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ON T H E S U F F I C I E N T CONDITIONS IN THE 
CALCULUS O F VAEIATIONS. 

BY DR. E. R. HEDRICK. 

(Eead before the American Mathematical Society, December 28, 1901.) 

T H E sufficient conditions in the calculus of variations have 
recently received a great deal of attention ; * and it would seem 
fitting that attempts be made to simplify their discussion when­
ever possible, and to render the agreement more exact between 
the known necessary and the known sufficient conditions. Such 
is the purpose of this paper, which also seeks to present the 
sufficient conditions in compact form. The work will to a large 
extent follow lectures delivered at Göttingen by Professor Hu­
bert, 1899-1901. 

1. HILBERT'S INVARIANT INTEGRAL.! WEIERSTRASS'S 
SUFFICIENT CONDITION. 

Let us consider a simple definite line integral 

(1) / = I f(x, y, yf)dx, 

where 

y - dx ' 

and where f is an analytic function of the three arguments 
x, y, y', in a certain region JR. Let us then restrict ourselves 
to the consideration of curves of integration contained in a 
realm i?, consisting of curves of the type 

(2) y = *(»), 

* Du Bois-Reymond, Math. Annalen, 15 ; Kneser, Lehrbuch der Variations-
rechnung, and many memoirs in Math. Annalen ; Osgood, Annals of Math., 
2d ser., vol. 2, no. 3, and Transactions Amer. Math. Soc, vol. 2, pp. 166, 
273 ; Whittemore, Annals of Math., 2d ser., vol. 2, no. 3 ; Bolza, Ithaca 
Colloquium (summer meeting, Amer. Math. Soc, Aug., 1901), unpublished, 
and Transactions Amer. Math. Soc, vol. 2, p. 422 ; Weierstrass, lectures at 
Berlin, 1879-1882, unpublished ; Hilbert, lectures at Göttingen, 1899-1901, 
unpublished, etc. 

t Compare Osgood, Annals of Math., 1. c , where Hilbert 's proof is given. 
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where <fi(x) together with its first derivative is a single valued 
and continuous function of x in the interval Xç. — X — «^1, and 
where <f>(x0) and ^(x{) have certain fixed values y0 and yx re­
spectively. If the value of the integral / taken along a curve 

(3) y = y(x) 

of the realm B be less than the value of / taken along any 
other curve of the realm B, 

(4) y = T(x) = y(x) + v(x), 

where Y(x) is restricted by the same conditions as y and also by 

(5) h / ( a ) |<8 , \v'(x)\<8, x0^x^xv 

& being a positive constant chosen at pleasure, then the curve 
(3) is said to render the integral I a weak minimum, as com­
pared to curves of the realm B. If in place of the conditions 
(5) we merely require that 

(6) K»)|<8, x0^x^xv 

then the curve (3) is said to render la strong minimum.* If 
in addition to the condition (5) [or (6)] we require that 

v(xt) = 0 ; x0 + (i - 2) .S^x4^x0 + (i - 1 ) 8 ^ ; 

(i = 2, 3, • • • /i, (n + 1) ; n • 8 = o?1 — aj0), 

then we will say that the curve (3) renders I a limited weak 
[or strong] minimum.f 

I t can be shown $ that if the curve (3) is to render la mini­
mum (of any kind), y(x) must satisfy Lagrange's equation 

^ ' dx \dy!J dy 

The solutions of this equation are called extremals. 
Let us now assume : § 

* For the above, cf. Osgood, Annals of Math., I. c , p. 106. 
fThis is what Hubert calls " ein Minimum bei stückweiser Variation." 
% See Whittemore, l. c, p. 130, where Hubert's proof is reproduced. 
|Compare Osgood, Annals of Math., I. c , p. 113; Transactions Amer. 

Math. Soc, I. c , p. 168. 

0. 
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(a) That an extremal (7, 

(9) y = y(x), 

can be obtained, such that y0 =* y(x0) and yx = y(x^), i. e., such 
that C passes through the two fixed points P : (œ0, yQ) and Q : 
(a^, 3/x) given in the problem. 

