
1909.] BÉZOUT'S THEORY OF RÉSULTANTS. 325 

through two conical points the (2, 2) correspondence is defined 
by the pencils through the nodes. The second also refers to 
quartic surfaces, those having two nets of hyperelliptic curves. 
The (2, 2) correspondence is defined by the lines joining the 
points of the canonical g\. The third concerns the systems of 
bitangents on any surface which is complete focal surface of two 
or more congruences. F . N. COLE, 

Secretary. 

BÉZOUT'S T H E O R Y O F RESULTANTS AND ITS 
I N F L U E N C E ON GEOMETRY. 

PRESIDENTIAL ADDRESS DELIVERED BEFORE THE AMERICAN 
MATHEMATICAL SOCIETY DECEMBER SO, 1908. 
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T H E accepted truths of today, even the commonplace truths 
of any science, were the doubtful or the novel theories of yes­
terday. Some indeed of prime importance were long esteemed 
of slight importance and almost forgotten. The first effect of 
reading in the history of science is a naive astonishment at the 
darkness of past centuries, but the ultimate effect is a fervent 
admiration for the progress achieved by former generations, for 
the triumphs of persistence and of genius. The easy credulity 
with which a young student supposes that of course every alge­
braic equation must have a root gives place finally to a delight 
in the slow conquest of the realm of imaginary numbers, and in 
the youthful genius of a Gauss who could demonstrate this once 
obscure fundamental proposition. 

The first complete proof, by Gauss, that rational algebraic 
equations have roots either real or imaginary dates back only 
to 1799. That part of algebra that is concerned with equations 
is accordingly for the most part modern, recent indeed, as com­
pared for instance with the plane geometry of lines and circles. 
Before Gauss, it is true, much had been done in actually solv­
ing equations of the lower orders and in the theory of sym­
metric functions of the roots. After him also the question of 
the arithmetical character of the roots required not only a 
Galois to penetrate its mystery, but also a Liouville and a Jor­
dan to expound the marvellous theory that Galois had created. 
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In the general mathematical consciousness of the present day 
is dominant, even when not active, the knowledge revealed by 
Gauss and Galois ; and this widespread understanding of the 
nature of the solutions of a single equation constitutes the goal 
toward which tended for three centuries the labors of Tar-
taglia, Cardan, Ferrari, and the long train of emulous scholars 
culminating in Lagrange and Abel. The theory of the single 
equation in one unknown is now, if not completed in all its 
details, yet at least finished in foundation and in the framework 
of its superstructure. 

Equations in two variables have received no less attention, 
but from the nature of the case it must be long before their 
theory could reach any corresponding stage of completeness. 
Geometrically, a set of discrete points on a line has obviously 
fewer properties to investigate than a curve in a plane. The 
projective covariants of the one are all, like itself, sets of dis­
crete points ; while those of the other are of four or more differ­
ent kinds : points, lines, curves, and line-loci or envelopes. Of 
a binary form, or an ordinary equation in one unknown, one 
seems to have a satisfactory picture in a set of a definite num­
ber of points on a line ; but in endeavoring to apprehend even 
the picture of a plane curve, one begins instinctively to look for 
inflexional tangents, bitangents, and soon for polars, Hessian, 
Cayleyan, and other auxiliary loci ; so that an algebraic curve 
becomes to our understanding an associated host of curves, even 
before we rise to the concept of a class of Riemann surfaces. 
And in fact, by reflex influence, since the developments of the 
past forty or fifty years, the geometry of sets of points on a line 
is now concerned less with the individual set, but much more 
with the related infinite linear systems or involutions. 

