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REPORT ON CURVES TRACED ON ALGEBRAIC 
SURFACES* 

BY S. LEFSCHETZ 

1. Introduction. An extensive literature to which we pro­
pose to devote this report has grown up around the following 
question and the related transcendental theory. Given an 
algebraic surface, what can be said in regard to the distribution 
of its continuous systems of algebraic curves'! f For various 
reasons we have chosen in place of the chronological presenta­
tion one in which function theory and analysis situs play the 
predominant part, and that has been made possible by two 
papers of Poincaré (s, I, II) . We must however recall at the 
outset that the general answer to the above question had 
been given earlier by Severi (u, V, VI), his methods being 
largely of an algebro-geometric nature (see § 14), except for 
the use of a very important transcendental theorem due to 
Picard (g, II , p. 241). In favor of the methods which domi­
nate this report, it must be stated that they alone made pos­
sible the solution of some important problems, and further­
more have notably enriched the theory. 

A question similar to the above may be asked concerning 
algebraic varieties, but in order to remain within proper 
bounds, we have deemed it best to omit them altogether. 

2. Connectivity Indices. We shall have occasion to con­
sider throughout a basic n-dimensional manifold Wn, % usually 
an algebraic curve (n = 2), or a surface (n = 4). A sum of 
closed, fc-dimensional, two-sided, analytic manifolds in Wn 

is called a k-cycle of the manifold, and shall be denoted 
by IV If it bounds, it is a zero-cycle; the fact being expressed 
by a homology: Tk ~ 0 mod Wn. Homologies can be added 

* Presented before the Society at the Symposium held in Chicago, April 
13, 1923. 

t The properties of linear and continuous systems, so successfully in­
vestigated by Castelnuovo, Enriques, and Severi, have been described by 
them in three readily accessible reports (g, II, p. 485; e; u, XI). These 
and similar references refer to the bibliography at the end of the report. 

t For a more extended topological discussion see n, II, § 1; v, Ch. 4. 
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and also multiplied (but not divided) by integers. If several 
fc-cycles satisfy no homology they are independent The 
maximum number Rk of such cycles is the kth. connectivity 
index (linear index for k = 1). The index ü i of an algebraic 
variety is always even. For an algebraic curve, %Ri = p is the 
genus, for an algebraic surface or variety, | JBI = q is the irregu­
larity (n, II , p. 233; n, VII, Ch. 2). 

3. Abelian Integrals. We recall that by an Abelian integral 
attached to the algebraic curve C, of order m and genus p, 
whose equation is f(x, y) — 0, is meant an integral 

fR(x, y)dxy 

where R is rational in the coordinates of a variable point on 
C. A period of it is its value taken over a cycle Ti of C. 
The integral is of the first kind when it is holomorphic 
everywhere on the curve. I t is then of the form 

r Q(x, y)dx 

where Q is an adjoint polynomial of order m — 3.* The 
maximum number of linearly independent f integrals of the 
first kind is equal to p (see r). Let ui, u2, • • -, up be a set 
of such integrals, and consider the equations 

53 I dui= vh (i = 1,2, ••-,?), 

where the v's are constant, and the unknowns are the upper 
limits Ah on C. 

(a) When there is more than one solution there are an 
infinite number, and the most general one depends linearly 
upon r ^ n — p parameters (Abel; Clebsch; c, p. 395). Their 
totality constitutes a so-called linear series on C. 

(b) For n = p the solution is in general unique (inversion 
in the sense of Jacobi; see c, p. 463). In the exceptional case, 
a certain number p — p' of the points may be assigned arbi­
trarily, and the remaining p' are then uniquely determined. 

* When C has no other singularities than double points with distinct 
tangents, an adjoint polynomial is one which vanishes at the double points. 
A similar definition holds for surfaces, with the double curve in place of 
the double points. See r. 

f In the sense that no linear combination of them is constant. 
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4. Algebraic Surfaces, We shall denote our surface by F, 
take for its equation f(x, y, z) = 0 and assume it irreducible, 
of order m, with the genus of a generic plane section (to be de­
noted by H) equal to p. The special sections cut out by 
planes y = Ct shall be called Hy. We shall furthermore assume 
F with only ordinary singularities* (double curve with triple 
points in finite number) and in arbitrary position as to the axes 
and the plane at infinity. The section Hy will then be of genus 
p unless its plane is tangent to F, when the genus is lowered 
to p — 1. The values ah a2, • - -, an corresponding to con­
tact are its critical values and n is the class of F. To each 
ah is attached an important cycle PL of F: it is the cycle ôk which 
tends to a point when y approaches a& (vanishing cycle). 
When y turns around afc, the increment of any Ti of Hy is 
homologous to a multiple of ok mod. Hy (Picard, q, I, p. 95; 
n, VII, Ch. 2). 