(6) That a one parameter family of extremals 

(10) y = 4>(x, a) 

can be obtained, where (j> is an analytic * function of x and a, 
xQ = x = xv \a\ < e ; and where 

(11) *(«, 0) SEE */(*). 
(c) That 

d<f*(x, 0 ) ^ 

It then follows that through any point of a suitably chosen 
neighborhood N about the curve (7, one and only one extremal 
of the family (10) can be passed ; and that (10) can be solved 
for a in terms of x and ?/, 

(12) a=f(x,y), 

where yfrfa y) is a singly valued analytic function of x and y, 
in the neighborhood N. Hence also 

dcj>(x, a) 

can be expressed as a singly valued analytic function of x and yy 

(13) yf=p{x,y), 
in the neighborhood N. 

Hubert now considers the integral 

[/(œ, V, P) + (Y - P)fpfa y, p)~\ dx 
- 0 

taken along any curve (7, y = Y(x), joining P and Q, and 

* Since ƒ has been assumed analytic in x, y, j / , it follows that the coeffi­
cients in (8) are analytic, and hence that the solutions of (8) are analytic. 
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lying in the neighborhood iV, where y and yf refer to the curve 
of integration and p denotes the above function p(x9 ?/), and 
where ƒ means dfjdp. It is then shown that this integral «/is 
independent of the path of integration,* L e., independent of 
Y(x). I t is seen at once that JG = Ic, where Jc denotes the 
value of the integral J taken along the curve (7, and so on. But 
J-Q = Jc since J is independent of the path. Hence the neces­
sary and sufficient condition for a minimum, which is that 
Iç> Ic, becomes at once Iç> JÇ, or ( /— «/)^> 0, or 

(15) \E(x,y,yf,p)dx\ > 0, 

where C is any curve in JV other than (7, and where 

(16) E(x, y9 y',p)=f(x, y, y') -f(x, y,p) - (y' - p)fp(x9 y9p). 

I t follows that 

(17) E(x, y,y',p)^0, x0^x^xx 

for all x, y near the curve (7, for the function p found above, 
and for any y! whatever, is a sufficient condition for a strong 
minimum^ where the sign of equality is to hold only along the 
extremals (10). And, moreover, the condition 

(18) E(x, y, y', i>) = 0, x0 < x < xv 

for all ce, y, p on G and for all yf whatever, is a necessary con­
dition for a strong minimum.^ For if, for simplicity, the 
family of extremals (10) be so taken as all to pass through 
JP : (cc0, y0), then a curve can be found which renders the integral 
less than C does, in case E < 0 at any point of C in any direc­
tion y' 4= p. For we need only take as the comparison curve 
desired an extremal other than (7, together with a curve which 
cuts O at this point in the given direction. The integral CEdx 
taken along such a curve is certainly negative. 

Let us now consider a fixed point H : (œ, y), on the curve (7, 
and ƒ (a?, y, yf) as a function of y' alone, for these fixed values 
of x and y. Let us then draw in a y'fipl&ne the curve 

*See Osgood, Annals of Math., Z. c , p. 122. 
f Provided, of course, that conditions (a), (&), (c) hold. 
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f=f(yfs). By (16) the inequality i ? > 0 becomes 

yf-p 
(19) j _ ; > / , W according as y'-p$0. 

Let 0 be the angle made by the axis of yf with the tangent 
to the yf-eurve at the fixed point where yr = p. And let yfr be 
the angle between the yf axis and the chord joining this fixed 
point to a variable point where yf = yf. Then, as is easily seen 
from a figure, 

f{y')-f{p) tan 6 =zf (p) and tan ^r = " 
y—p 

Hence the inequality (19) becomes 

(20) tan yjr > tan 0 according as yf >p. 

But this is surely fulfilled (except, of course, for yf = p) pro­
vided the yf-curve is always concave upward, the ƒ axis having 
been taken vertical, for the range of values of yf considered. 

