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REDUCTIONS OF ENUMERATIONS
IN HOMOGENEOUS FORMS*

BY E.T. BELL

1. Introduction. By carrying out the work in detail for
the form axz®- by®-+ cz® we shall derive a useful set of
reduction formulas, and illustrate a general process which can
easily be applied to the reduction of the number N(n = f)
of representations of the integer # in any homogeneous
form f of any degree in any number of variables. This
set contains implicitly the complete set of corresponding
reduction formulas for Az®*+ By®+ Cz2 +- - .+ Et?, in any
number of indeterminates x, v, 2, ..., {. The formulas in no
case yield by themselves a complete evaluation of N(n = f)
for any type of », but in many instances they materially
simplify the problem, either by making the evaluation for
J depend upon that for a simpler form, or by reducing
the n to be represented to a more tractable type. By
means of the process developed here, combined with elliptic
function expansions, I have recently obtained several new
complete enumerations for special ternary and quinary qua-
dratic forms; the results will be published in other papers.

Before proceeding to the main discussion it will be in-
structive to glance at what is known concerning N(n =f)
in the simplest case (other than f linear), viz., f= ax?®
—+by®+ - --; when the degree of f exceeds 2 even partial
evaluations of N(n = f) are at present unknown. It seems
tair to say that the simplest case of all, N(n = 2®- by?),
b >0, is still far from complete; Dirichlet’s well known
general theorem? for the number of representations by the
totality of a system of representative forms of determinant—>b

* Presented to the Society, San Francisco Section, April 5, 1924.

T Cf. Dickson’s History, vol. 8, p. 19. References to the other citations
of this introduction can be found by consulting the index to vol. 3,
and running down the references to vol. 2.
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does not of itself give a complete solution when the principal
genus contains more than one class. For f= ax® -+ by® + c2*
there is the complete evaluation of N(n = f) in the case
(a0, b,¢c) = (1, 1, 1) by Gauss, an unproved statement of
Liouville for (a, b, ¢) = (1, 2, 3), partial results by Torelli
for (a, b, 0)=(1, 1, 2), aspecial case of (a, b, )=(1, 2, 2) by
Stieltjes, and beyond these apparently nothing detailed and
specific for this N(n = ). When f= ax®- by®+ cz® + di?,
there is Jacobi’'s N(n = f) for (a, b, ¢, d) = (1, 1, 1, 1),
several theorems of Liouville for @ == 1 and each of b,
¢, d=p% (=0, 1; p =3, 5) times a low power of 2,
some similar results by Humbert when p = 11, or when
p =3, ¢« = 2, and Chapelon’s evaluations when p =5,
a=1,2, These appear to mark the limit of definite progress
in this direction. Complete evaluations of N(n = az®+ by?
—+...) for more than 4 indeterminates z, y, ... exist only
for 5 and 7 squares. These remarks will indicate how
far from satisfactory solutions even the simplest problems
in the enumerative arithmetic of homogeneous forms still are.

The final formulas of this paper in § 5 have been checked.
The nature of the work is such that this verifies all pre-
ceding formulas.

2. Notation. In all that follows p is prime, the inte-
gers n, a, b, ¢ are prime to p, and a, b, ¢ are coprime;
k, M, A, B, C are arbitrary integers; e, 8, y, 0 are inte-
gers > 0. To simplify the printing we shall write

Np®n = ap’” + 0Py’ + op’s’) = (5 9, 8, 7),
in which d, 8, y (also a, b, ¢, n) are regarded as given
constants. Note that p*n is any integer.

3. Lemma. Although it may be obvious that
(1) N(kEM=FkAx*+ kBy*-+ kCz?) = N(M = Ax*+ By*+ Cz?),
we shall prove it, as upon this depends all that follows.

The > on the left extending to all integers zx, y, 2= 0,
that on the right to all integers M,

DA RBY RO = DGR N (M = kAa*+ kBy*+ kC2?).
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In this replace g by Vq—:
DA+ B0 = DM N (kM = kAx®+ kBy? -+ kC2).
In the original identity take k=1:
DqAT BP0 = DI MN(M = Ax*+ By*+ C).

By comparing the second identity with the third we get (1).

By the notation explained in § 2, the evaluation of
N(M = Ax®+ By*+ C2® is equivalent to that of («; d, 8, y).
By the lemma, if « < 6, 8,7, (e; 0,8,7)=0; if « >J,(«; J,d, 0)
= (e—9J; 1,1, 1); whileif J, 8, y are unequal, one of them,
say J, is not greater than either of the others, and if
“25, (e 67 ﬂ+"; 7’+6)=(0‘_6; 0, 8, y).

