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A PROPERTY OF CONTINUITY* 
BY D. C. GILLESPIE 

If £ and rj are two points of the interval (a, b) in which the 
function f(x) is continuous, then the function takes on all 
values between ƒ(£) and ƒ (rj) as x changes from £ to rj. This 
property, which we shall designate by (A), is common to all 
continuous functions, but it is possessed also by other func­
tions. I t was shown, for example, by Darbouxf that all 
derived functions possess property (A), and it was pointed 
out by LebesgueJ that still other functions which are neither 
continuous nor derived have the property. 

The present note is concerned with functions having prop­
erty (A). The character of the discontinuities that such a 
function may have is shown. Additional conditions which 
are sufficient to insure that the functions be continuous or 
continuous and monotone follow. A theorem stating that 
when all the discontinuities of a function are of a certain kind 
it has property (A) is proved, and a function having property 
(A) and having its set of points of continuity and its set of 
points of discontinuity each everywhere-dense is constructed. 

If c is a point of discontinuity of a function f(x) having 
property (A), then in any interval about c the function takes on 
all values between its maximum^ and minimum at c. If fix) 
is unbounded, for example from above, in the neighborhood of 
c, the function could have no maximum at c, in which case, 
obviously, f(x) would have, in any interval about c, all values 
greater than its minimum at c. 

As an immediate consequence of the character of the dis­
continuities of a function having property (A), it follows that 
such a function will be continuous unless the set of values it 
assumes an infinite number of times fills at least one interval. 
The converse of this statement is not true. An examination 

* Presented to the Society, Sept. 7, 1920. 
t ANNALES DE L'ECOLE NORMALE (2), vol. 4 (1875), pp. 109, 110. 
ï Leçons sur l'Intégration, p. 92. 
§ Hobson, Theory of Functions of a Real Variable, p. 234, for definition 

of maximum and minimum of a function at a point. 
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of the Weierstrass non-differentiable continuous function re­
veals the fact that it takes on each value between its value at 
0 and its value at 1 an infinite number of times for values 
of the variable in the interval (0, 1). 

If then a function having property (A) takes on no value more 
than once, it is continuous and hence also monotone. This idea 
is capable of a slight extension and then comes to an abrupt 
end. Since a function having property (A) and taking on no 
value an infinite number of times is continuous, we shall state 
the extension for continuous functions. 

If fix), continuous in (a, b), assumes no value more than twice, 
it is possible to divide the interval into three parts in each of which 
f{x) is monotone. 

It will be convenient to consider two cases: 
(1) f (a) = ffl, 
(2) ƒ (a) * ƒ (b). 
In case (1), fix) must have either its greatest or its least 

value at a point £ within (a, b). In each of the intervals 
(a, £) and (£, b) the function takes on every value between 
ƒ (a) = ƒ(6) and ƒ(£) one and therefore only one time, hence 
in each of these intervals fix) is monotone. 

In case (2) assume/(a) <ƒ(&). Suppose now ƒ(x) has its 
least value at a point £ and its greatest value at a point 77, 
where £ and 77 are, of course, not necessarily distinct from a 
and &.* I t follows from the assumption fia) < fib) that 
£ < 77, for if 77 were less than £, the function would have the 
value fib), for example, once in the interval (a, 77), once in 
the interval (77, £) and at b. In the interval (a, £) the function 
has its least value at £ and it must have its greatest value at a, 
since, if the function were greater than or equal to ƒ (a) within 
(a, £), it would assume the value fia) at least three times: 
once in the interval (£, 77), once within (a, £) and at a. This 
function having in the interval (a, £) its greatest value 
at a and its least value at £, can take on no value two times in 
(a, £). For suppose the function has the value M at two 
points pi and p2 within (a, £), then, unless fix) = M has a 

* If f{x) have an extreme value at a or b, take £ = a or y — b. 
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root within (pi, p2), either f(x) > M for all points within 
(Pi> P%) a n d ƒ(#) has all values between M and its greatest 
value in (ph p2) at least twice in the interval (pi, p2) and once 
in the interval (a, pi); or f(x) < M for all points within 
(Pi> P%) a n ( i f(x) n a s a ' l values between M and its smallest 
value in (pi, p2) at least twice in (pi, p2) and once in (p2, £). 
The function then has each value between f (a) and ƒ(£) one 
and only one time in (a, £) and is therefore monotone. In the 
same way one shows that ƒ (x) is monotone in (£, 77) and (77, b), 
the extreme values of the function for the intervals occurring 
at the end-points of the intervals. 