5. Abelian Sums attached to Algebraic Curves. A notable 
achievement it was of Poincaré's to have discovered a set of 
simple expressions that characterize continuous systems of 
algebraic curves on F (s, II , p. 56). By taking advantage 
of certain results known before his work but which follow 
readily also from his methods, we shall obtain easily a set 
of somewhat simpler expressions that will suffice for our pur­
poses (n, IV, p. 343; u, IX, p. 204). 

To Hy are attached p linearly independent integrals of the 
first kind of the particularly simple type 

U; = fQ*XjJ'Z)dx 0'= 1,2, ••-,?), 
where the Q's are adjoint polynomials of order m — 3 in x 
and z; however q of them, say the last q, are of degree m — 2 
in x, y, and z, while the remaining p —- q of them are still of 
degree m — 3 when y is taken into consideration. Further­
more the periods of up-q+i with respect to the vanishing cycles 
ök are all zero, f 

* Any F can be birationally reduced to that particular kind (Beppo 
Levi, o; Chisini, ƒ). 

t The integrals up-q±i are what q linearly independent integrals of total 
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Let now A\, A2, • • -, Am be the fixed points of Hy (all at 
infinity), and let C be an arbitrary algebraic curve on F. The 
curve C may go through some ^4's with varied multiplicities. 
Let l?i, B2, • • •, Bv be a group of points on Hy, including all 
variable points of intersection of C and Hy, and some of 
the A's, each taken with any multiplicity whatever. Let us 
then consider the sums 

(1) # ) = S du,, ( j = 1,2, • • - ,?) . 

From the behavior of the v's, we find the relations 

(2) J 2 ^ J A r — ? / 

IV-*H(») = aj, (Z = 1, 2, — , q), 

where the a's are constants, the X's are integers, and By*, is the 
period of % with respect to 5*. These expressions are basic 
for what follows. 

6. Existence Theorem and its Interpretation. Under what 
circumstances can the v's given by (2) yield, by means of (1), 
points Bh with an algebraic curve C for locus? Assign to all 
but p' ^ p of the B's the position A\, and solve for the 
remainder as in § 3, pf having the same meaning as there. 
On discussing the equations obtained (Poincaré, s, II, p. 75; 
s, III, p. 41; Lefschetz, n, VII, Ch. 4; Severi, u, IX, p. 
278), the following necessary and sufficient conditions are 
obtained: 

(a) The v's must be regular at y = a. 
(b) Let there be constants ph such that 

(3) - 4 - E 0»QA(*, 2/, 2) s QOr, y, z) 

is finite when y approaches y$. Similarly, the expression 

2 PhVh(y) 
y - yo 

must equally remain finite when y approaches yo. 
differentials of the first kind of F (see § 11) become when y is held con­
stant. The possibility of subdividing the u's into two groups as here 
indicated is based upon the fundamental result recalled (loc. cit.), together 
with a theorem proved by Picard (qt II, p. 437) and Severi (u9 VIII). 
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Conditions (a) and (b) are unsatisfactory notably in that they 
involve the particular variable y. From them may be derived 
others of a more significant nature and in particular not involv­
ing y (Lefschetz, n, III; n, IV, p. 345; n, VII, Ch. 4). The 
polynomial Q in (3) is adjoint of order m — 4, hence 

(4) jjqjBffAdxdy 
is finite everywhere on F. In the usual terminology we say 
that it is of the first kind (JSToether, p, I). As a matter of 
fact there is a relation (3) for every Q, hence (4) is arbitrary 
of its kind. We then have the following theorem. 

In order that there may correspond to the (y)'s an algebraic 
curve C, there must exist a cycle T% with respect to which the 
period of every double integral of the first kind is zero* 

The cycle T2 is readily described. Let A& be the locus of 
ôk as y describes aa^ Picard (g, II, p. 335) and Poincaré 
(s, II, p. 57) for finite cycles and Lefschetz (n, IV, Ch. 3) 
for any cycle, have established the homology 

r2 ~ 2 f̂cAfc + part of Ha, mod F. 

