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from (16), on eliminating h or k, that h = [tht, k = lku 

where h± and k± are integral, and we get 

(17) hid! + fei&i = 0 (mod <?i), h^ + fei^i = 0 (mod et). 

The nature of the singularities on the sides of the triangle 
ABC is readily determined. For instance, suppose in (6) 
c >• a > 0. Then (6) gives an expansion for t in ascending 
powers of x1/a, and thence we get for y an expansion of 
the form 

y = xc>a {a + fix1'0* + yx^a H ) 

in general, fixing the nature of the singularity for which 
t is zero. 
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SURFACES WITH ORTHOGONAL LOCI OF THE 
CENTERS OF GEODESIC CURVATURE OF AN 

ORTHOGONAL SYSTEM* 
BY MALCOLM FOSTER 

We consider a surface 8 referred to any orthogonal 
system. Let Ot and G* be the centers of geodesic curvature 
of the curves u = const, and v = const, respectively, 
through any point M of 8. As M is displaced over the 
entire surface the loci of 0± and 02 will in general be 
two surfaces St and S2, corresponding elements of which 
are those which result from a common displacement of If. 
We ask: What are the surfaces 8 for which the surfaces 
St and S2 correspond with orthogonality of linear elements? 

The condition that the displacements of C± and C2 be 
orthogonal for every displacement of M, is that the absolute 
displacements of these points in the directions of the axes 
of the moving trihedral at M satisfy the relation 

(1) 2 dxi ÖX2 = 0, 

* Presented to the Society, April 28, 1923. 
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for all values of dv/du. The #-axis of the trihedral is chosen 
tangent to the curve v = const. The radii of geodesic 
curvature of the curves u = const, and v = const, we denote 
by QgV and Qgu respectively. The relation (1) becomes* 

Qgu^i I 1 ^ du —^ dv + Hdujdv 

+ Qgvrl- - du + - ^ dv + ri±dv\du 
ou dv I 

— QgvQguipdu + Pidv)(qdu + Qidv) = 0. 

Hence, setting the coefficients of du2, dudv, and dv2 equal 

to zero, we ge 

(2) « 

Now 

QguTiVl — 

[ 

o — 2i w» — r > 

t 

^(to*î-r^)=0, 

— &n#0u (Mi + JPi?) = 0, 

^ ( e ^ i î i + n - | f ) = o. 
5 

and Qgu = - ; t using these ^ 

relations between the fundamental quantities for the sur­
face:}:, the equations (2) reduce to 

(3) Mi = °> 
i dQgv A 

since Qgv, qgu =# 0. 
Since p = D'/rj, and qt = — Z>7£,§ we see from the 

second member of (3) that both p and qlf are zero, and 
that the parametric curves must be the lines of curvature. 

* Eisenhart, Differential Geometry of Curves and Surfaces, p. 170. 
t Eisenhart, p. 132, formula (47), and p. 167, formulas (45). 
J Eisenhart, p. 168 and p. 170. 
§ Eisenhart, p. 174, formulas (73). 
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Consequently the first and third members of (3) reduce to * 

du 

dQgv_ 
dv 

o, 

0. 

Hence 
(4) Qgv = U, Qgu = yj 

where U and V are functions of u and v alone respectively. 
The parametric curves therefore have constant geodesic 
curvature and the system is isothermal.f The surface is 
therefore isothermal. 

Making use of (4), we see that the elements ds\ and 
ds\ of the loci of G1 and G2 respectively, are 

(5) 

dr\ 

du 

L K 
dr_ 
dv 

+ a* 

+ rl+pl 

du2, 

dv\ 

Hence the loci of Gx and G2 are curves and not surfaces. 
As the vertex of the trihedral describes a curve u = const, 
the point Gx remains fixed, and as the vertex of the 
trihedral describes a curve v = const, the point G2 remains 
fixed. The lines of curvature are therefore spherical in 
both systems; they lie on spheres whose centers lie on 
the loci of (?i and G2, and which are mutually orthogonal 
with 8 at every point. 