If we assume that f(x) takes on no value more than three 
times and that f (a) = f(b), a similar argument will show that 
the interval may be divided into three parts in each of which 
the function is monotone. 

This idea is capable of no further extension, since a continu­
ous function may take on no value more than three times in 
an interval and yet be such that it is impossible to divide the 
interval into a finite number of parts in which the function is 
monotone. This statement is verified by the example: 

f(x) = TX + x2 sin (TT/X) for 0 < x ^ 1, 

/(0) = 0. 
The function has proper maximum points at 1/2, 1/4, 1/6, • • • 
and proper minimum points at the roots of the equation 
tan (ir/2x) — — (2x/w), which occur in the intervals (1/2, 1), 
(1/4, 1/3), (1/6, 1/5), etc. In the interval [l/(2n + 1), 
l/(2n — 1)] the function has one maximum point and one 
minimum point, hence takes on no value more than three 
times in this interval. Moreover, 

for 
2n + 1 - J K J ~ 2n - 1 

1 ^ ^ 1 
2n + 1 = x = 2n - 1 ' 

ƒ(* )> 
jr~ r for X > 2n- 1 2/1—1 
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and 

f{x)<2^Ti for * < 2^T _ r 

We have shown that a function having property (A) assumes 
in any interval about a point of discontinuity every value be­
tween its maximum and minimum at this point. The converse 
of this is not true; for example, f(x) = 1 + x + sin (r/x) for 
0 < x ^ 1, /(O) = 1 and fix) = x for — 1 ^ œ < 0 has at 
zero its only discontinuity. In every interval about zero 
it assumes every value between 0, its minimum at 0, and 2, 
its maximum at 0, and although ƒ(— 1) = — 1 a n d / ( l ) = 2, 
f(x) = 0 has no root in (— 1, 1). I t is to be observed that the 
values between 0 and 2 are not assumed by the function in 
any interval whose upper end-point is 0. 

THEOKEM. If a function f(x) at every point of discontinuity 
c takes on all values between its maximum and minimum at c 
in every interval of which c is an end-point, then the function has 
property (A). 

Suppose £i and 771, £1 < 771, are two points of the interval 
(a, b) in which f(x) is defined, and that /(£i) < M < f(rj{); 
we shall show that f{x) = M has a root between £1 and 771. 
Consider the set of points in (£1, 771) at which fix) > M and 
take the lower limit pi of this set. If p\ = £1, then, since £1 
is the lower limit of a set of points at which fix) > M, the 
maximum of f(x) at £1 is not less than M. If this maximum 
of fix) at £1 is greater than M, then ƒ (x) = M has a root in 
every interval of which £1 is an end-point. If p\ > £1, then 
there is no point within (£1, pi) for which ƒ (x) > M, hence the 
maximum of fix) at pi is M. In any case, whether p\ is equal 
to £1 or greater than £1, the equation fix) = M either has a 
root in (£1, 771) or f(pi) < M and the maximum of f(x) at p\ 
is M. Suppose M — /(pi) = e; now choose a positive 
ô < [(771 — Pi)/2] and such that ƒ (a) < M + e/2 in the inter­
val (pi, pi + ô). Within this interval there is a point rj2 

at which ƒ(772) > M. Now it may be established likewise 
that either fix) = M has a root in (pi, 772) or there exists at the 
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upper end of (ph r}2) a subinterval (£2, V2) such that ƒ(£2) < M 
and f(x) > M — (e/2). Thus in the interval (£2, 172) 

|/(a» - 2f | < e/2. 

