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By mathematical induction it is proved that the leading term 
in 

is 

ip!n^( 2 ; ) . 

Corresponding to the application made at the end of 
§ 1, we have here 
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For example, since the area under the whole curve y = e~x*l2(r* 
is a V27T, the "mean deviation" of this area is <r V2/TT. 

The products of the binomial coefficients by powers of 
terms of other arithmetical progressions do not seem to give 
simple results anaiogous to those obtained by Kenyon; 
this question is reserved for further study. 

OBERLIN COLLEGE. 

THE WORK OP POINCARÉ ON AUTOMORPHIC 
FUNCTIONS. 

Oeuvres de Henri Poincarê, publiées sous les auspices du 
Ministère de l'Instruction publique par G. DARBOUX. 
Tome II, publié avec la collaboration de N. E. NÖRLUND 
et de ERNEST LEBON. Paris, Gauthier-Villars, 1916. 
lxxi + 632 pp. 
THE collected works of Poincarê will fill some 10 volumes, 

of which the one before us is the first to be published. It 
contains the principal papers written by him in the field of 
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automorphic functions, where some of his most brilliant 
early work lies. According to the statement of Darboux in 
the preface, this Volume II appears first with the hope that it 
may stimulate mathematicians to active work in that field. 

An invaluable and necessary revision with critical notes is 
supplied by Nörlund. 

The many remarkable eulogies pronounced shortly after the 
death of Poincaré testify to a very wide recognition of his 
dominating position in the mathematical world. In one of 
the best of these, Volterra says: "if we were to characterize the 
recent period of the history of mathematics by a single name 
we should all give that of Poincaré."* Among these apprecia­
tions that of Hadamardf may be mentioned here for its critical 
value, while the admirable "Eloge Historique" of Darboux 
deserves its introductory place in the volume. 

It is impossible to give any satisfactory idea of the achieve­
ments of Poincaré in the space of a single essay. The appear­
ance of his collected papers arranged by subjects will furnish 
an occasion for a more leisurely and critical review of his work 
in its relation to the mathematics of the time. It is my pur­
pose to attempt such a review. 

An immediate stimulus for Poincare's researches in the 
domain of automorphic functions was the question proposed 
for the Grand Prix of 1880 in the mathematical sciences: 
to complete in some important point the theory of ordinary 
linear differential equations. Partly on account of incom­
pleteness in his development of the new functions, the prize 
was not awarded to Poincaré but to G. H. Halphen. An 
extract from this initial attempt of Poincaré is to appear 
in volume 39 of the Acta Mathematica. 

In order to understand the nature of the advance made by 
Poincaré it is necessary to go back to the nearly contemporary 
work of Schwarz, Puchs, Schottky, and Klein. 

It was obvious after Riemann's time that the inverse 
of the ratio of a pair of solutions of an ordinary linear dif­
ferential equation of the second order was an automorphic 
function, i.e., one unaltered by a group of linear fractional 
transformations. Examples of such functions were at hand 

* Volterra, "Henri Poincaré." A lecture delivered at the inauguration 
of Rice Institute. Translated by G. C. Evans. Rice Institute Pam­
phlets, Vol. I (1915), No. 2, pp. 133-L62. 

t " Henri Poincaré : le mathématicien/ ' Revue de Métaphysique et de 
Morale, vol. 21 (1913), pp. 617-658. 
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in the trigonometric and elliptic functions, the elliptic modular 
functions, the more general triangle functions first classified 
by Schwarz, other functions due to Schottky, and finally the 
rational automorphic functions whose beautiful algebraic and 
geometric relations were developed by Klein. When con­
sidered in relation to the illuminating work of Fuchs on or­
dinary linear differential equations, these examples made it 
an obvious probability that an extensive theory of single-
valued transcendental automorphic functions awaited de­
velopment. Fuchs pointed out this field explicitly first in 
1880, but Poincare's account of the genesis of his ideas in­
dicates his essential independence of this paper.* 

The general transcendental automorphic functions, how­
ever, were not immediately approached, because of a certain 
gap to which we will now refer. 