Hence simultaneous equations were necessarily to be dis­
cussed, if geometry was to develop in the algebraic direction 
foreshadowed by Descartes and Newton. Descartes it was who 
proposed to classify plane curves as algebraic and not algebraic, 
and to divide the former according to the degree of their equa­
tions. Analysis quickly overtook pure geometry in developing 
the properties of loci of the second order, and it was easy for 
Euler to prove that the equation for the intersection of two 
second order loci is of degree 4. The next step in generaliza­
tion was to determine the degree of the éliminant, or equation 
for the common points satisfying two simultaneous equations of 
any orders, m and n. This question was solved independently 
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in 1764 by Euler, whose interest in mathematics was universal, 
and by a young French student who seems to have confined 
himself exclusively to this narrow field of research, Etienne 
Bézout. Both gave the degree as m-n, the product of the 
orders of the intersecting loci, and both proved the theorem by 
reducing the problem to one of elimination from an auxiliary 
set of linear equations. Both, that is, depended upon the formal 
structure of what were later named determinants. The result 
of this initial publication, restricted to two equations, is what 
has kept current the fame of Bézout, and the determinant result­
ing from his method is what Sylvester and later writers call the 
Bézoutiant. But this was to Bézout only the beginning of his 
lifelong study in the formation of éliminants. 

The mode of formation of this resultant of two equations in 
one unknown, or éliminant of two in two variables, is familiar 
to most students ; Brill and Noether show that an equivalent 
process was employed by Newton for forming resultants of equa­
tions of low degrees, though without the almost obvious exten­
sion to equations in two unknowns. Two things about it were 
patent as clues to generalization. First, it gave a direct proc­
ess for combining any two equations to eliminate any one 
unknown. Second, the resultant when found is a linear com­
bination of the two original functions, with multipliers that are 
rational in the variables and in the coefficients of the given 
functions, 

B s F J, + FJr 

With more equations and more variables, which of these two 
features would be more useful ? We must remember that in 
1765 not even the degree of the éliminant was known, and that 
the chief effect desired in a scheme for removing two or more 
unknowns from a set of equations was that it should indicate 
the degree of the result (e. g., the exact number of intersections 
of three surfaces of given orders). 

The use of a direct process, to be applied step by step in 
some systematic sequence, is certainly the more tempting ; and 
this mode has been employed very extensively of late — the 
highest common factor process — as affording more cogent 
deductive arguments at every stage. But it has its difficulties, 
as Bézout indeed found out ; for he experimented many years 
before he found the more feasible plan. If one determines to 
use it, as does Kronecker for example, one must discriminate 
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with care between an essential factor and an adventitious factor 
in every resultant, and learn to calculate in advance the degree 
of each. Bézout chose finally the other horn of the dilemma, 
and availed himself of the right to use hypothesis ; he ventured 
to guess that the other style of attack would be successful. 

I t wras his hypothesis that from k + 1 equations h variables 
could be eliminated at one stroke ; and that the result would 
be a linear combination of the given functions. This latter is 
equivalent to the famous Fundamental-Satz of Noether, and its 
proof is usually based upon the existence and the particular 
degree of the resultant. So we recognize the venturesome char­
acter of this attack. Supposing, then, that by using multipliers 
F. of degree sufficiently high he could produce a combination 

R=Ff4-Ff4- u F f A- F f 

that should be free from k variables or unknowns, say 

and contain only xk+v he set out to determine the necessary 
value of n, the degree of R in the sole remaining unknown 
xk+1. That is to say, he sought for a minimum value n which 
should be sufficiently great for the purpose. 

Naturally his work has received many improvements from 
later workers ; and we must recognize the large credit due to 
Professor Eugen Netto for having worked out so many sup­
plementary lemmas in his admirable Vorlesungen über Algebra. 
To rescue a theory from its own weaknesses is no less deserving 
of honor than the invention of new theories. Only by a vast 
amount of such patient self-forgetful devotion to the interests 
of science can the body of demonstrated truth grow as a solid 
and unshakable structure. I t will not injuriously misrepre­
sent Bézout therefore if we say that he considered all the 
coefficients in the multipliers jPmi, Fm^ • • •, Fmk+1 as undetermined 
arbitrary parameters, and inquired first how many of them must 
remain arbitrary after the resultant Rn has been completely deter-
mined. Obviously any two terms in the combination could be 
modified together, since identically 

F J» + F» A = (K + $<,, 5 •ƒ»)ƒ. + (*** - 4>a, t •ƒ.)ƒ„ 

so that the coefficients in all such functions <fiaf b will remain 
essentially indeterminate. But again, in this way certain modify-
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ing terms are enumerated more than once (as those containing 
the product fa -fh -fc, etc.). Hence was necessary a considerable 
invention and application of a calculus of finite differences to 
solve the enumerative problem : this forms the first part of 
Bézout's great work ; and this is reproduced well by Serret 
(Algèbre supérieure) and Netto. 

