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= 5625 - 1800 VÏÜ. 5x = n + r2 + r3 + r4. 
The connection with Runge's resolvent is effected by the 

relation 
K „ i? — 5ce 

P = - 5/3 , 
v — a 

by which equation (1) may be verified. The relation 
__ 54g 

a _. ^ _ 5^ _j_ Vt)2 — 6cw + 25a:2), 

which includes the preceding and gives the key to equations 
(2) and (3), was worked out by Lagrange's theorem. 

COLUMBIA UNIVEKSITY, 
April 6, 1915. 

THE MADISON COLLOQUIUM LECTURES ON 
MATHEMATICS. 

Part I: On Invariants and the Theory of Numbers. By LEONARD 
EUGENE DICKSON. New York, American Mathematical 
Society, 1914. 
THE number of new mathematical systems which may be 

characterized as distinct mutations, whose discovery or de­
velopment is to be credited to American research, has shown 
a marked increase within a few decades. The reviewer of 
Professor Dickson's Lectures of the Madison Colloquium 
volume has the satisfaction of recording one of these great 
discoveries, his theory of classes in invariant theory, and of 
observing how as a result of this discovery, number theory, 
which long had little contact with the theory of invariants, 
now has very much in common with it. Dickson's technical 
memoirs in which the theory of classes and the invariant theory 
of modular forms were first expounded appeared in 1909, 
And while the material and indeed much of the method also 
of the Colloquium Lectures are new, they are dominated by 
the theory of classes and may, therefore, be regarded as a 
superstructure of the system founded in his 1909 papers. 
Lecture I may be regarded also, as introductory to the theory 
as a whole. 
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The theory of classes is a general invariant theory, appli­
cable, and applied by the lecturer, to three types of invariants. 
We now define these. Ordinary invariant theory of alge­
braical quantics, which we may call the algebraic theory, is 
one in which the coefficients of the linear transformations as 
well as the coefficients of the transformed quantics them­
selves are perfectly arbitrary variables. If both of these sets of 
coefficients are parameters representing residues of a prime 
number p (or, generally, marks of a Galois field), we have the 
invariant theory called modular invariant theory, due to Dick­
son. Again if the coefficients of the quantics are variables 
while the coefficients of the transformations are modular the 
invariant formations are called formal modular. This type 
of invariant was first defined by A. Hurwitz. 

Suppose that S is a system of modular forms, and to follow 
the inductive plan of the Lectures, suppose that the modulus 
is p and that S consists of one modular quadratic form 
qm in m variables. The coefficients ]8# of qm are parameters 
to which may be assigned in turn particular sets of residues 
modulo p, giving the particular forms Now if 
the totality of forms qm

{k) be transformed by all of the trans­
formations of the linear group L (mod p) on the variables, 
the qm

(k) are separated into classes Ci such that two particular 
forms belong to the same class if and only if they are equivalent 
under L. 

The definition of an invariant now becomes a function-
theoretic matter. A single-valued function <p of the unde­
termined coefficients /?# is an invariant of qm if <p has the same 
value for all sets j8*/, jS*/', * • • of coefficients of forms qm', qm

l', 
• • • belonging to the same class. 

To determine the value of an invariant <p for a given class 
Ci we need only assign to the j3# in <p the particular coefficients 
in a canonical form of qm which belongs to d. In consequence 
invariants may here be determined from their values by an 
interpolation formula, or by some particular method whose 
use would be equivalent to the determination of a function 
by the interpolation process. And to determine a funda­
mental system of invariants we need only to determine a set 
which completely characterizes the classes C%, Specifically 
a set of invariants <pi, <P2, • - • is said to characterize completely 
the classes when each <pk has the same value for two classes 
only when the latter are identical, and the following theorem 
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proved in Lecture I, taken with the interpolation idea, 
furnishes not only a powerful construction method, but also 
an advantageous means of proving that a system which has 
been constructed forms a fundamental system: If the modular 
invariants A, B, •••, J completely characterize the classes, 
they form a fundamental system of modular invariants. 

The particular problems treated in Lecture I are, first, the 
reduction of the algebraic quadratic form 

m 

Qm = = Z-j Pij^iXj \Pij == Pji) 

to the canonical form 

(1) *i2 + • • • + xm^ + DxJ (D = | fa | ), 
or to 
(2) xi> + • • • + xr\ 

according as the rank r of D is = m or < m. This can be 
done by linear transformations with complex coefficients of 
determinant unity, and thus all algebraic quadratic forms 
may be separated into the classes 

Cm.i» Cr ( B * 0 , r = 0 , l , ' " , f l i - 1), 

where, for a particular value of D, Cm,D is composed of all 
forms qm of determinant D, each being transformable into (1), 
and so on. Every single-valued algebraic invariant of qm is 
a single-valued function of D and r which completely char­
acterize the classes. 

