
1 9 0 3 . ] THE LOGARITHM AS A DIRECT FUNCTION. 4 6 7 

includes many corrections not given by Schering in his appen­
dix to Gauss's volume, or by Perott. 
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T H E L O G A R I T H M AS A D I R E C T FUNCTION. 

BY DR. EMORY MCCLINTOCK. 

(Read before the American Mathematical Society, February 28, 1903. ) 

I N a paper of the same title published in the Annals of 
Mathematics for January, 1903, Mr. J . W. Bradshaw defines 
log œ as a direct function of x, namely, 

log x = I 
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Attention being thus drawn to the subject, I think the time 
opportune to repeat and amplify a proposition of my own for 
the same general purpose. 

In 1879 {American Journal of Mathematics, I I , 101, etc.) I 
spoke of " t he difficulty of comprehending logarithms," and 
quoted De Morgan's dictum that " the only definition of log x 
used in analysis is y, where ev = x." After discussing this 
definition I said, " Another and, when duly weighed, most sat­
isfactory definition may be derived from any one of an un­
limited number of vanishing fractions, special cases of the 
general form log x = h~1(xa~a)h — x~ah), where h is infinitely 
reduced. * * * This fraction is doubtless novel, though one case 
of it, where a = 0, is known. Even that case has not, I pre­
sume, been suggested heretofore as a definition. * * * The 
various theorems pertaining to logarithms may be derived with 
the utmost facility by the aid of these vanishing-fraction defini­
tions. Thus, if a = 0, we have by expansion 

log (1 + x) = ^—-^r~ [h = 0] = x - \x2 + \x* ." 

To develop this proposition more fully, let us consider the 
function y = hrl(xh — 1). Let k be positive, and, first, let 
h= k. When x = 1, y = 0 ; when x = oo , y = oo ; and as x 
increases continuously from 1 towards oo, there is one and only 
one corresponding value of y, which increases accordingly from 
0 towards oo. Secondly, let h = — k. Here again, when 
x = 1, y = 0 ; and, in the function y = k~l(l — x~h), as x in­
creases continuously from 1 towards oo, there is one and only 
one corresponding value of y, which increases accordingly from 
0 to k~l, a limit which tends towards oo if k tends towards 0. 
When h = — k, y — k~l(xh — l)x~k

} which differs only by the 
factor x~~h from the value of y when h = k. The smaller k is 
taken, the nearer this factor is to 1, so that the limit of the 
value of y, for h = 0, is the same whether h is positive or nega­
tive, while 

The limit is therefore a 1 to 1 function of x > 1. When x = 1, 
the limit is 0. When 0 < x < 1, let x = vr1, where u > 1 ; 
then we have hr\xh — 1) = hr\l — uh)xh, and, since ^ xh = 1, 
^ 0 h~\xh - 1) = - ^ h-\u* - 1). 
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Let us define the logarithm of x (positive) as S hr\xh — 1), 
and denote it by log x. We have just found that log (x"1) 
= — log x. Since ^ bh = 1, 

log a = S hr\ahbh — 6*) = log (o&) — log 6. 

This is the chief property of logarithms. Hence, log (a2) = 
2 log a, log (an) = w log a, and if 6 = an, lo (61/ri) = 1/n log b, 
which might be used, as by Mr. Bradshaw from another defi­
nition of log x} to show that for every positive number b there 
exists one and only one positive nth root. Here n is a whole 
number. I t follows that log bmln = m log (61/H) = m/n log 6. 
If we take n incommensurable, let a = bm, where m is an in­
teger, 6 = 1 + c , and — 1 < c < 1. Employing the binomial 
expansion, 

log(6w) = S / i - 1 [ ( l + c ) ^ - l ] =n(e-ie2+ic* ) 

= n log (1 + c) = n log 6. 
Hence 

log (an) = log (bmn) = m log (bn) = %m log b = n log a. 

That the continuous function log x has a continuous deriva­
tive 03"1 may be shown thus, with Ax < x : 

^jgp = iSo S ^(Ax)-1 [(» + Axf - O. 

I f we expand the part within the brackets and divide the re­
sulting series throughout by liAx, we have 

dx 

2^3 (A - 1)(A - 2)(A!*)V-8 + . . . 1. 

If we first put h = 0, the part within brackets becomes x~l 

— J(Acc)a3_2 + l-(Aœ)V~3 —• • • -, which is x~l when Ax = 0. I f 
we first put Ax = 0, the part within brackets becomes xh~1

) 

which is x_1 when h = 0. 


