With the origin chosen at the mode instead 
of the mean, and with moments defined with respect to 
the origin, Meidel* shows that 

(1+i) *" 
for any positive value of n^>l. The general effect of the 
work of Camp and Meidel has been to decrease the larger 
number of the Tchebychef inequality by roughly fifty 
per cent. Even with the generalizations, the theorem of 
Tchebychef does not set such close limits on probabilities 
as the Gaussian law, but we should have regard for the 
fact that this theorem in its original form applies to any 
type of distribution, and in its generalized form to very 
general types of distribution. 

In conclusion, it may be added that Markhofft and 
TschuprowJ have in recent years given extensions of the 
work of Tchebychef on mathematical expectation and 
limiting values of probabilities along very different lines 
from those on which I have reported. 

THE UNIVEKSITY OF IOWA. 

* Loc. cit., p. 214. 
t A. A. Markhoff, Wahrscheinlichkeitsrechnung, 1912, p. 67. 
J A. A. Tschuprow, Zur Theorie der Stabilitât statistischer Beihen, 

SKANDINAVISK AKTUAEIEÏIDSKBIFT, 1919. 