Secondly, the corresponding canonical reduction of the 
modular qm is made; the forms are (1)^ (2) and 

(3) Xi> + - • • + « M 2 + pxr
2 (0 < r < m), 

and the classes 

Cm,D, Cr.+i, CV,-* Co (Z>= 1, • • •, p— 1 ; r = 1, • • -, m ~ 1), 

where, for instance, Cr, -1 is composed of all forms trans­
formable into (3). A fundamental system of rational integral 
modular invariants of qm is then 

D, Ai, • • •, Amr-i, IQ, 

where if M±, M2, • • •, Mn denote the principal minors of order 
r of D, and d ranges over the principal minors of orders > r, 

Ar = {Mi<*-U /2 + MJ*-D /2 (i - j f ^ î ) + . . . 
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+ Mn<*-^2(1 - Mf-1) • • • (1 - I fn- i^ 1 )} X n ( l - d^1). 

This invariant has the value + 1 for any form of class Cr, 1, 
for example. Also I0 = 11(1 — jS^ 1 ) . 

In the opening paragraphs of Lecture II the algebraic bi­
nary quartic forms ƒ are separated into classes by transforma­
tions of the type (algebraic) T: x — x' + ty', y = y'\ Since 
invariants under T are seminvariants of ƒ we arrive at a 
determination of five seminvariants of ƒ from the point of view 
of the classes, and a proof that they form a fundamental 
system of rational integral seminvariants. This set does not 
completely characterize the classes, i. e., is not a fundamental 
system of single-valued seminvariants of ƒ. If ƒ is modular 
and p > 3 eight determinate seminvariants characterize the 
classes. 

Professor Dickson next establishes an inductive method of 
constructing all of the members of a fundamental system of 
modular seminvariants of a form of order n from the system 
for a form of order n — 1. For instance if n is divisible by p 
(n = pq), and Fn = AQX71 + A\xn~xy + • • -, the set consisting 
of A o and the fundamental system for 

(4) Fn-i = - (Fn - <p) [<p = Ao(x* - zyr-i)*] 

completely characterize the classes of Fn. 
By this and similar processes an explicit fundamental 

system of modular seminvariants of Fn (p > n) is constructed 
and for particular low orders some explicit systems for p > n. 
Invariants are then treated as seminvariants which possess 
the right type of symmetry, and the subject of linearly inde­
pendent sets claims attention. 

Lecture III is devoted to concomitants of the formal modu­
lar type. The first problem solved is that of the deter­
mination of a set of rational integral invariant functions of the 
variables of the modular transformations Z, alone, such that 
any other such function is a rational integral function of those 
determined, with integral coefficients; i. e., the determination of 
a fundamental system of universal covariants of the group i . 
The first such determination was made by Dickson in a paper 
published in 1911. But for the case of two variables the 
work is here simplified by the introduction of geometrical 
concepts. 
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The transformations being 

(5) 0: x' = bx + dy, y' = cx + ey, be — cd= 1 (mod p), 

and a point being defined as a pair of homogeneous coordinates 
(x, y) = (kx, hy), we say that a point is a special point if it 
is invariant under at least one transformation which is not 
identity. For it 

x' s= Px, y' = py, 

and p is a root of the characteristic congruence 

(6) p2 - (6 + e)p + 1 s 0 (mod p). 

Only real special points are invariant when (6) has an integral 
root, and all real points are conjugate under G. It follows that 
if an invariant of G vanishes for one of the real points it vanishes 
for all and has the factor 

L = 2/II (x — ay) s xpy — xyp (mod p). 

If (6) has Galois imaginary roots, the corresponding invariant, 
representing the conjugate set of imaginary special points, is 

Q = {x**y - xy*2) + L, 

and L, Q is the system sought. 
The details of the proof here contain the two principal 

elements in the author's main method of constructing formal 
modular invariants and showing what ones are reducible. For 
with p =5 2 and ƒ = ax2 + bxy + cy2 the transformation 
x = x' + y', y = y' induces the transformation 

a' = a, 6' = 6, c' = a + 6 + c (mod 2). 