Hence the condition 
d2f 

(21) â£>°. 
for all ce, y on the curve C and for all yf considered, is a suffi­
cient condition for a minimum.* For if (21) is satisfied, the 
y[f'-curve for every point (ce, y), on or near f (7, will be con­
cave upwards, for the whole range of values of yf considered, 
and hence, by the above, the Weierstrass sufficient condition 
(17) will be satisfied.^ 

The condition (21) is, however, by no means necessary. A 
necessary condition usually attributed to Legendre resembles it 

d2f 
inform. This necessary condition requires that zrj2= 0 for all 

* Weak or strong, according as the values of y/ are restricted, or not. 
Here, as elsewhere, the region B of page 11 must not be overstepped. In 
particular, the value yf = 00 must always be carefully investigated. 

a2/ 
t On account of the continuity of —-2 in x, y, y\ 

dy' 
i This also follows from Limit [ % ^ f H = ^ 1 
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x9 y on the curve G and for y' = p.* A proof of this theorem 
is given in the following section. 

2. LIMITED VARIATION. LEGENDRE'S CONDITION. 

If we now consider limited variation only, we have the 
following theorem : Lagrange's, Legendre's narrower,f and 
Weierstrass's J conditions are together sufficient for a 
limited strong minimum. 

We suppose first found a solution G of Lagrange's equa­
tion connecting the points P and Q. Around any point of G 
a region can so be bounded off that one and only one extremal 
exists joining the given point to any point of the region ; which 
follows at once from the Cauchy-Kowalewski existence theorems, 

d2fl 
since ——2 =4= 0 at such a point, from the narrower condition of 

oy' Ac 
Legendre. If now we require that rj(x) = 0 at least once in 
the interior of each of a set of regions such that the Cauchy-
Kowalewski solutions starting from the one end point are 
unique up to the other end point, we surely have in each such 
region a satisfactory field for the Weierstrass-Hilbert theory. 
I t follows that the Weierstrass-Hilbert reasoning can be applied, 
and hence, if the Weierstrass condition is satisfied, the curve G 
actually renders the integral I a limited strong minimum. 

Likewise it is clear that Lagrange's, and Legendre's nar­
rower conditions alone are together sufficient for a limited 

d2f~\ 
weak minimum. For Legendre's condition, —^ > 0 is satis-

.dyf -*0 

fied. But this insures § the fulfillment of Weierstrass's sufficient 
ey . 

condition, by the end of Section 1, since — 2 is a continuous func-
dy' 

d2fl 
* For this condition we shall use the notation —-2 S; 0 ; and we shall call 

oy' Ac 
it, temporarily, Legendre's "broader condition ; later, Legendre's necessary con-

d2f-\ 
dition. The corresponding condition, ~-2 > 0, where the sign of equality 

oy' Jc 
may not hold, we shall call, temporarily, Legendre's narrower condition ; later, 
sufficient. It is readily seen that —2 > 0 is sufficient for a weak mini-

dy' Jc 
mum, under conditions (a), (ô), (c). 

t See preceding footnote. § For weak variation, of course. 
t See condition (17) above. 
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call the condition 
dy' 

We will now proceed 

tion of as, y, y'. On account of this theorem we will henceforth 
d2fl 

1 > 0 Legendrés sufficient condition. 
c 
to show that Legendre's broader condi­

tion is necessary for any kind of a minimum whatever. We 
d2fl 

have seen that Legendre's sufficient condition, — 2 > 0 is, 
dy'. -V7 

together with Lagrange's condition, sufficient for a limited weak 

minimum. But that / have a minimum is equivalent to saying 

that —- / h a s a maximum. Hence — 2 < 0 is, together with 
dyfA° 

Lagrange's condition, a sufficient condition for a limited weak 
maximum. Given now a solution of Lagrange's equation, Oy 

dfl 
joining P and Q, if —-2 < 0 at any point of C, then 

&y' Jo 
d2fl . d2f . 
—2 < 0 for a whole interval, since —2 is a continuous func-
dy' \ c ^ dy' 
tion of cc, ?/, y', and C is a continuous curve whose tangent 

d2f~\ 
varies continuously. But since —-2 < 0 is a sufficient condi-dy' Ie 
tion for a limited weak maximum^ it follows that any limited 
weak variation in this interval gives us a curve for which / h a s 
a less value than along C. It follows that Legendre1 s hroader 
condition, 2 = 0, is a necessary condition for a minimum 

. dyf -*c 

of any kind whatever ; since otherwise we have actually found 
a comparison curve Cf such that Ic, < / c , and this comparison 
curve occurs in any possible choice of realms of curves to be 
considered since it is a limited weak variation of (7, the 
tangents to which can be made, if necessary, to turn continu­
ously.* On account of this theorem we shall henceforth call dY~] the condition — 2 = 0 Legendre9s necessary condition. 