Excluding essential in determinates, call the number of avail­
able undetermined parameters P , or say P(n, k + 1) ; and let 
N(n, k + 1) denote the number of terms that can occur in a 
polynomial of order n in k + 1 variables. Since n + 1 terms 
in xk+l are expected in P, the number to be removed is 
N(n, k + 1) — n. Hence the inequality to be satisfied, stating 
that there are no more terms to be excluded than there are 
available arbitrary multipliers, is 

P(n, nv n2, •.., k + 1) — 1 ^ N(n9 k + l) — n — l 
or 

JSf-P^n. 

If P is to be a determinate function, this shows that its degree 
must be exactly N— P. But as n increases from the largest 
of the numbers nv n2, • • -, nk+v N— P reaches soon its maxi­
mum value and then, as a constant, remains superior in magni­
tude until n becomes equal to the product nx • n2 • n^ • • • nk+v 

From that point on of course the inequality is reversed ; that 
is, the parameters are more numerous than the conditions to be 
satisfied. Hence the degree of any completely determinate result­
ant must be exactly the product of the degrees of the original 
equations. 

This leaves unsettled of course first the question of the exist­
ence of such a resultant, namely, a determinate linear combina­
tion of the given functions with rational multipliers ; in other 
words the question whether for n = N— P the linear equa­
tions to be satisfied are all independent and consistent. Also, 
secondly, it leaves to be fixed by further consideration the choice 
of terms whose coefficients shall be equated to zero, in order 
from the linear equations thus formed to eliminate the auxiliary 
coefficients by means already familiar and so to obtain the 
éliminant expressed as a determinant. On this second point no 
one has yet succeeded in elaborating such a scheme for substitu­
tion as evidently Bézout supposed was practicable. We shall find 
his own words on this point not critically precise, but interest­
ing as showing how loosely constructed arguments once passed 
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current. "But if we imagine that the first equation is multi­
plied by a complete polynomial of order m in the same number 
of unknowns, and that in the resulting equation of degree 
m i + ni (^ne ( Pro(luet equation ') there are substituted in all 
the terms where it is possible to do this the value of x"*} that of 
xn

2
&, that of a?̂ 4, etc., then as the multiplier polynomials will have 

brought into the product equation as many different coefficients 
as there are terms, we see that after those substitutions there 
can remain of terms in xv x2J xv etc., only so many as it will be 
possible to make disappear by the help of the coefficients in the 
polynomial multipliers." Further on, more to the same effect 
about these substitutions, but nowhere an examination into the 
difficulties of such substitutions when more than one quantity 
is to have its exponent reduced. 

No such difficulty arises if only a very special set of equa­
tions is considered, namely, that in which each equation in its 
turn contains only the first power of its correspondingly num­
bered unknown quantity together with other terms involving 
later unknowns but none earlier, 

Jnx = ^ 9ni\X2> X3> X4) " " ' > Xk+l) === " > 

Jn2
 = X2 9n2\

XV X4) ' ' ' ) Xk+\) = = ^> 

fnh = Xh ~~ 9jc\XJc+l) — ®> 

while the last may be of any form fnk+1(xv a?2, • • -, xw xk+1) = 0. 
What Bézout very properly terms substitution is described 
more fully by precisians of the present century as the addition 
of the function ƒ. multiplied by a suitable polynomial ; since a 
term like ax[ for instance is replaced by adding to it the 
product 

a(xi - 9nd ' 
9n, sa(x[-gr

ni). 
xi ynx j 

In this example, an unknown once removed from 
fnk+1(

xv x2> '"> xk> xJc+i) rcraains absent, and the first k of them 
being removed thus from the (k + l)th, there remains the 
éliminant in the single unknown xk+l to the proper degree. 

But for the general "complete" equations, the attempt to 
construct the elimination process progressively after this model 
has not met with success hitherto, since an unknown after hav­
ing its degree lowered by an early substitution may have it 
raised by a later substitution. Even Netto here attempts 
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nothing further than a demonstration by the aid of linear equa­
tions. The general case of course would be not the very simple 
example cited above ; each variable would appear in each to 
several different powers, and direct substitution would lower 
the degree of one variable only ; the aim being to depress the 
degree to a maximum nr — 1 for xr (r < h + 1). If this is 
possible, it gives what may be called for certain purposes a 
normal form. 

