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EEPOET ON THE THEORY OF PROJECTIVE I N ­
VARIANTS : THE CHIEF CONTRIBUTIONS 

OF A DECADE. 

BY PROFESSOR H. S. WHITE. 

(Read before Section A of the American Association for the Advancement 
of Science, Boston, August 25, 1898.) 

Introduction. 

I F we find it useful to distinguish short periods in the 
development of a science, the theory of invariants may 
easily enough be considered to have passed a milestone in 
1887. In that year wTas published the second part of Gor­
dan's Vorlesungen über Invariantentheorie. The plan of 
this work was dominated by the intent to expound and ex­
emplify worthily the famous Gordan theorem on the finite-
ness of the form system of one or more binary forms. 
Gordan had announced and proven this theorem of funda­
mental importance in 1868.* and had since that time sim­
plified his methods at least twice ; and his was still in 1887, 
with one exception, the only current proof of the theorem. 
The two proposed by Jordanf and Sylvester^ seem to have 
been not enough simpler to secure currency. The state­
ment is, in briefest form, this : For every binary form there is 
a finite system of covariants, in terms of which all other covariants, 
infinite in number, can be expressed rationally and integrally. 
Without recalling here the details of the argument, we may 
characterize it as depending altogether upon the nature of 
the operations which generate covariants. 

The one exception, just referred to, was a radically new 
method devised by Mertens, published in vol. 100 of the 
Journal für reine und angewandte Mathematih. By inductive 
process, assuming the theorem true for any given set of 
forms, he proves that it must still hold true when the order 
of one of the forms is increased by a unit. This method is 
deserving of attentive consideration, by virtue of its sim­
plicity and power as shown in this first application, and 
even more on account of the strong probability that it might 
have been so extended as to prove the corresponding theo-

* Crdle, vol. 69. ~ 
•\ Liouville1 s Journal, 3d series, vol. 2 (1876), p . 122. 
J Proc. Lond. Math. 8oc, vol. 27 (1878), p. 11-13. 



162 PROJECTIVE INVARIANTS. [Jan., 

rem for systems of ternary forms, and so in due course for 
forms in four, five, or any number of homogeneous variables. 

The extension of Gordan's theorem to forms in more than 
two variables had not been achieved in the twenty years 
during which it had been eagerly awaited as an imminent 
possibility. For particular cases it was known to be true. 
Already in the first volume of the Mathematische Annalen 
(1869) Gordan had given out the complete system of ground 
forms concomitant to the ternary cubic : the system of a 
quadric in any number of variables was known, and the 
systems of two and of three ternary quadrics had been 
worked out by Gordan* and Ciamberlinif respectively. For 
<a special ternary quartic : 

J* = X\ X2 I" #2 X$ + #3 ®u 

Gordan established a finite system of ground forms, 54 in 
number. J For further forms or sets of forms the systems 
had not been computed, nor was there any known proof 
that Gordan's method would terminate in a finite number 
of steps. Here lay the chief obstacle to farther progress in 
the theory. 

Two other problems of a general nature were plainly in 
need of study ; the enumeration of covariants of given 
weight and of given order in three or more variables, and 
the construction of a systematic theory of syzygies. Why 
the former of these had not been completely solved it is hard 
to say. Sylvester's papers on the binary problem were 
practically concluded by Franklin's résumé in the third 
volume of the American Journal of Mathematics (1880), and 
these were obviously the model for subsequent investigation. 
And as to the latter, syzygies had been studied in connec­
tion with particular forms since the appearance of Cay ley's 
second memoir on quantics (1856).§ 

I t may fairly be claimed that the past decade has seen the 
solution of these three important problems. In many other 
points has the theory of invariants received valuable con­
tributions, and in these three there is, of course, an immense 
amount of work needed in order to thoroughly possess the 
conquered territory. Postponing restrictions and qualifi­
cations and matters of secondary importance, let us consider 
briefly what has been done upon these three main questions. 

*See Clebsch-Lindemann, Vorlesungen über Geometrie, I. (1876), 
p . 288 ; or Osgood in Amer. Journ. of Math., vol. 14 (1892), pp. 262-273. 

•fBattaglini's Qiornale, vol. 24 (1886), pp. 141-157. 
tMath. Annalen, vol. 17, pp. 217-233. 
|Collected Works, vol. 2, p. 250-275. 
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§ 1. Mertens' Demonstration and Hilberfs First Proof of Gor-
dan's Theorem. 