I t seems fitting at this point to call attention to the general 
usefulness of the idea of the limited variation, which has led 
us so easily to Legendre's necessary condition. The question 

* Or even analytically, by the now well known method originally due to 
Schwarz. 
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of geodetics in the surface theory, and many questions in 
mechanics, notably the Hamilton -Jacobi theory, require only 
the use of limited variation, and indeed it is peculiarly suited 
to the needs of these and other similar subjects. Its greater 
simplicity in statement and treatment commend it above methods 
commonly employed, and its results are more easily obtained 
and grasped. For instance, in the surface theory, any geodetic 
line actually renders the integral of length on the surface a 
limited strong minimum along any portion of it which joins 
any two points upon it.* This statement brings into a clear 
light the essential characteristics of a geodetic a s a " shortest " 
line, and its application to such special surfaces as the sphere 
and the anchor ring are particularly vivid. 

3 . U N L I M I T E D V A R I A T I O N . P R O D U C T I O N O F J A C O B I ' S C O N ­

D I T I O N FROM W E I E R S T R A S S ' S CONDITION.f 

Jacobi's condition was originally erroneously stated as a suf­
ficient condition, and was shown by Weierstrass to be insufficient 
for strong minima. Thus far we have obtained Weierstrass's 
condition (Section 1) as sufficient for a strong minimum under 
the necessary conditions (a), (&), (c) of Section 1. We now pro­
pose to obtain Jacobi's condition as a necessary condition for 
any (unlimited} mininum from consideration and elimination of 
these conditions (a), (&), (c). We shall then show that Jacobi's 
condition (together with Lagrange's and Legendre's) is a suf­
ficient condition for weak minima, the Weierstrass condition 
being unnecessary. Thus the Jacobi condition precisely covers 
the introduction of the unlimited variation, for exactly analo­
gous results have been obtained for limited variation (Section 
2) with its omission. 

We will suppose the Lagrange condition satisfied, since it is 
a first necessary condition for any discussion. Let the supposed 
solution G of our problem be the curve 

(1) y = y(x) 

joining P : (x0, y0) and Q : (xv y^). The Lagrange equation 

<2) y" ~&f + y! "dy^y1 + dxdy1 "" dy~ = ° 

* In this particular theorem, of course, no new fact is involved, 
f i n connection with this section, see Osgood, Transactions Amer. Math. 

Soc, I. c-, p. 166. 
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has in general a two-parameter family of solutions 

(3) y == <f>(x, cv c2) 

where <f> is an analytic function of x, cv c2, if, as supposed, ƒ is 
analytic in x, y, y'. 

Let us now suppose that cx and c2 are so chosen that 

(4) ^ 0 , 0 ) a y ( a ) ) , 

so that for cx = 0, c2 = 0, our curve G results. Further let 
c± = ty1 and c2 = fry2. Then (3) becomes 

(5) y = <$>{x, tyv ty2). 

Since cf> is analytic in cx and c2 we have, when <yx and y2 are re­
garded as constant, 

(6) 

y = <£(œ, £7l, ty2) = <!>(>, £), say, 

= ^,o) + ^ - - ^ + ̂ - - ^ - ; + 

= y(x) + t^x) + fcj>2(x) + • • • 

which converges uniformly for sufficiently small values of t. 
Now, regarding yx and y2 as constant, and (6) as our one-

parameter family of solutions required by condition (6), Section 
1, let us set 

(1) p Œ
 d^lÊ = M00) , t à£M . ^#2^) . . . . 

w -* dœ dx dx dx 

If now we can solve (6) for U s a single valued function of 
y and cc, we can insert the value found in (7) and have p de­
fined as a single valued function of y and x, i. e., of the posi­
tion ; and this will hold for sufficiently small values of £, since 
the series used are then uniformly convergent, i. e., it will hold 
for all points in a suitably chosen neighborhood of (7. Such a 
solution will then satisfy the purposes of the Weierstrass-Hilbert 
theory. But for this (compare condition c, Section I) it is only 
necessary that 

*,(*) 4= 0. 
ut 
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+&> - —ar-\M> 
d<f>(x, cv c2) rfc_x dcfrfo, c^ c2) dcg 

dcx dt dc2 dt 

dó d(j> 

- d ï ^ + te^W + W* 

dó d$ 
where Vl B ^ , ^2 B ^ . 