When C exists we have (n, IV, Ch. 4) 

C ~ 22 ^kàk + part of Ha> mod F, 
the X's being the same integers as in (2). This brings out 
clearly the relation between them and the curve. 

7. Equivalence of Curves. A variable curve C of intersection 
of F with a surface whose equation contains r linear param­
eters gives rise to a linear system of dimension r, denoted 
by | C I. This system is complete if its curves do not belong to 
another of dimension > r, as shall be assumed throughout. 
The complete system determined by a given curve is unique. 

If the irregularity q is greater than zero, the surface con­
tains continuous systems whose curves do not all belong to 
one and the same linear system (e, p. 707). We denote by 

* A noteworthy feature of this theorem is that it is the only one known 
concerning periods of double integrals of the first kind. This is in striking 
contrast with Abelian integrals of the first kind for the periods of which 
an extensive body of theorems has long been available. 



1923.] CURVES ON ALGEBRAIC SURFACES 247 

{0} the amplest system generated by all variable curves 
that may approach 0. It contains all systems | 0 | determined 
by its curves, and may be thought of as an algebraic variety 
whose elements are linear systems. Indeed when {0} is 
sufficiently general, this variety is an Abelian variety of genus 
q, the so-called Picard variety of F. 

By | 0 + D | and {0 + D} are meant the systems defined 
by the composite curve 0 + D. They are uniquely deter­
mined by | 0 | and \D\ in the first case, and by {0} and {D} 
in the second case. If D is in \C\ (or in {0}) we write | 20 | 
(or {20}) for the sum. The meaning of \kC\ and of {kC} 
follows immediately, if k is a positive integer. Likewise the 
meaning of | 0 — D \ and of {0 — D} is immediate (see 
h). The last two systems may not actually exist; they 
are then called virtual* Although not represented by any 
geometric configuration, there are important related symbols, 
and the introduction of these systems (Severi, u, X) has 
been very useful. Similar remarks hold for I&1O1+&2O2 
+ • • • + kvCv I and {hd + k2C2 + • • • + kvCv), where the 
fc's are integers. 

The v's are the same for all curves of a linear system; and 
for curves of a continuous system, they differ in the con­
stants a, but not in the integers X. In any case it is clear that 
the v's of the same index are combined like their curves, t 

A partial result of Poincaré's (s, II, p. 98) which I have 
completed is the following theorem (n, IV, Ch. 4). 

If 0 and D have the same v's, then D belongs to\C\. If their 
integers X are the same, i.e., if only the first p — q functions v 
are the same, then there is a positive integer k such that {C + kll} 
and {D + kH} coincide. 

This justifies the following definition: 0 and D are equiva­
lent, and we write 0 = D if there is an E such that {0 + E) 
and {D + E} coincide. A meaning is then readily attributed 

* Moreover, even when {C — D] exists it is not necessarily unique. 
f Henceforth we mean by the set of v's corresponding to C that ob­

tained when all points of intersection of C with Hy are considered and no 
others. 
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to a relation 
M1C1 + M2C2 + • • • + pvCv = 0. 

These notions go back essentially to Severi (u, V, p. 198). 
However, his definition of equivalence is somewhat narrow. 
The question has been searchingly examined by Albanese 
and our definition corresponds to what he calls virtual equiva­
lence (b, p. 165). 

8. Identity with Homology. Much interest is added to what 
precedes by this proposition (Lefschetz, n, IV, p. 347; n, VII, 
Ch. 4) : There is complete equivalence between the two relations 

Z / * A = 0 ; £ M A ~ 0, mod F. 
Thus a purely algebro-geometric notion is reduced to one of 
analysis situs. Well known propositions from the latter 
theory yield at once these results, whose geometric content 
we owe to Severi (n, IV; n, VI; u, V; u, VI): 

(a) There is a positive integer p such that any p + 1 curves 
satisfy a relation of equivalence, this not being the case for some 
sets of p of them. The number p is the well known Picard 
number (q, II , p. 241). 

(b) The number p is the maximum number of distinct two-
cycles with respect to which every double integral of the first 
hind has a zero period. 