I t was evident that there was some advance movement 
under way when within thirty months (1886-88) there ap­
peared two new brief and elegant demonstrations of Gordan's 
theorem for binary systems. The first depends upon sym­
bolic expression of covariants, the second upon their expres­
sion in terms of the actual linear factors of the stem forms 
of the system. 

According to Mertens, we can always adjoin a new linear 
form to any set of binary forms for which Gordan' s theorem 
is known to be true, and it will still hold good for the en­
larged set. And the set may be altered further by multiply­
ing the linear form into any other form of the set, thus 
diminishing by one the number of forms, but raising by a 
unit the order of any one form. Evidently if unit changes 
of both these styles can be made without invalidating the 
theorem, we need only to know its truth for a single linear 
form—or, indeed, for a single form of order zero, a constant 
—before we can conclude its truth for a set of forms as 
many in number and as high in orders as we choose. And 
a linear form has no invariant or co variant except powers 
of itself : hence the theorem is universally true. 

The first step, the adjunction of a linear form, is as fol­
lows : Gordan's development in series expresses any co va­
riant in two sets of variables xv x2 ; yv y2, as a sum of a finite 
number of terms, each containing some power of the de­
terminant (y2xx — yxx2) multiplied by a polar of some cova-
riant which contains only the variables xv x2, Now instead 
of yv y2 insert the cogredient coefficient — p2, px of the ad­
joined linear form (p1^1 + p2^2)- Thus every co variant 
containing pv p2 will be expressed in terms of {pxxx + p2x2) 
and a finite number of what we may still call polars derived 
from covariants not containing pv pr Accordingly these 
latter, by hypothesis finite in number, together with their 
polars in (— p2,px) and the form (pxxx + p2x2) itself, consti­
tute the form system of the enlarged set of binary stem 
forms.* 

The second step is almost equally simple, but introduces 
as auxiliary a Diophantine system of equations. If a form 
g is the product of a form ƒ and a linear formp, then all 
covariants of a set including g are included among those of 
a set including ƒ and p and all members of the first set ex­
cept g. But the converse is not true : at most, only those 

* Compare proof of the same result in Clebsch's Binâre Formen, §55. 
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co variants of (•••, ƒ, p) can be co variant s of (•••, g) which 
are of equal degree in the coefficients of ƒ and of p. This 
condition yields a single equation, linear in the exponents 
of those fundamental covariants which appear in any term 
of a reducible covariant of (•••, g). To state this more ex­
plicitly, call F(-••, g) any covariant of the set indicated. 
In it replace coefficients of g by those of the product f-p ; 
F(—, g) =.F(—, fp). The result is by hypothesis ex­
pressible in terms of a finite number of fundamental co-
variants of (• • •, ƒ, p) 

Here every Ai is understood to contain the coefficients of ƒ 
to a degree higher than those of p by some number, either 
zero or positive, which we may call a0 the excess of A. ; let 
b. denote similarly the defect of B.. The equation of con­
dition is then evidently 

«!«! + a2*2 + - + anan = blfi1 + b2,S2 + .» + b A-

This Diophantine equation has a finite number of linearly 
independent solutions in integers not negative, and to each 
corresponds one possible term in the above expansion ; and 
to each reducible solution corresponds a term' that can be 
factored into two or more of the non-reducible sort. But 
these non-reducible factors, though constituting a basis for 
covariants of the set (•••, g)} appear to involve still the ir­
rational factor p of g. The means of removing this diffi­
culty is not far to seek,* and so the theorem is proven for a 
set containing instead of ƒ a form one degree higher, g. 