Now this is a topic of scarcely less interest and importance 
than the matter of elimination itself— the reduction of a poly­
nomial, by the aid of a set of equations, to another form in 
which the variables shall appear with exponents not higher than 
prescribed limiting values. This is for Bézout a transition 
form, from which finally the coefficients of all terms containing 
the variables to be removed are set equal to zero, giving the 
linear system needed for the closing step of his process of elimi­
nation. But as the form is unique, it should prove and has 
proved equally interesting, as a reduced normal form in a 
modular system, with the other reduced normal form that we 
call the éliminant. 

There were still questions to be investigated when Bézout 
laid down his pen and published his magnum opus in 1779 ; 
but certainly he did not leave the subject where he found it. 
Where he left it, Cayley was to resume it later and at one 
stroke express a resultant not indeed by a single determinant, 
but by a fraction whose numerator and denominator contain 
only determinant factors, found rationally from the coefficients 
of the given equations. Bézout's system of equations is made 
to yield a definitive result when once the distinction of available 
and non-available parameters is abrogated, and all are treated 
alike. And as for the degree of the éliminant, the main prob­
lem in his time, Bézout had fixed that both for the so-called 
general case, and also for a large number of particular cases. 
One may say that he determined the number of finite inter­
sections of algebraic loci, not only when all the intersections 
are finite, but also when singular points, or singular lines, 
planes, etc., at infinity occasion the withdrawal to infinity of 
certain of the intersection points ; and this at a time when the 
nature of such singularities had not been developed. 

All algebraic geometry is a reduction, actual or possible, of 
systems of equations to a different form, plus the specification 
of what the symbols shall denote. The resultant being once 
known, of course its interpretation will thereafter be found 
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often in geometric discussions. To survey the applications of 
the éliminant therefore is practically to enumerate the different 
chapters that have been created in algebraic geometry. 

The first would certainly be what is called Cramer's paradox. 
This antedates Bézout, for Cramer's book appeared in 1750, 
and may probably have helped to form Bézout's opinion on the 
urgent need for a solution of his problem. The paradox is, 
briefly, this. The equation of a plane curve of order n con­
tains %(n + l)(w + 2) terms, depends therefore on the same 
number of coefficients, less one. To require the curve to pass 
through that number of given points is then, algebraically 
speaking, to determine the coefficients by means of linear equa­
tions, hence uniquely. But two curves of that order have in 
common more than that number of points, namely, n2 (accord­
ing to the Bézout theorem). But n2 > J(n2 + 2>n) if n > 3, so 
that two curves, indeed an infinite pencil of curves of order n can 
be passed through even more points than would commonly suffice 
to determine a single curve. This not intricate puzzle was re­
solved by Euler, leading to the interesting and important notion 
of interdependent sets of points in a plane. From this concept 
was to arise later that of involutions of points in a plane (or in 
space of more than two dimensions), and thus was opened a field 
which has only been entered, but not yet explored. An in­
volution is generated when in a set of points of intersection of 
two (or three) curves enough points are fixed to leave only one 
still arbitrarily variable, while r — 1 others vary with it. This 
one then being supposed to describe the whole plane, the totality 
of positions of the whole set of r varying points, a doubly in­
finite system of point sets, constitutes an involution in the plane. 