Continuing this process, we obtain a sequence of intervals 
(£n, Vn) each lying within the preceding one and of length 
less than (m - f i )^*" 1 for which ƒ(£») < M, f(vn) > M, 
\f(x) — MI < e/2n_1 for a; in ((•», rçn). Hence at the one 
point p common to this set of intervals ƒ (p) = M. 

I t will require only obvious changes in the preceding argu­
ment to prove a more general theorem*. Using the four sym­
bols ƒ (c + 0), /(c + 0), J(c ~ 0) and/ (c - 0) to designate the 
upper and lower limitsf of f(x) to the right and left of e respec­
tively, this theorem may be stated : 

If at every point of discontinuity c of f(x), f(c + 0) = / ( c ) 
= f{o + 0), f(c — 0) S f(c) S fie — 0) and f{x) takes on every 
value between f(c + 0) and f(c + 0) in every interval whose left 
end-point is c and every value between f(c — 0)and ƒ (c — 0) in 
every interval whose right end-point is c, then f(x) has property 

M-
The conditions thus imposed upon f(x) are not only sufficient 

but also clearly necessary for the existence of property (A). 
As illustrations of functions having property (A) we have 

on the one hand continuous function or certain functions with 
a finite number of discontinuities, and on the other hand totally 
discontinuous functions.J 

The following function § defined by a uniformly convergent 
series has property (A) and has its set of points of continuity 
and its set of points of discontinuity each everywhere-dense: || 

00 -t 

ƒ0)II = H-igip- rn), 
n=i n 

* E. R. Hedrick pointed out to me that the argument really proved this 
more general theorem. 

f Hobson, loc. cit., p. 231. 
% Lebesgue, loc. cit., p. 90. 
§ Pierpont, Theory of Functions of a Real Variable, Vol. II, p. 463, Ex. 1. 
1| W. A. Hurwitz suggested the probability of the function defined 

possessing the properties enumerated. The present note grew out of a 
study of this example. 
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where ri, r2, r3, • • •, denotes the set of rational numbers, 
g(x) = sin (T/X) f or x = 0 and g(0) = 0. 

The function f(x) is continuous at all irrational points and 
bas a discontinuity of the second kind with oscillation equal 
to 2/n2 at each rational point rn. To prove the function has 
property (A), it is sufficient, in consequence of the theorem 
just established, to show that fix) = M, where f(rn) — (1/n2) 
< M < f(rn) + 1/n2, has a root in every interval of which 
rn is an end-point. From the definition of f(x) it is obvious 
that corresponding to any positive number e there exists a 
positive number ô such that the oscillation of f{x) at any 
point lying inside the interval (rn, rn + 8) is less than e. 
Within (rn, rn + 8) there is a point rji at which f(rji) > M 
and then within (rn, rji) a point £i at which /(£i) < M. By 
taking the upper limit of those points in (£i, rji) at which 
f(x) < M and proceeding as before, a convergent sequence of 
intervals (£m, rjm) where f (Cm) < M < f(rjm) and for which 
the oscillation at each point is less than e/2m may be con­
structed. At the one point p common to the set of intervals, 
f(p) = M. The same is true, of course, of intervals bounded 
above by rn. 

One could infer, from facts already established, the existence 
of a function having property (A) and having its set of points 
of continuity and its set of points of discontinuity each every­
where-dense. For functions which are everywhere oscillating 
and which nevertheless have a derivative at every point of 
an interval have been constructed.* The derived function 
has, of course, property (̂ 4) ; this derived function being the 
limit of a sequence of continuous functions has its points of 
continuity everywhere-dense ;f its points of discontinuity are 
also everywhere-dense since it is both positive and negative 
in every interval. 

CORNELL UNIVERSITY 

* Kopeke, MATHEMATISCHE ANNALEN, vols. 34 and 35. 
t Baire, Leçons sur les Fondions Discontinues, p . 98. 