If we take the singular points of the differential equation 
and the characteristic exponents as real, it is an obvious 
deduction from the work of Fuchs before 1880 that the in­
verse function maps a circular polygon conformally upon a 
Riemann's surface, and that by the process of analytic ex­
tension other polygons which are obtained by linear frac­
tional transformations, arise. An immediate necessary con­
dition that there is no overlapping of the polygons is that the 
angles at the vertices of the first polygon are either 0 or frac­
tional parts of 2w. The precise further conditions for non-
overlapping were known only in the case of the rational auto­
morphic functions, treated by Klein, where the polygons were 
representable as spherical polygons so that the ordinary 
formulas of spherical trigonometry were available. But the 
earlier work of Fuchs made it clear that single-valued auto­
morphic functions exist always when there is no overlapping. 

Thus the moment at which Poincaré reached scientific 
maturity was a most favorable one in which to create a general 
theory of these functions which were challenging the atten­
tion of mathematicians. 

Here it seems worth while to call attention to a situation 
which often exists in mathematics but scarcely ever exists in 
any other field of science. It is sometimes the case that 
several mathematicians are in possession of much new ma­
terial save for a single link of reasoning. However, on 

* " Science et Méthode," Flammarion, Paris, 1908, Chap. 3; or pp. lvii-
lviii of Darboux's " Eloge Historique." 
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account of self-imposed requirements of completeness and 
rigor, no claim is made for credit. 

It was precisely such a state of affairs that existed in the 
domain of the transcendental automorphic functions when 
Poincaré began his work. The algebraic relation between 
automorphic functions with the same group, the uniformizing 
properties of these functions, and their use in solving linear 
differential equations are illustrations of material of this 
sort. 

It was by his use of non-euclidean geometry that he over­
came the one fundamental difficulty referred to above. How 
then did these geometric ideas enter? 

The region of the complex plane under consideration is 
the interior of a fixed circle and the bounding circles of the 
polygons referred to are all orthogonal to it. Furthermore, 
the linear fractional transformations of these polygons are 
such as to leave the fixed circle invariant. Here, then, are the 
abstract features of the non-euclidean geometry of Loba-
chevski, namely, a three-parameter group of transformations 
which may be interpreted as the group of rigid motions if 
every circle orthogonal to the fixed circle be regarded as a 
straight line, and if angles be interpreted as usual. 

In recognizing this fact Poincaré faced an extensive vista 
of possible developments in the .field of automorphic func­
tions, and incidentally obtained a simple new geometric 
representation of the hyperbolic plane. It was natural to 
connect this geometric view with the highly suggestive work 
of Klein. Thus we are not surprised to find Poincaré a master 
of the powerful weapons furnished by projective geometry 
at the outset. 

From this new point of view the difficulty of overlapping 
presents an absolutely concrete aspect. The polygon appears 
as an ordinary polygon in the non-euclidean plane, and the 
problem is to determine when the entire plane can be filled 
by a network of congruent polygons. The precise analytical 
conditions are seen to be algebraic. 

Although the essential kernel of the advance of Poincaré 
was only a single step, he must be regarded as the true founder 
of the theory of the general transcendental automorphic 
function. A somewhat analogous situation is presented by 
the founding of the calculus. Without doubt many mathe­
maticians were in possession of most of the essential ideas of 
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the calculus, but failed to discern the possibility of elevating 
it to an independent discipline by the invention of a suitable 
symbolism. Nevertheless there is general agreement that 
Newton and Leibniz were the originators of the calculus, pre­
cisely because they did see this possibility. 

Had Newton merely developed the simpler parts of the 
calculus of fluxions, his title to preeminence would have 
lost some of its validity. But Newton not only conceived 
the possibility but carried it to fulfilment by developing an 
adequate technique and applying it to the problems of celestial 
mechanics. Likewise, Poincaré merits great credit because, 
once in possession of the fundamental new weapon of attack, 
he proceeded to develop the theory of the transcendental auto-
morphic functions to a remarkable degree. 

In the further development of his new ideas Poincaré 
faced two possibilities. On the one hand, following the 
general course of Riemann, Schwarz, Fuchs, Schottky, and 
Klein, he might develop a general theory based on existence 
theorems for conformai mapping. This was a possible course 
as he saw plainly. Thus he declares in an early paper (Mathe­
matische Annalen, 1882, translation) "From the existence of 
discontinuous groups one might without doubt, by processes 
analogous to those of Schwarz, deduce that of single-valued 
functions reproduced by the substitutions of the group; but 
one would have then no explicit expression for these trans­
cendental functions. Moreover it is better to use other 
methods." The alternative method was based upon certain 
explicit series invented by Poincaré before he noted the geo­
metric relation outlined above, and to these series we now turn. 