Next in order of development is the notion of multiple 
points of curves. Bézout treated them by implication only, 
locating them at infinity, and showed for many cases how they 
affect the number of finite intersections. These questions were 
taken up, five decades later, by Plücker, and led to the discov­
ery of the universally known Plücker relations that connect 
the numbers of double points, inflexional points, double tan­
gents, and cusps, of a plane curve. These latter gave to geom­
etry the notion of the deficiency of a curve, that notion which 
was to be analyzed to its depths by Riemann and by Clebsch, 
and to form the chief organic bond between algebraic curves 
and the theory of multiply periodic functions of a complex 
variable. 
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But Cramer's paradox led naturally also to the examination 
of the sets of variable intersections cut out upon a curve of one 
order by a varying curve of different order ; that is, to the 
questions of curves having contacts one or many on the fixed 
curve ; of the degree of freedom in a variable point set on the 
curve ; in short to all those questions which lead through 
Noether's Fundamental-theorem. Before Noether there were 
theorems in plenty upon the partition of the intersections 
of two curves into two sets, with the hypothesis that one par­
tial set lie all on one curve of lower order, and the conclusion 
that the remaining partial set must lie on another curve of com­
plementary order. The best known of these are ascribed to 
Plücker, Jacobi, and Cayley. But Noether was the first to 
formulate precisely and prove what was tacitly assumed in them 
all, that a curve containing all the intersections of two others, 
/j = 0 and f2 = 0, can always be represented in the form 
F1fl + F2f2 = 0, where Ft and F2 are rational in the coordi­
nates. One sees that this form is that in which Bézout assumed 
the resultant, and which he in effect established. Very natu­
rally therefore Noether's proof begins upon that basis, and lays 
down conditions which while not demonstrably necessary, are 
certainly sufficient for the conclusion. Upon this basis then 
rises the extensive body of theorems relating to adjoint and 
non-adjoint curves, and in particular the elegant theorem on 
residual and corresidual point sets on a curve : If a point set A 
is corresidual with another B in respect to any third set C, then 
any fourth set residual to A is residual also to B ; two residual 
sets constituting, together with the singular points of the basal 
curve, its complete intersection with an adjoint curve. 

Bezout's discussions had regard altogether to the elimination 
from numerical equations ; for in his day the theory of forms, of 
invariants under the projective group, was not yet known. When 
that theory arose, the interest of algebra in the resultant was no 
less keen than that of geometry in the éliminant. Hence in the 
plane the result of eliminating both coordinates from three equa­
tions was examined, an invariant whose vanishing gives the 
condition for three curves to have a point in common. But 
three curves might have two, or three, or more, points in com­
mon. Cayley therefore proposed the question : If all the first 
polars of a curve have d points in common, what will be the 
degree, in the coefficients, of the condition for the occurrence of 
one further intersection? His answer was 3(n — l)2 — 7d, n 
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being the order of the given curve. More general was BrilPs 
inquiry : When three curves of orders nv np n3 have d points of 
intersection, what is the condition for the occurrence of one 
further common point? This question he answers ; and so was 
instituted the theory, yet in its infancy, of reduced discriminants 
and reduced resultants. 

Pausing briefly in this review of the potentialities of the 
theorem on the degree of the resultant, though we have spoken 
so far only of resultants of two forms, let us observe Bézout's 
own view of the importance of his investigations. In the dedi­
cation he says of the work : " I t has as its aim the completion 
of one part of the science of mathematics, on which all the 
other parts are waiting for that which can at this time secure 
their own advancement." Then in his preface, after deriding 
those who had been discouraged from researches barely begun 
by the complexity of the algebraic relations which they encoun­
tered, he continues as follows. " The analysis of infinitesimals, 
equally attractive and important, . . . has drawn away all 
the interest and all the toil, and the algebraic analysis of 
finite quantities, to start from that epoch, seems to have been 
looked at only as a field in which either there remained nothing 
further to be done, or else whatever was left to do would have 
proved fruitless speculation. . . . If we note carefully the fact 
that in reference to the countless number of equations and of 
unknowns, upon which the solution of any problem may depend, 
we know as yet how to treat only the case of two equations and 
two unknowns ; that we understand, I repeat, how to treat only 
that single case with the certainty of introducing nothing ex­
traneous to the question, then we shall doubtless agree that in 
this matter everything is yet to be done." 

After explaining his methods in 463 pages, Bézout sums up 
the outcome thus (page xxi). " We think it possible to state that 
there is no kind of algebraic equations for which we have not 
given the means of determining the lowest possible degree of 
the final equation ; either when there are or when there are not 
relations between the coefficients which could occasion a partic­
ular lowering of that degree." This belief may be a trifle 
optimistic, at least it is to be hoped that there will be found 
means of reaching enumerative results with less labor than 
Bézout's methods would impose. But surely the aim was high, 
and worthy the devotion of one life time ; and the conclusion 
of his preface must certainly excite our admiration and respect. 
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u We hope that this work may prove the occasion of great prog­
ress in analysis, by turning toward that important field the 
talent and the cleverness of analysts of our time. We shall 
regard ourselves as fortunate if on considering the point where 
we take up these questions and the point where we leave them, 
it shall be found that we have discharged some part of that 
tribute which every man owes to society in that state in which 
he happens to be placed." 