Having analyzed at such length Merten7s demonstration, 
we can state Hubert 's first proof with fewer words.f In­
stead of considering explicitly a single actual linear factor 
p of the stem form g, he considers all the factors 

Every covariant is expressible rationally and integrally in 
these factors and in differences of the quantities ev •••, en 
arising from the same stem form or from different stem 
forms. But the exponents of powers of such differences 
are parameters conditioned by a set of Diophantine equa­
tions, since the covariant is of equal degrees in the quanti-

* Precisely this rationalization is the most novel and ingenious feature 
of Mertens's proof. 

f This demonstration is fully stated in Elliott's Algebra of Quantics, 
pp. 193-203. First published in Math. Annalen, vol. 33 (1888), p. 223. 
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ties ev e2, •••, en, etc. To the independent integral solutions 
of these equations correspond a unite number of irrational 
integral functions of coefficients ; and power products of 
these with all sets of exponents that can be formed within 
a certain finite range of integers are readily combined with 
their conjugates to yield a numerous but still finite system 
of covariants, a basis for the reduction of all others. This 
proof is simpler than that of Mertens in that, while each 
requires two logical steps, Hubert 's does not leave a subse­
quent step-by-step induction to be considered. Notwith­
standing this, I venture to express a personal opinion that 
Merten's proof is the more powerful as it stands ; for while 
there is very little difference in the ease of their application 
to co variants of a single stem form, for a greater number 
the method of Mertens divides the proof into its simplest 
possible elementary steps, all alike, while Hilbert prefers to 
consolidate it into a single argumentative process not re­
peated. Further, Mertens, employing factors which may 
be symbolic only, offers a possible opportunity for extension 
to forms in more than two variables, an opportunity not so 
readily discerned in Hilbert's use of actual factors. 

§ 2. Hilbert'8 General Proof of Gordan's Theorem for Forms 
in n Variables. 

I t was an agreeable surprise to learn that the elaborate 
proofs of Gordan's theorem formerly current could be re­
placed by one occupying not more than four quarto pages. 
Gordan's series, required as a foundation in Merten's proof, 
was applicable to ternary forms ; and it seemed entirely pos­
sible that by this attack might come the next considerable 
extension of the theorem. I t is certain that no one was 
prepared for the announcement which came in December, 
1888,* that the theorem could be established, by uniform 
method, for forms in any desired number of variables. No 
wonder that some learned heads shook in doubt over the 
sweeping generalizations of the enthusiastic young Dr. Hil­
bert from Königsberg. At length the most incredulous 
were obliged to concede that he had exemplified the maxim : 
Generalize your problem and solve it. Then it was appar­
ent why the feat had not been accomplished before : inves­
tigators had been using tools much too fine for the work. 
Hilbert cast aside all needless limitations, and asked directly : 
If an infinite system of forms be given, containing a finite 

*Göttinger Nachrichten, 1888, pp. 450-457, and Math Annalen, vol. 36 
(1890), pp. 521-529. 
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number of variables, under what conditions does a finite set 
of forms exist, a basis, in terms of which all the others are 
expressible as linear combinations with rational integral 
functions of the same quantities for coefficients ? The an­
swer was : Always. The argument need not be given here, 
for it is brief and simple, and is accessible either in Dr. 
Story's improved form in vol. 41 of the Mathematische An­
nalen,* in Meyer's, u Bericht über den gegenwârtigen Stand 
der Invarianten-Theorie,' 'f or in Weber's Algebra, J as well 
as in Hubert 's own memorable paper.§ We observe only 
that it proceeds inductively from the case of n quantities to 
n + 1 ; and that in the application to invariants it is a mat­
ter of indifference whether those quantities are variables, 
usually so called, or whether a part or all of them are coeffi­
cients of stem forms. The transformations to which the 
quantities are subject play no part in the argument until 
after the existence of a finite basis is established. 

The application of the principal proposition is not of itself, 
however, sufficient for the requirements of Gordan's the­
orem. Every covariant F is reduced to the form 

F=A1F1 + AtF%+-+AfFr, 

where Fv F„—,Fr are co variants, but where the coefficients 
Av A2, •••, Ar are not known to be such. To transform the 
identical equation so as to substitute co variants for the J. 's 
without modifying the JF'S save by numerical factors, Hu­
bert devised or adapted a scheme of much intrinsic beauty, 
for which Dr. Story substitutes a most ingeniously contrived 
explicit differential operator. || The properties of this oper­
ator and its structural character, as necessary or arbitrary, 
are matters of importance that have not yet been discussed. 

Thus after twenty-one years the question raised by Gor­
dan's early success in binary forms is definitively settled, 
nor has there appeared as yet any proposal for a radically 
different proof of the theorem. 