If then we can so choose <yx and 72 that <j>(x) does not vanish 
between x0 and â  the Weierstrass-Hilbert theory can be applied. 

And further, the possibility of such a choice is necessary for 
the existence of a minimum. For, consider the family of ex­
tremals out of (3) which pass through (x0, yQ) and suppose that 
7,_ and y2 are so chosen that (6) represents this family.* If 
then <̂ 1(cc) vanishes at any point R between x0 and xx then the 
equations 

d<$>(x, t) A 

. y = y(x) = &(x9 0) 

are satisfied at this point, since 

Hence the envelope of the above family of extremals through 
(cc0, y0) cuts the curve G at any such point as R. 

If now this envelope be a single point, then compare the value 
IG with I-G where G is any other extremal of the family. Since 
J is independent of the path and since J reduces to I for all 
extremals, it follows that G does not render I a proper (un­
limited) minimum of any sort whatever, between P and R or 

whence 

(9) Ux) 

(10) 

*It can be shown from the considerations at the end of this Section, that 
this is the best possible choice. 
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between P and any point beyond i? . For J c ] B
p = If\ B

p and 
O is an analytic weak variation of C. 

If on the other hand the envelope is a curve, then compare 
ic] J with itfjp' + / # ] * , where (7 is any other extremal of the 
family, E the envelope, and Rr the point where O meets JE. 
Since the envelope is tangent at every point to an extremal of 
the family, it follows, as before, that JE= IE and hence 
Ic]* = ^ë]p' + 1-IS]K,' Hence G does not render / a proper * 
(unlimited) minimum between P and i? nor between P and any 
point beyond R. 

It follows that if we can so choose <yx and y2 that 

«W») =f= 0, x0<x^xv 

the Weierstrass-Hilbert theory can be applied ; and further 
the possibility of such a choice is a necessary condition for the 
existence of an {unlimited) minimum of any sort. 

We know that 

(11) y=<f>(x,cvc2)=<&(x, t) 

must satisfy Lagrange's equation 

or 
(13) 0 = i(<D(x, €)) = L{y{x) + t^x) + f<f>2(x) + • • •) 

= 2^»)) + ^ J^ t + w J^ g-, + • • • 

for all sufficiently small values of t. Hence the coefficient of t 
must vanish separately, 

But £(£) involves 6, -,-, - j - 2 . Hence we have 

* It can indeed be shown that C does not even render I an improper mini­
mum, for the envelope cannot be an extremal. It is to be noticed that all 
the above work holds even when the extremals cut the envelope. 
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& _ * * dL^jlx* d_L(Qw_dx ô i ( f ) d n _ 0 
( } J?i dt + Jt dt + dÇ dt]t=- ' 

where 

or 

dx2 dx 

£ == y{x) + t^(x) + t2cj>2(x) + 

(16) *$l *»« + ^ *'(.) f ^ «-) - », 

an equation which must be satisfied by y = y(x). Using the 
definition of L{y), we find by a simple calculation that ^(œ), 
and hence both r]1 and ?;2, must satisfy the following linear 
differential equation of the second order : 

<"> TW »" + %•> ' + ( % - ƒ „ > - » . 
where 

v ~ dx2' Jy'y'-dy>
2> e t c ' ' 

as usual. But (17) is precisely Jacobi's equation ; and Jacobi's 
whole condition consisted in finding whether an integral of this 
equation 

0iOO = 7i*7i + 72*72 

existed, which did not vanish between x0 and xv Hence the 
above are precisely Jacobi's conditions, except that the equality 
sign in our condition must be omitted in the usual discussion, 
and the corresponding case made a subject of further investi­
gation. 

The rest of the results announced at the beginning of the 
article now follow readily, and will be left to the reader. 