Hence the evaluation of N(M = Az*+ By®+ Cz% is re-
duced to that of (e; 0, 8, y), in which, without loss of
generality, we may assume y=>48. KEvidently the inequality
7=>8 (by the definitions of 8, y in § 2) can be eliminated
by replacing y by y-+ 8 wherever y occurs, Eliminations
of this kind simplify the final formulas. The further evalua-
tion of N(M = Ax*+ By*-+ Cz®) is now reduced to that of
(5 0, 8, ,8—-{—7),

4. Preliminary Reductions. Let s=0 be an integer such
that «—2s, 8—2s=>0, and therefore also 8-+y—2s=>0.
Suppose for a moment that for some s >0 we have «—2s,
B—2s=>0. If («; 0, 8, B+ y) >0, then must x =0 mod p,
and therefore by s applications of the Lemma (§ 3),

@ (@0, 8, B+y) = (e—25; 0, 8—25, B+ y —29),

which obviously remains true when s=0 and when
(e; 0, 8, B+ y)=0. Choose for s the lesser of [«/2], [8/2],
where [t] is the greatest integer <¢; when a«=28, take
s==[8/2]. Clearly the reductions (2) can be performed pre-
cisely s times, s being as just chosen. Separating out the
cases of (2) for even and odd values of 8 we get

1.1) <8, 2e¢;0,28,28+7)=(0; 0, 28— 2«, 28}y —2¢);
(1.2) a=>8, (2e; 0, 28, 28+ y) = (2¢—28; 0, 0, »);
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(1.3) e<B, 2a+1; 0, 28, 28+7)

=(1;0, 28—2¢«, 28+ y—20);
(1.4) e>8, 2a+1; 0,28,28+y)=Q2e+1—28; 0,0, 7);
and the complementary set,

2.1) «<8, (2¢; 0, 28+1,28+7+1)
=(0; 0, 284+ 1—2¢, 284y +1—20);
2.9) «>8, (2a; 0, 28+1,28+7+1)
=(2¢—28; 0,1, y+1);
(2.3) aéﬂy (2e+1; 0, 2ﬂ+17 28+r+1)
=(1; 0, 28+ 1—2«, 218+3’+1"—20‘)9
(2.4) =8, Ca+1;0,28+1,28+4+r+1)
— @e+1—28; 0,1, y+1).

Only those on the right having a pair of zeros in the
symbol are irreducible. The further reduction of the rest
is effected in a similar way, first powers of the prime p,
instead of second, being now successively eliminated. The
process is seen by examining the right of (1. 3), (2. 3). When
a<< B we have 28—2a>2, 284 y—2a=>2, and since pn
is the number represented in the right of (1. 3), it follows
that =0 mod p. Applying the lemma, we get
(1; 0, 28—2¢, 28+y—2¢)

=(0; 1, 286—2a—1, 28+ y—2a—1),
and this evidently vanishes (when « < 8). Similarly for (2. 3),
and we have

(1.31) e <8, 2a+1; 0, 28, 28+ ) = 0;
(2.31) e< B, 2a+1;0,28+1,284+y+1)=0,

which may replace (1. 3), (2.3), since the cases « =28 are
included in (1.4), (2. 4).
Similarly, provided that ¢«—2s, y—2s+1>0, we get

(@; 0,1, 1) =(e—2s; 0, 1, y+1—2s),
and, provided that «—1—2s, y—2s=>0,
(e; 0,1, y+1)=(e—1—2s; 1, 0, y —2s).

Upon separation of cases according to even, odd y, these
yield the formulas which enable us to complete the re-
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duction of (1.1)—(2.4). It is unnecessary to preserve the
very simple calculations. We find
3.1) “g)’—l‘l, (2ec5 0, 1, 27+2)=(0; 0,1, 27’+2_2“);
(3.2) ezy+1, (2¢; 0, 1,2y+2)=@2a—2y—2;0,1,0);
(3.3) a<y, 2a+1; 0,1,2y42)=(0; 1,0, 2y+1—2a);
3.4 0‘;_7“’1, 2a+1; 0,1, 2y 4+2)=2a¢—2y—1; 0,1,0),
and the complementary set
4. 1) exy, 2e; 0,1, 2y+1)=10; 0, 1, 2y+1—2a);
(4.2) a>y+1, 2e; 0,1, 2y+1)=Q2a—2y—1; 1,0, 0);
(4.3) ey,  (2e+1;0,1,2y+1)=(0; 1, 0, 2y —20);
4.4) a=>y, 2a+1;0,1, 2y+1)=Q2x—2y; 1, 0, 0),
all of which are further irreducible. Note that since y
may take the value zero, («; 0, 1, 2y) is not necessarily
reducible, while the type considered, («; O, 1, 2y 4 2), is.
Apply (3. 1)—(4. 4) to (2. 2), (2. 4) after having first elimi-
nated the condition «> @8 by replacing « wherever it occurs
by 8-+ «. The results are:
6.1) e<y, (@8-+2e; 0,281, 28+27+1)
=(0; 0,1, 2y +1—20);
(5.2) azy+1, 28+ 2e; 0,28+ 1, 28427+ 1)
= (2e—2y—1; 1, 0, 0);
5. 3) =y, 28+2a+1;0,284+1,28+2r+1)
=(0; 1, 0, 2y — 20);
(5.4) a>y, 2842415 0,284+1,28+42y+1)
= (2e—2y; 1, 0, 0);
and the complementary set,
(6.1) a<y+1, (284 2«; 0,2841, 2842y +2)
=(0; 0, 1, 2y 4+ 2 — 2a);
(6.2) e=y+1, 284 2«; 0,28+1, 28+ 27+ 2)
=2a—2y—2; 0, 1, 0);
6.3) «<y, 28+ 2e+1;0,28+1, 28+2y+2)
=(0; 1,0, 2y + 1 — 2a);
(6.4) e=y+1, 28+2e¢+1; 0,2841, 28427+ 2)
= (2« —2y—1; 0, 1, 0).
Examining (1.1)—(2.4) and (5.1)—(6.4) we see it is
necessary to consider only
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MW Np“n = az®+ yp*’i2 + op*722) = Ni(p®n),
(8) N(pan = qu? ‘I‘ bp2ﬁ+1y2 _+_ Cp2ﬂ+2y+1zz) = 2\72(10“72),
@) Np“n = ao? + bp? Ty + T2 = Ny(p®n),