A life of unremitting labor is not ill spent if it leaves a work 
so easily intelligible, so full of interesting problems, and in pro­
portion to contemporary science so complete as this Théorie 
générale des équations algébriques of Bézout. Yet what a com­
mentary on the futility of the best efforts is found in the fact 
that both Jacobi and Minding, only 60 years later, published 
investigations as new whose methods and results were in effect 
identical with Bézout's ! At least this showed not that his 
work was unnecessary, but only that he was in advance of his 
time. Was it perhaps that geometry was waiting for Gauss to 
prove that the degree of an equation indicates actual and not 
illusory roots? Or was it waiting for Monge and Poncelet and 
Plücker to set it free from the restraints imposed by a partic­
ular system of coordinates? Or perhaps for Liouville or 
Poisson to adjoin the linear function of all the coordinates with 
as many indeterminates : z = hlxi + k2x2 + • • • + kk+lxJe+v and 
to discuss not the resultant or éliminant in a single x0 but the 
éliminant in z containing all the indeterminates lcv k2, • • -, &&+1? 
The algebraic projective geometry of the present has grown 
and flourished upon all these preparations ; and it appears that 
not the single isolated worker but the cooperation of a large 
number, with the utmost facility of communication of results, 
is needful for the rapid advancement of any branch of mathe­
matics. 

To return to the geometrical problems that grow out of the 
theory of éliminants. In three dimensions, three surfaces in­
tersect in points, real or imaginary, whose number is the 
product of their three orders. Three quadric surfaces meet in 
8 points. Here, as in the plane, arises the question of the 
interdependence of these points : Cramer's paradox is applicable 
to space of any number of dimensions, and indeed to intersection 
systems which are not all points. Of these 8 intersections of 
three quadrics, if seven are given the eighth can be constructed 
linearly ; and it is surprising to see how many eminent geome-
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ters have found in this one problem points of difficulty worthy 
of their attention. But an éliminant in more than two dimen­
sions, i. e., an intersection system of three or more loci, has a 
further peculiarly interesting possibility. 

Three surfaces may have not only a finite set of points in 
common, but equally well also a whole curve or system of 
curves. That is to say, their éliminant may vanish identically, 
having an infinite number of roots. Three quadric surfaces 
can have in common a line, two lines, a conic, three lines, or a 
twisted cubic curve. What would then be the number of ad­
ditional discrete points of intersection ? If there is a common 
conic (7, for example, two of the surfaces meet in C and a 
second conic K, which have two points in common ; and the 
third surface must cut K in 4 points, the two upon C, and 
therefore only two outside the common conic C. Or speaking 
briefly, a common conic lying on three quadric surfaces absorbs 
six of their eight intersections. Similarly, a common line ab­
sorbs 4, a twisted cubic curve all 8, of the points of intersection 
of three quadric surfaces. This line of problems is not without 
difficulty, and seems not to have come to the notice of Bézout 
except where the common curves were straight lines at infinity ; 
and even here he does not put the description into geometric 
language. 

Evidently there was need of a theory of twisted curves in 
three dimensions ; of gauche surfaces and curves in four dimen­
sions, etc. Cases were known in which not 3, but 4, surfaces 
were required to define an intersection curve. For this case 
however there was in Bézout's éliminant a suggestion of a useful 
mode of attack. By eliminating one variable from two equations 
one has as éliminant the equation of a cone with vertex at 
infinity. Treat this in homogeneous coordinates, and we have 
a cone with vertex at any point, and containing the curve in 
such a way that on each generator there lies a single point of 
the curve. A different way of conducting the elimination sug­
gested to Cay ley the surface called, since his invention, a 
monoid ; and both Noether and Halphen found the eone-and-
monoid a sufficient representative of any twisted curve in 3 
dimensions. But of curves and surfaces in projective space of 
four or more dimensions, I believe that no one has yet worked 
out a systematic list. 