This latter may be identified with a special case of (5), and 
the two universal covariants of this special group become 
formal modular seminvariants of ƒ. As to reducibility, in 
view of the theory of conjugate points, we need only show 
that a covariant has the factor y in order to know that it has 
the factor L. 

Fundamental systems of formal modular seminvariants 
and invariants of the binary quadratic form modulo p are 
completely determined in this Lecture, as well as sets for the 
cubic, and some simpler modular covariant systems modulo 2. 
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Brief mention is given to the total binary group's form problem, 
and the invariantive classification of forms. 

We now come to the two lectures on modular geometry, 
and in Lecture IV, the modular geometry and covariantive 
theory of a quadratic form in m variables modulo 2. Modular 
geometry is not a new term, but Dickson's formulation of a 
new theory under the old name marks a notable advance. 
In modular theories such as G. Arnoux's Essai de Géométrie 
analytique modulaire (1911), a " curve " is a finite aggregate 
of real points. Thus an analytic representative of this curve, 
its quantic, is not determinate in any sense from its points. 
Dickson assumes at the beginning that the curve, represented 
for instance by the modular form 

qm(x) = XcijX&j + ZbiXi2 (i, j = 1, • • -, m; i < j), 

modulo 2, shall contain an infinitude of points. That is, he 
defines a point as a set of m ordered elements (xi, • • •, xm), 
not all zero, of the infinite field F2 composed of the roots of all 
congruences modulo 2 with integral coefficients. The point 
(x) = (xi, • • •, xm) is called real if the ratios of the x's are 
congruent to integers modulo 2, otherwise it is imaginary. 
Then the aggregate of points (x) for which qm(x) = 0 (mod 2) 
is called a quadric locus, a conic if m = 3. The quadric is 
thus composed of an infinitude of points, only a finite number 
of which are real. The investigation of the modular invariant 
theory of this locus is carried out as a purely arithmetical 
theory, without any geometrical representation of the locus, 
although the terminology and to some extent the methods of 
analytic projective geometry are employed. The lack of any 
mode of geometrical representation leaves the reader with a 
feeling of conjecture as to just what kind of geometry in the 
concrete he is here concerned with, and as to whether something 
similar, perhaps, to isometric projection could be invented to 
give a picture of the infinite point cluster constituting the 
modular curve. 

The first invariant formation treated in this lecture is the 
polar locus 

P(y, z) =s Hci,iy#j + Vfli) (mod 2). 

For an odd m the polars of all points (y) have at least one point 
in common. A determinate common point, whose coordinates 
happen to be cogredient to the variables, is called the apex of 
the quadric. Any line through the apex is tangent to the 
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quadrie, and conversely. Thus the quadric has a linear tan­
gential equation. If (C) is the apex, qm{C) is a formal modular 
invariant. If it vanishes, the apex is on the locus, which is 
then a cone. In the case of a conic, reducible to 

<p = XXX2 + X3
2 , 

the only real points on the locus are (1,1,1), (1, 0, 0), (0, 1, 0). 
The apex is (0, 0, 1). The only other real points, three in 
number, lie on the covariant line 

(7) Xi + X2 + X3 = 0 (mod 2). 

A like configuration on the real points defined by the quinary 
surface, of great beauty, is constructed, and a similar theory 
for the case of an even m is given. 

The latter half of this chapter, the most technical part of 
the Lectures, is devoted to a determination, from the stand­
point of the classes, of a fundamental system of modular 
covariants of the ternary quadratic form F with integral 
coefficients modulo 2. 

With a modular analytic projective geometry defined and 
its covariant theory established Professor Dickson proceeds 
in Lecture V to a particular curve and a particular feature of 
the geometry on that curve. This is a theory of plane cubic 
curves with a real inflexion point which holds true both in 
ordinary and in modular geometry. After reducing the cubic 
to the normal form 

C = x2y + gyz + hyh + ôz* (5 H= 0), 

the author develops the theory of the inflexions. A prominent 
part is played by the invariants 

s = - 35/*, t = - 1085V 

A cubic with integral coefficients taken modulo p, a prime 
> 3, with at least one real inflexion point and with invariant 
s = 0, and t 4= 0, has nine real inflexion points if p is of the 
form 3j + 1 and — t is a sixth power modulo p, a single real 
inflexion point if p = 3j + 1 and — t is a quadratic non-
residue of p, and exactly three real inflexion points in all other 
cases. The author proves a series of similar theorems. 

As a whole these Lectures are indeed a most meritorious 
contribution, suggesting many new problems of many new 
kinds. 

O. E. GLENN. 