We denote the curves which are the loci of Gx and G2 

by rx and T2 respectively. The curve i \ is described by 
Gi as the vertex of the trihedral describes every curve 
v = const., and r2 is described by G2 as the vertex of 

* We exclude the cases where either r = 0, or rx — 0, since in 
either case the curves in one family are geodesies, and one of the 
points 6ri and G2 is at infinity. 

f Eisenhart, p. 137. 
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the trihedral describes every curve u = const. Suppose 
that the vertex of the trihedral describes a definite curve 
u = const. The point G± remains fixed at some point on 
r± while G2 describes r2, and every tangent to r2 will 
be perpendicular to the fixed tangent to r± at G±. The 
curve T2 is therefore either a plane curve whose plane is 
perpendicular to the fixed tangent to r1? or a straight 
line perpendicular to this fixed tangent. Suppose now 
that the vertex of the trihedral describe a second curve 
u = const. Then G1 remains fixed at some second point 
of rx while G2 describes r2, and every tangent to r2 

will be perpendicular to the fixed tangent to r± at the 
second position of G±. Consequently if r2 be a plane 
curve, the locus of Gl9 namely rl9 must be a straight 
line. We obtain similar conclusions if we consider the 
vertex of the trihedral to describe two different curves 
v = const. Hence the locus of at least one of the points 
(?! and G2 is a straight line. 

We suppose that it is the locus of G± which is a 
straight line. Consider the absolute displacements of the 
point G± in the directions of the axes of the trihedral 
Tu of a curve v = const. We have* 

ds ds ' ds Q' ds ? 

where ds is the element of arc of the curve v = const., 
and Q is the radius of first curvature. From the third 
member of (6), we see that the line r± which is the locus 
of (?!, lies in the osculating plane of the curve v = const, 
at every point. Now 

#1 — — Qgv = —,t ds = VE du = Çdti ; 

using these relations, together with the relations between the 
fundamental quantities for the surface, $ equations (6) become 

* Eisenhart, p. 32. 
f It is necessary tha pgv be measured in the opposite direction to 

that in which the parameter u increases. Cf. Darboux, vol. II, p. 359. 
$ Eisenhart, p. 168 and p. 170. 
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(7) dx1==
V^dyL ày± = _rb_ &* = Q> 

ds %rl ? ds QT±
J ds 

Hence 

4'(£)'+Pr$ (8) efo2 - fe 9 , 

where d$i is the element of the line J\. The direction-
cosines of Z\ relative to the trihedral Tu are therefore 

<9)°'= MIXT " ' = 1/ i»7yr' ' ''""• 

IMS?) +rr' IMS?) +$ v : 

Since rx is a straight line fixed in space, we must have 

dat _ dfit _ d^ _ 
& 6Ü5 ds 

These equations become on using (9),* 

(10) ds 

ds 

dax 

ds 

av 
' du' 

dfK 
ds 

= -

ew 3M)
 v du 

9V, 9g 8r t\ 9r, 
9M2 du dul ^ du 

'[«•(£)"+ ™F 

' '[••(£)•+' 

9w ^ 

9w ' 

I V . — 

'rl\ 

rA 

rA 

n 
u> 

= 0, 

* Eisenhart, p. 32. 
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where T is the radius of second curvature of the curve 
v = const. Hence we must have 

(11) 
QHQ-^2 + d : T T — ? -5T^: + S *ï = 0, 

a^2 a^ du I * du Bu 
l = o. 

The curves v = const, are therefore plane; and since they 
are spherical, they are circles. Consequently Q = const., 
and the first member of (11) reduces to 

The relation (12) may also be written in the form 

(13) 

The line r± therefore lies in the plane of every curve 
v = const., and consequently the surfaces have plane lines 
of curvature in one system for which all the planes pass 
through the straight line i \ ; such surfaces are called sur­
faces of Joachimsthal.* 

Finally, the surfaces considered are isothermal surfaces 
of Joachimsthal for which the lines of curvature which lie 
in coaxial planes are circles, and for which either the 
relation (12) holds, or the corresponding relation is satisfied 
with reference to the curves u — const. 

Y A L E U N I V E R S I T Y 

* Eisenhart, pp. 308-310. 