(c) Given a curve C, of sufficiently general type* there may 
exist a —• 1 others, C2, Cs, • • -, Ca, such that d 5^ C\, \Ci = \C\, 
X > 1. The number cr is the product of Poincaré's so-called 
torsion coefficients for linear or two-cycles f (they are the 
same for F). 

(d) There exists an ordinary base for the curves of F, i.e., a 
set of curves Ci, C2, • • •, Cp, such that whatever C we may write : 

IxC = jUiCi + M2C2 + • • • + VpCp-

The term ordinary base was introduced by Severi. By in­
creasing the number of curves to p + a — 1, we may have 
what Severi terms a minimum base, i.e., such that p, = 1 f or 

* If virtual curves are admitted no restrictions are needed. 
f Examples of surfaces with <r > 1 have been given by Severi (u, VI), 

Godeaux (k) and the writer (n, IV, p. 362). On such an F can be found 
a Ti such that Wi bounds (X > 1) while Ti does not, and similarly for 
two-cycles. 
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every C. Let these curves be Dh D2f • • •, Dp+,_i. Then 

C = vxDx + v2D2 + • • • + V K - I ^ W - I -

All these curves may be actually chosen effective (non-virtual) 
except for p = 1, when it may be necessary to take <r + 1 
curves in the minimum base, if it be desired to have them all 
effective. The geometric content of this answers completely 
the question proposed at the beginning of our report. Indeed, 
let Z?i, D2, • • •, Dv be a minimum base composed exclusively 
of effective curves. For every C we may write 

c = E mui = Z M "-D* - E M/£* 
where the //'s and //"s are non-negative integers. Then 
there exists a positive integer fi such that the continuous 
systems 

{C + fxH+Z p/Dj, \ixH + Z »"Di\ 
coincide (Albanese, b, p. 204). 

9. Integrals of the Second and Third Kinds. Abelian inte­
grals constitute the natural analytical tool in the study of 
sets of finite points on an algebraic curve, for these points 
appear either as the set of singular points of the integral, or 
as the zeros of the integrand. For an entirely similar reason, 
the integrals that generalize Abelian integrals are of para­
mount interest in investigations on algebraic curves of a sur­
face, and thus find a proper place here. We recall that an 
Abelian integral of the second kind is one behaving every­
where on its curve C like a rational function. Finally an 
integral is of the third kind if not of one of the other two kinds. 
Its singularities other than poles consist in a finite number of 
logarithmic points and to each belongs a logarithmic period 
corresponding to a small circuit surrounding the point. The 
sum of the logarithmic periods is zero. Hence there must be 
at least two logarithmic points, and in fact there is an inte­
gral having any two points of C for logarithmic singularities 
and no other. Integrals of the second kind are linearly 
independent if no linear combination of them reduces to a 
rational function. The maximum number of such integrals 
is twice the genus of C (see r). 
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10. Generalization to Double Integrals. On passing to F 
there are two modes of extending Abelian integrals, first to 
double integrals, next and much less obviously to integrals of 
total differentials (Picard, q, I, p. 102), which we shall con­
sider below. 

We have defined double integrals of the first kind in §6. 
On the transcendental side there is no other theorem than 
the one mentioned there, although the number of linearly 
independent integrals and the related linear system cut out 
by adjoint polynomials of order m — 4 (canonical system) 
have played a large part in investigations on surfaces (e, p. 704), 
this being due of course to their invariance under birational 
transformations. A question which I have been able to 
settle only in some special cases (n, IV, p. 349) is still out­
standing: Can a double integral of the first kind be without 
periods? * The answer (which is probably negative) would 
have an important bearing upon our subject. 

In the several existing treatments of double integrals of 
the second kind (Picard, q, I I ; Lefschetz, n, II , p. 242; n, VII, 
Note I), the type 

(5) I I ( T - + T~ ) dxdy > (U,V rational), 

introduced by Picard, plays somewhat the same part as that 
played by rational functions for Abelian integrals. The reason 
is here again invariance under birational transformations. 
The following mode of attack (n, VII, Note I) seems shortest 
and best, especially in that it exhibits a noteworthy theorem 
and is readily extended to integrals of any multiplicity of a 
higher variety: We take two-cycles in maximum number, 
say IV, T2