I t is to be expected that fundamental propositions will grad­
ually become obscured by their derivatives. When once a 
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theorem like Noether's has been discovered, which embodies 
the geometrically most available substance of the Bézout theorem, 
and when this has found expression in geometric propositions 
on point sets, residues, and groups of point sets on a curve,, 
then it will be but infrequently that geometers will have 
recourse to the formation of resultants or éliminants. Yet it is 
not well that such a basal theorem together with the scheme of 
operation that it involves should again fall into oblivion. For 
even at this late date one may read in a quite recently issued 
American cyclopedia the statement that, in complicated equa­
tions, elimination becomes difficult and often impossible. And 
even in Cayley's article in the Encyclopaedia Britannica one 
reads the more temperate verdict that there does not yet exist 
a distinct theory of systems of equations ! Such statements in 
what purport to be standard popular works of reference are 
more often read and credited than the precise summaries given 
in technical works or even the new mathematical Encyklopâdie. 

Two relatively recent essays employing resultants and dis­
criminants for the extension of the theory of curves are by 
Franz Meyer, in the Mathematische Annalen, volumes 38 and 
43. They proceed from the postulate that truths purely 
numerical can be established for the kind of curves called 
rational, and will then hold true for non-rational curves of the 
same order. The first deals with the ordinary singularities of 
plane curves ; the second, with those of twisted curves in space, 
determining what consequences ensue to other singularities 
when two of any one sort come to coincide : e. g.y how many 
inflexions come together as two contacts of a double tangent 
merge into a hyperosculation point. The immediate aim is to 
find relations among the real singularities as distinguished from 
the imaginary ones ; but the postulate seems valid and suscept­
ible of adaptation to other uses. 

I t is not proper to close this sketch without alluding to 
Kroneeker's work in formulating a systematic theory of systems 
of equations. Under the head of Modular Systems he instituted 
inquiries far beyond the single question of éliminants which 
filled Bézout's horizon. Some time ago allusion was made to 
one reduced form of equal significance with the éliminant, where 
all the variables were retained, but with exponents so lowered 
that the reduced form was uniquely determined. The study of 
all such reduced forms under any given system of equations (or 
moduli), whether general or special, is part of Kronecker's pro-
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gramme, and in particular the grouping together of all forms, 
which, like the resultant, are reducible to zero by the aid of given 
equations, under the class name of an algebraic modulus. In his 
Festschrift and the later expository papers of his pupils are 
proposed methods for testing any given system for its character, 
whether general, or special of the first sort (loci with a curve in 
common), or of the second or higher sort (loci with a surface, 
etc., in common). The expansion of this body of doctrine or 
abstract theory into a concrete geometry with fulness of examples 
remains a task, not all deductive but largely creative, for com­
ing decades or generations. 

Not the possession of éliminants actually calculated by 
Bézout's deservedly famous scheme is needful for the geo­
meter, but the knowledge of the conditions under which 
such an éliminant will exist, and what conditions will modify 
it. So with regard to the more far-reaching scheme of 
Kronecker ; it is ultimately, perhaps, not the full elaboration 
of particular examples as such, that we wish to have, but a 
precise knowledge of how the relative operations could be 
executed in finite time, and a precise formulation of conditions 
that would modify or influence the result of those operations. 
Which is of greater value, the logic or the concrete object to 
which it is applied ? Let everyone decide when both are in his 
possession ! 

ON THE REPRESENTATION OF NUMBERS BY 
MODULAR FORMS. 

BY PROFESSOB L. E. DICKSON. 

(Read before the Chicago Section of the American Mathematical Society, 
January 2, 1909.) 

1. F O R any field F in which there is an irreducible equation 
ƒ (ƒ>) = 0 of degree m, the norm of 

^o + xiP + X2P2 + ' * • + x
m-iPm~l 

is a form of degree m in m variables which vanishes for no set 
of values x. in the field F, other than the set in which every 
xi = 0. For a finite field it seems to be true that every form 
of degree m in m + 1 variables vanishes for values, not all 
zero, in the field. For m = 2 and m = 3 this theorem is 