in order, by the reductions in § 3, to obtain a complete
set of reduction formulas for

(10) N(M = Ax*+ By* -+ C2°).

That the three sets in § 5 are exhaustive is evident by
inspection on referring to the notation in § 2.

b. Final Formulas. For the N; (¢=1, 2, 3) see (7),
8), (9. From (1.1)—(1.4) and (1.31), by eliminating the
condition «=48, we find

O Form aax? -+ bpPy? + cp?P 722
a<B, Ni(p**n)=(0;0, 28—2a, 28+ y—2a);
a<<B, N,(p?ip)=0;
M(p2ﬂ+“n) =(e; 0, 0, ).

From (2.1), (2.31) with y replaced by 2y, and from
(5. 1)—(5. 4) we find upon eliminating e>y-+1, a>y.

(1) Form aaP - bpPtyy2 - op?P ey,

a <8, Ny(p* n)—(O 0 2,e+ 1—2@a, 28+ 2y =1—20);
a<,3 Ng(p2a+1
a<y, Na(p*t" ) = (0 0,1, 2y +1—2e);
( 28-+2y+20+2 )—(Qa-l—l 1, 0, 0);
a<y, N2( 2B+-20+1 )—(0 1, 0, 2y —2a);
-sz( 28-4-2y+-20+41 ) —_ (20:, 1, 0’ 0).

From (2. 1), (2.31) with y replaced by 2y -+ 1, and from
(6. 1)—(6. 4) upon elimination of «>y -4 1 we find
(II1) Form ax? + bp2‘8+1 2 + cp2ﬂ+27+2 2.

<8, Ny(p**n) = (0; 0, 28+ 1—2¢, 28+ 2y +2—2a);
a<f, No(p***n) = 0;
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a<y+1, Ny(p?t2%n) = (0; 0, 1, 27 + 2 — 2);
Ny(p?Pror+eetey) — (2q; 0, 1, 0);
a<y, Ny(p?#t2t1p) = (0 1, 0, 27 +1—2a);
Ny(p2Ptarteetsy) — 944150, 1, 0).
In all of the above no further reduction is possible.

6. Successive Reductions. L.et D be the greatest common
divisor of B, C'in (10), and assume without loss of generality
(§ 3) that M, A, B, C are relatively prime in their totality.
Let M = M'p% where p is any prime divisor of D, and
M is prime to p. Apply (D—IID) of § 5. Repeat the
process on the results for each remaining prime divisor
of D, obtaining finally a system of formulas analogous to
(D—AID in which (10), for its several possible cases ac-
cording to the prime factors of D, is replaced by a corres-
ponding N(M'p* = A'x® + B'y? + C’z% in which no further
reduction with respect to B’, ¢’ is possible. This system
of formulas may conveniently be written as a set of equalities
between r-rowed matrices, where » is the number of distinct
prime factors of D. To each pair of 4, B, C in (10) will
correspond such a system of equalities, and all three to-
gether give the complete reduction of (10). It would be
of interest to discuss this set.

7. (V) Form Ax*+ By*+C2+...+ Et*. Asin § 3
the reduction for this form is referred to that of

N(p®n = 22+ pPy? + pP 72 4. pPHrT e ),
where 8, y,..., & are integers =0, and a precisely similar
argument shows immediately that this NV is reduced when
N(p®n = a2 -+ pPy? + pP172?) is reduced. The complete set
of reduction formulas can be written down from § 5.

8. General Form. When the degree of f is 3+ «, the
process of reducing N(n = f) is evident from the fore-
going; the discussion now depends upon [k/(3 + «)] instead
of [k/2].
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