2, • -, r2
Po such that no matter how ample a set 

of curves D\, D2, • • •, Dr is given, there is a cycle ~ r2* not 
intersecting any of them. The curves Ci, C2, • • •, Cp of a 
Severi base are two-cycles independent of the T2

l', and every 
T2 depends upon the po + p thus obtained, whence 

Po = i£2 — p. 
I t is then found that J is without period with respect 

* It will be recalled that the corresponding theorem for Abelian inte­
grals is proved with ease (see r). 
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to T2% while on the contrary any integral not of this type will 
have a period with respect to some such cycle, whence it 
follows that the maximum number of linearly independent 
integrals of the second kind is po. But it is known (Alexander, 
a; Lefschetz, n, II, p. 239; n, VII, Ch. 3) that 

R2 = I + 4q + 2, 
where I = n — m — 4p is the well known Zeuthen-Segre in­
variant. From this follows Picard's formula 

Po = I + 4g - p + 2. 
The very suggestive relation between the number of linearly 
independent integrals of the second kind and the number of 
cycles of a certain type may be extended to multiple integrals 
of higher varieties (n, VI).* 

11. Integrals of Total Differentials. By integral of total dif­
ferentials is meant one of type 

SMx+Sdy, | 5 _ | § . 
dy dx 

The classification and independence theorems are as for 
Abelian integrals with q in place of p (Picard, q, I, Ch. V; 
Castelnuovo-Enriques and Severi, e, p. 715; Poincaré, s, II, 
p. 91). The extension of AbeFs theorem has been the object 
of extensive investigations by Severi (u, II, III). 

We are particularly interested in integrals of the third 
kind. Let J be one, Ci, C2, • • •, Ck its singular curves. In 
the vicinity of d the integral behaves either like a rational 
function or like a logarithm. In the latter case there is a 
logarithmic period, and d is a logarithmic curve. By investi­
gating the integral which J determines on Hy, Picard has 
shown that when the logarithmic curves are arbitrary, J 
exists, provided that their number exceeds a certain integer 
p whose first appearance in the literature was precisely in this 
connection (g, II, p. 240). That it coincides with the integer 
denoted by p in § 8 follows from the following elegant theorem 
due to Severi. 

* As a matter of fact it holds for integrals of the second kind of all 
types, down to Abelian integrals. 
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In order that Ci, C2, • • •, C& be logarithmic curves of some 
integral of total differentials, it is necessary and sufficient that 
they satisfy a relation of equivalence (Severi, u, V, p. 209; 
Lefschetz, n, VII, Note I). From this and Picard's result 
follows our assertion as to p. 

12. Genera of Curves. Number of Intersections. We shall 
use the following notations (u, V; n, I): 

[C] = genus of the generic curve of {C} ; 
[CD] = number of intersections of C and 2); 
[C2] = number of intersections of two curves of {C}. 

An extensive symbolic calculus may be developed for these 
expressions (n, I), based on the following two formulas: 
(6) [(C + Df] = [C2] + 2[CD] + [D% 
(7) [(C + D)] = [C] + [D] + [CD] - 1. 

The proof of (6) is immediate, and that of (7) (Noether, 
p, III; Picard, g, II, p. 106) may be carried out very simply 
as follows. Subdivide a Riemann surface for C into a2 two-
cells with «i edges and ao vertices. The expression a0 — «i 
+ a2 is independent of the mode of subdivision and when C 
is irreducible its value is 2 — 2[C]. Let now C vary and 
acquire a new double point. With a properly chosen sub­
division, it is found that a.\ alone Varies, and in fact decreases 
by 2, so that ao — «i + a2 is increased by 2. Similarly, if 
C acquires d double points, the expression increases by 2d. 
Let then the generic curves of {C}, {D}, {C + D} be irredu­
cible, which is the only case of interest, and let a/, a" be the 
ai of D and of the generic curve of {(7+2)}. We have at 
once 

2[CD] + ao" - ai" + a2" = (a0 - «i + «2) 
+ (a0' — aï + aï), 

2[CD] + 2 - 2[(C + D)] = 2 - 2[C] + 2 - 2[D], 
whence (7) follows. 