In the case of an ordinary finite group of linear fractional 
transformations the sum of a rational function H(z) of z, 
taken for any value of z and its transformed arguments s& 
under the group, clearly forms an invariant function. Similar 
infinite series exist in the case of the series for the elliptic 
functions. These infinite series, invented by Cayley and 
Eisenstein, diverge in certain cases although their derivative 
series converge. On the basis of such series Weierstrass 
constructed his theory of the elliptic functions. 

Suppose that in an analogous way we form the series form­
ally invariant under an arbitrary infinite discontinuous group 
of linear fractional transformations leaving invariant a circle. 
The image points Zk of z will approach the invariant circle, 
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as h becomes infinite, and thus the kih term H(zk) of the series 
will remain finite, at least if the rational function H with 
which we start has no poles upon that circle. But there is no 
reason to assume that this series converges. 

If, however, the series be formally differentiated term 
by term, the typical terms of the new series are the product 
of the derivative rational function H'(zk) taken at the image 
point Zk and the derivative dzk/dz. The modulus of the second 
factor represents the ratio of arc lengths of corresponding 
similar infinitesimal figures. The area integral of the squared 
modulus of this factor over any part C of a fundamental 
region yields the ordinary area of the image C&. But the 
sum of all the areas Ck is less than the area of the invariant 
circle. Hence the series 

2 ƒ ƒ mod (dzk/dz)2dxdy 

converges. An easy extension of this argument shows that 
Xmod(dzk/dz)2 also converges. Thus the factor dzjjdz ap­
proaches 0 as k becomes infinite. 

Now if such a derivative series converges it does not repre­
sent an automorphic function but a function I with the 
property 

I(zk) = I(z)(ckz + dk)~
2, 

where 
Zk = (akz + bk)/(CkZ + dk) 

with dkdk — bkCk = 1. Thus one is led to consider series 
whose typical term is of the form H(zk) (dzk/dz)m which will 
converge if m ^ 2, and which are multiplied by (ckZ + dk)~~2m 

when z is changed to zk. 
Moreover the functions defined by these theta series of 

Poincaré play the rôle of the elliptic theta functions for ellip­
tic functions and are suited to form a basis for the general 
development of the theory of automorphic functions; in fact 
the quotient of two such functions having the same value of 
m is an automorphic function. No other completely explicit 
expressions for the automorphic functions have as yet been 
found. 

All of these facts can be looked at from the point of view 
of homogeneous variables and then take on a more elegant 
form, but it seems probable that the development of Poin-
caré's own ideas concerning these series was approximately 
along the line of least resistance just outlined. 
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With these two touchstones of the theory in his possession— 
namely, the interpretations of non-euclidean and projective 
geometry, and the explicit series above mentioned—the analogy 
of the theory of automorphic functions and the elliptic func­
tions became doubly apparent. The interrelation of elliptic 
functions with algebraic functions and their integrals, with 
linear differential equations, and with number theory were 
seen by him to admit of complete generalization, and the 
range of knowledge called for in order to carry out this develop­
ment was just that which Poincaré had come naturally into 
possession of at Paris. 

His five long papers in the early volumes of the Acta Mathe­
matica give a first approximation to the theory of the auto­
morphic functions even at its present degree of development. 
A large variety of important complementary results have 
been added, mainly by German mathematicians, who have 
used homogeneous variables, and have developed an inde­
pendent theory from the point of view of Riemann alluded 
to above. 

In the first of these extensive papers entitled "Théorie 
des groupes fuchsiens," Poincaré developed explicitly the 
forms of polygons and networks of congruent polygons in the 
non-euclidean plane from his geometric point of view. He 
called discontinuous groups which possess an invariant 
circle Fuchsian groups in honor of Fuchs, and the correspond­
ing automorphic functions Fuchsian functions. Perhaps 
it is better to use the terminology of Klein, and speak of groups 
with principal circle and automorphic functions with prin­
cipal circle. Poincaré's classification of the types of groups 
is suggestive but has not the definitive form which has been 
given it by Fricke. 