4. SUMMARY OF CONDITIONS. 

Collecting our results, we may say that the following condi­
tions hold : 
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Necessary. 

Sufficient. 

Limited Variations. 1 

Weak. 

j Lagrange's, 
Legendre's 
necessary. 

Lagrange's, 
Legendre's 
sufficient. 

Strong. 

Lagiange's, 
Legendre's 
necessary, 

Weierstrass's 
necessary. 

Lagrange's, 
Legendre's 
sufficient, 

Weierstrass's 
sufficient. 

Unlimited Variations. 

Weak. 

Lagrange's, 
Legendre's 
necessary, 
Jacobi's. 

Lagrange's, 
Legendre's 
sufficient, 
Jacobi's. 

Strong. 

Lagrange's, 
Legendre's 
necessary, 
Jacobi's, 

Weierstrass's 
necessary. 

Lagrange's, 
Legendre's 

sufficient, 
Jacobi's, 

Weierstrass's 
sufficient. 

I t is seen on glancing at the table that from the simple condi­
tions (Lagrange's and Legendre's) for limited weak variation 
we proceed to any other case by adding Weierstrass's conditions 
in the case of a strong minimum, and Jacobi's in case of an un­
limited minimum, only. I t is to be hoped that advances may 
be made in bringing the necessary and sufficient conditions 
more closely together or into entire coincidence. The above 
table represents substantially the present known conditions, in 
the belief of the writer. 

In special problems the irksomeness of these conditions can 
sometimes be circumvented. For instance, given a problem in 

d2f 
which —2 > 0 for a^ values of x, y, y\ then the necessary and 

sufficient condition f or a limited strong minimum is the possi­
bility of finding a solution of Lagrangës equation joining 
the two given end points. Such is the case in the geodetic 
problem and also in the integral which leads to Hamilton's 
principle; and in each of these cases, fortunately, a limited 
strong minimum is all that is desired. Similar simplification 

d2f 
occurs in every case when ——2 > 0 for all cc, 3/, yf. For then 

dy . . 
Legendre's and Weierstrass's conditions are always satisfied, 
and may be abstracted from the above table. For this reason 

d2f 
Hubert has called a problem in which —% > 0 for all rc, y, yf 

dy . 
contained in a singly connected region i?, in which the given 
end points lie, a " regular " problem of the calculus of variations. 
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5. CONCLUSION. HILBERT'S EXISTENCE THEOREM. 

A misunderstanding has sometimes arisen in regard to Hil­
bert's existence proof. Its purpose is not to establish further 
conditions nor to solve more general problems, but is to reassure 
us as to the possibility of satisfying the conditions already 
found, in the more favorable cases. We have seen that a 
necessary condition for any minimum was the possibility of 
finding a solution of Lagrange's equation joining the two end 
points P and Q ; and that this is a sufficient condition for a 
limited strong minimum, in a regular problem. That such a 
solution exists, even in the most favorable cases, is by no means 
certain from the ordinary theory of differential equations. I t 
was the original purpose of Hilbert's proof (merely) to show 
that, in this most favorable case of a regular problem, a curve 
must exist which renders our integral an unlimited strong 
minimum, compared with all continuous comparison curves ; and 
that the minimizing curve is composed of a finite number of 
pieces of extremals. Hilbert's existence theorem may therefore 
properly be called a theorem in differential equations. 

At present the results cannot be said to demonstrate more 
than that a curve exists which renders the integral an improper 
minimum. This result cannot be extended in general, and it 
remains to show that Lagrange's equation is necessary, not only 
for proper, but also for improper minima. 

In conclusion, the author desires to enter protest against the 
extreme complication recently introduced in some quarters into 
the essentially simple subject of the calculus of variations. In 
the case of the only modern text-book on the theory,* this con­
dition is so exaggerated as to essentially mar the usefulness of 
the book, in that many who would otherwise interest themselves 
in the subject, are repelled by the style and treatment. I t is 
to be sincerely regretted, in the opinion of the writer, that this 
tendency has been followed in some of the recent memoirs. 

Y A L E UNIVERSITY, 

June, 1902. 

* Kneser, Variationsreclinung. 