The formulas (6) and (7) can be greatly generalized, and 
in particular lead to a meaning for the characters of any 
system whatever, even reducible or virtual. More important, 
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however, is the following fact. Let Ci, C2, • • •, Cp be a base, 
and let 

then (n, I, p. 207) 
Ai 1 

(8) [c] = n ( i + c < ) x - ï E ^ 
where the product at the right is to be expanded according 
to the binomial theorem, the terms of degree one and two 
alone being kept and then replaced by the corresponding 
character. Similarly (Severi, u, V, p. 223) 

(9) [CD] = [ ( Z ^ ) ( Z ^ C , £ ) ] = 12>**[CA]. 
I t is clear that (8) and (9) give the genera and the number of 
intersections of curves in terms of similar data concerning 
the curves of the base, when their expressions in terms of the 
base are known. Let, for example, F be a ruled surface, and 
denote a generator by G. From analysis situs (n, VII, Ch. 3) 
it follows readily that any T2 ~ aH + jSG. In particular 
any algebraic curve C ~ aH + /86r, and therefore 

C = aH + j8G. 
(See also Severi, u, I, p. 22.) Since [G2] = 0 we have at 
once a — [CG], number of intersections of C with any G. 
Then from [H2] = m, [HG] = 1, follows /3 = ju — ma, where 
ju = [Cfl], order of C. In terms of a and /x we have G = aH 
+ (M — ma)G. On remarking that [6?2] = 0, [#] = p (herep 
is the genus of the ruled surface also), (8) gives 

[C] = 1 + M(a - 1) + a ( p - 1) - m a ( a
2 " X) • 

Finally, if 

we have from (9) 

[CC] = a»' + fxd - mad. 

Both these formulas, are due to Segre (/). Observe that 
G = 0 requires a = /3 = 0, which means that H and G satisfy 
no equivalence; and as they constitute a minimum base, we 
have p = 2, a = 1. 
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13. Existence Theorem for {C}. In terms of the charac­
ters [C], [C2], some noteworthy results concerning the dimen­
sion of \C\ or {C} may be readily expressed. In order to 
avoid introducing new terms we only give a somewhat special 
proposition taken from the beautiful theory due mostly to 
Castelnuovo-Enriques, and Severi (e, 706) : 

Let s = [C2] — [C] + 1 — q. If s ^ 0, {C} exists and con­
sists of oo « linear systems. Should the generic C be irreducible, 
\C\ is of dimension ^ s. 

14. Seven's Criterion. In his first and most important 
paper on the base, appears this criterion for equivalence: 

If A, B are of the same order and if [A2] = [AB] = [B2] then 
\A = XJ9,X =^0. 

The proof outlined here constitutes a simplification of 
Seven's. Let [B] ^ [A], and set Ht = H+t(A- B). From 
[HB] = [HA], it follows 

[HtH] = [H2] = m, 

i.e., the order of Ht is fixed. I t is then found, say by (8) 
and (9), that 

[Ht
2] - [Ht] + 1 - q = m - p + t[B] - t[A] + 1 - q, 

which approaches oo with t. Hence all systems {Ht), with 
t above a certain limit, exist. As their curves are all of same 
order, the number of distinct systems among them is finite, 
so that, for example, {Htl} and {Ht2}, tx ^ t2, coincide. 
Hence, we have at once 

(*i - h)A = (h - t2)B. 

From this criterion Severi concludes that in order that 
]L*=i XiC*- = 0, it is necessary and sufficient that the matrix 

llfttfl], [C2H], . . . , [CkH]\\ 

(10) [Ci2]> [CiA], '"9 ' ' ' \\ 

lltCiCJ, .-., •••, [CflW 
be of rank < k. 

Suppose for example that d, C2, • • •, C* are logarithmic 
curves of a certain integral of total differentials J with a 
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period a» with respect to Ci. On any curve D not a d there 
is determined an Abelian integral with the [DCt] intersections 
of d and D for logarithmic points, the corresponding periods 
being on. It follows J^ai[Dd] = 0. As a matter of fact D 
may be replaced in this relation by any curve whatever, and 
therefore the matrix (10) is of rank < k. Hence the (O's 
are related by an equivalence. Conversely if they are so 
related J exists and is readily formed. This is essentially 
Seven's proof of his theorem stated in No. 11 (u, V). 