In a second paper "Sur les fonctions fuchsiennes" he 
considers the series above obtained and develops the main 
facts concerning the functions which they define. The chief 
difficulty is caused by the fact that such a function may 
vanish identically. By means of the theory of these functions 
a theory of the automorphic functions can also be derived. 
A cardinal fact to prove here is that every automorphic func­
tion can be represented as the quotient of two such series. 
Conversely, one can pass from the automorphic function 
back to the theta series of Poincaré by a process of differen­
tiation. 
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A first fundamental application of these functions, noted 
in the same article, is to the uniformization of algebraic func­
tions. Between any pair of automorphic functions with the 
same group an algebraic relation obviously exists, just as 
an algebraic relation exists between two doubly periodic 
functions with the same period parallelogram. The auto­
morphic functions uniformize this algebraic relation in the 
sense that each variable is expressible by means of an auto­
morphic function belonging to the same group. In this way 
the Riemann surface is mapped conformally upon the circular 
polygon referred to earlier. Thus the important question 
arises at once: is it not possible to uniformize every algebraic 
relation by means of such function? An early count of con­
stants showed Poincaré that this was in all probability the 
case. A second application of importance lay in the inte­
gration of the corresponding linear differential equation of the 
second order. 

In a third paper "Mémoire sur les groupes kleinéens" 
Poincaré treated the more general automorphic group in which 
there was no invariant circle, when the same theta series 
were available. These groups and the corresponding auto­
morphic functions were called Kleinian by him, but are per­
haps better designated as groups and automorphic functions 
without principal circle. The fundamental geometric results 
which made an attack on these more general functions possible 
were due to Cayley and Klein. Spatial non-euclidean geom­
etry enters, inasmuch as the totality of linear fractional trans­
formations of the complex plane is isomorphic with those 
projective transformations of a quadric in space which leave 
the quadric invariant. 

In two further papers, "Sur les groupes des équations 
linéaires" and "Mémoire sur les fonctions zétafuchsiennes," 
Poincaré attacks the problem of uniformizing algebraic func­
tions and the integrals of linear differential equations with 
algebraic coefficients. It is easy to see that if the function 
has only three branch points or if the linear differential equa­
tion has rational coefficients and three singular points, regular 
or irregular, then such a uniformization is possible by means 
of the elliptic modular function, provided the images of the 
three singular points lie at the vertices of the fundamental 
triangle. This admits of obvious generalizations. In his 
attempt to establish such generalizations he proves first that 
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the characteristic constants of the monodromic group are 
entire functions of the literal coefficients, and then employs the 
"method of continuity" of Klein. The satisfactory applica­
tion of this method has proved difficult. Poincaré gave ex­
plicit series analogous to his theta series in terms of which 
such uniformization for the differential equation is possible. 

In attempting to appraise the importance of the new func­
tions discovered by Poincaré, one must always remember 
that these functions form a natural extension of many of the 
functions treated earlier in analysis. Moreover, they afford 
a very simple systematic method of approach to the theory of 
the algebraic functions and their integrals, and add an illumi­
nating chapter in the theory of ordinary linear differential 
equations with algebraic coefficients. But the process of 
natural generalization appears to terminate with the inven­
tion and investigation of these functions, just as the theory 
of the elliptic functions reached its conclusion earlier. I do 
not expect to see large further developments take place, not­
withstanding the hope to the contrary implied by Darboux 
in the preface. 

The mathematician of the future, having before him such 
completed theories, will seek on the one hand to clarify and 
simplify, and on the other hand to use only as much of them 
as is really vitally related to further advance.* 

If this be true it may be predicted that the elliptic modular 
functions and the triangle functions will maintain an important 
position on account of their intrinsic importance and as the 
best examples of transcendental automorphic functions with 
principal circle, while the more general functions discovered 
by Poincaré will receive only such consideration as is necessary 
to establish their position in the hierarchy of analytic func­
tions. 

GEORGE D. BIRKHOFF. 

* A treatment of automorphic functions in this spirit is given in the 
concluding chapter of Professor Osgood's "Lehrbuch der Funktionenthe-
orie," vol. 1 (second edition), Teubner, Leipzig, 1912. See also his paper 
"On the uniformization of algebraic functions," Annals of Mathematics, 
ser. 2, vol. 14 (1912-1913), pp. 143-162. 