15. Determination of p and cr. The actual determination 
of these elements for a given F is a difficult problem. A regu­
lar process may be given, but it has little practical value. 
However, various special methods have yielded the solution 
in all cases of interest. These cases fall mainly into two 
classes which we examine in turn.* 

The first class consists of surfaces of sufficiently general 
nature contained in known algebraic varieties. The simple 
varieties (linear spaces or their loci, Abelian varieties) yield 
the most significant results. As early as 1882, Noether 
stated (p, II) the following important theorem: An arbitrary 
non-singular surface of order m > 3 situated in an S3 (Sr = 
/•-space) contains only curves that are complete intersections 
with other surface? of £3. It follows that for such a surface 
a plane section constitutes a minimum base, and therefore 
p = a — 1. An incomplete proof of a geometric nature, of 
a similar theorem for surfaces that are complete intersections 
of r — 2 varieties in an Sr was given by Fano (j, II).f 

* In e (p. 730) will be found references pertaining to surfaces not dis­
cussed here. 

t He makes an assumption leading to the impossibility for a double 
integral of the first kind to be without periods. The proof in n, IV, p. 358, 
is correct but for this exception noticed by Fano: the quartic surface 
intersection of two quadrics in $4. The proof (loc. cit.) fails when the 
integer denoted there by n is negative, and a very simple discussion shows 
that when r exceeds three, this occurs only in the case just mentioned. 

As beyond the scope of this report but noteworthy here must be men­
tioned extensions to algebraic varieties (Klein, m; Fano, j t I; Severi, u, 
VIII; Lefschetz, n, IV, p. 359). 
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A very general theorem from which the preceding may be 
derived was given by the writer by means of analysis situs 
(n, IV, p. 355). The following important special case will 
suffice as an indication. In a three-dimensional variety Vs 
let | F | be a linear system of surfaces, oo3 at least, of suffi­
ciently general type (more or less analogous to the system 
of hyperplane sections). If the number of linearly independ­
ent double integrals of the second kind of a generic F exceeds 
that of Vs (see n, IV), a base for the surfaces of Vs intersects 
F into a similar one for its curves. Vs and F have then 
equal numbers p, <r. (These numbers and the bases are 
defined for Vs as for a surface.) Thus, to prove Noether's 
theorem, it is sufficient to show that F possesses double inte­
grals of the first kind with periods not all zero, which can be 
done in this case (n, IV, p. 358; n, VII, Ch. 5). These will 
constitute integrals of the second kind not of type (5) (Picard, 
g, II , p. 365). 

As Ss possesses no double integrals of the second kind that 
are linearly independent, the theorem becomes applicable. 
A plane constitutes a minimum base for S3 and its trace on 
F, that is a plane section, will be one for F. The surface being 
regular, Noether's theorem follows readily. 

The second class of surfaces for which the determination of 
the bases has been carried out is composed of hyperelliptic sur­
faces and surfaces which are the image of pairs of points of 
two algebraic curves. 

In a series of papers dating from 1893, G. Humbert made 
a searching investigation of hyperelliptic surfaces (I). Apply­
ing a result due to Appell, he showed in particular that the 
parametric equation of any curve traced on a hyperelliptic 
surface F is characterized by the vanishing of an intermediary 
function attached to the period matrix (entire function such 
that the addition of periods has merely the effect of multiplying 
it by a linear exponential) (I, first paper). From this and 
through an elegant analysis, Bagnera and de Franchis obtained 
the value of p and the bases even for hyperelliptic surfaces 
of very special type (d). 
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Surfaces images of point-pairs of two algebraic curves 
have been investigated by various authors (e, p. 730), the 
most important contribution being Seven's (u, I). In sub­
stance he shows that to every correspondence between the 
two curves corresponds a curve on F, and vice versa. Let 
X be the number of singular correspondences between the 
two curves in the sense of Hurwitz. Seven's result gives 
readily p = X + 2, a = 1. However, he did not state this 
explicitly (loc. cit.) for his paper antedates by three years his 
first one on the base. 

The surfaces considered in this article furnish ideal appli­
cations for the theorem (6) of § 8 (n, VII, Ch. 4). Results 
already known are obtained with great ease and elegance. 
Moreover the same method has been the basis for the exten­
sion to Abelian varieties (n, IV). 

16. Conclusion. An outstanding question is the deter­
mination of p and the bases when only real curves are taken 
into consideration. So far as we know it has been solved 
only for rational surfaces (Comessati, g) and hyperelliptic 
surfaces (Lefschetz, n, V). 

Algebraic varieties which we have excluded from this 
report are still somewhat terra incognita, although some 
important general theorems are known (n, IV). Perhaps 
we must await further information of a purely geometric 
nature before much progress can be expected. 
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