One important consequence of Hilbert's first theorem 
should be cited at this point. The generalization of a 
Diophantine system of equations will evidently arise by 
using, instead of constant coefficients and integral solutions, 

* P . 471. 
t Jahresbericht der deutschen Mathemaliker-Vereinigung, vol. 1 (1892), p. 

145. 
JVol. 2(1896) , p. 165. 

$ "Ueber die Theorie der algebraischen Formen," Math. Annalen, vol. 
36, p . 475. 

|| I.e., p. 488. 
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homogeneous polynomials for coefficients, and requiring as 
solutions sets of homogeneous polynomials, rational in some 
prescribed domain. For such generalized sets of equations 
Hubert shows that only a finite number of solutions are in­
dependent, in the sense that all others are compounded 
linearly from them, with coefficients rational in the same 
domain. The applicatiou of this corollary is primarily to 
the theory of syzygies. 

§ 3. Deruyts'* Researches in Enumeration of Covariants of Given 
Characteristics. 

To state and to solve in the most general form the enu-
merative problem, the lowest case of which Cayley and Syl­
vester had at last brought to a conclusion, this was the aim 
of the series of studies which Deruyts consolidated into his 
now classic book.* Two features of the work first engage 
our interest. Discussing forms in n variables, he does not 
follow the older practice, due to Clebsch, of admitting n — 1 
different sets of variables, each set contragredient to one 
other (unless dual to itself) and cogredientto certain deter­
minants formed from two, three, etc., rows of the variables 
of simplest type. CapellPs proposal is adopted instead, to 
employ n — 1 sets of variables all cogredient. The older 
practice has intrenched itself in analytic geometry, and 
cannot be dislodged ; but the alternative is undoubtedly 
better from the point of view of algebra. The second point 
is, that the whole argument is conducted by the aid of the 
Clebsch-Aronhold symbolic notation, and it is difficult to 
see how the end could be attained without this auxiliary. 

Dr. Story has generalized Sylvester's semi-invariants by 
calling them differentiants, and distinguishing as many 
kinds of differentiants as there are pairs of variables in the 
set of n. Thus an #?/-differential is invariant of the sub­
stitution 

x = x' + Xy' 
y= y', 

the other variables remaining unchanged. Deruyts, on the 
other hand, uses the term semi-invariant, but enlarges the 
substitution with respect to which it is invariable. He de­
fines semi-invariant as a function (properly qualified) 
which is not altered by a substitution in whose matrix all 
coefficients on one side of the principal diagonal are zero. 

* u Essai d 'une théorie générale des formes algébriques/ f par Jacques 
Deruyts ; Bruxelles, F . Hayez, 1891, 8vo, pp. vi + 156. 
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Let this be the lower (left-hand) side ; such a linear sub­
stitution is designated aptly by S±. Semi-invariants are im­
portant for this reason, that each is the source of a primary 
covariant, which is uniquely determined by it ; conversely 
every primary covariant has only one source. For example, 
the mixed concomitant or connex 0 which occurs in the 
theory of the ternary cubic 

0 = (abu)\bx 

is replaced in this theory by the primary covariant 
2 
aA> 

whose source is the semi-invariant 

aA 
If we replace symbols of the cubic by those of its Hessian, 
we have a source which contains symbolic factors of all 
types that are possible in semi-invariants of ternary forms : 
the covariant becomes 

(%M3 )2 (^2/3 ) 

and its source is the semi-invariant 

a d 
X X 

a d„ 
Kex 
hvev 

*xfx 

(a162c3)
2(^1e2/3)

2(M2)(&i^)ci/i. 

Now the number of linearly independent covariants of 
given degrees and orders is the same as the number of pri­
mary covariants of like degrees and orders ; and that again 
is equal to the number of different semi-invariants of corre­
sponding type. From the covariants so determined, all 
others can be derived by the aid of polar processes and iden­
tical covariants such as (#,y238) or (x^z^wj, etc. The prob­
lem so reduced Deruyts has solved by means of partition 
numbers, so that the enumeration of irreducible covariants 
for given weights presupposes that for all lower weights 
and degrees. As an illustration of the computations used, 
consider the well known quadric covariants of second degree 
in the coefficients of each of two quadric forms in three 
variables 

(aba) (abfi)afu, (afia) («#)<*„&., 

(«fcW, («AW, 
which are connected by the single linear relation 
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( a } f l ) ^ - ( « W 

= (aba) (abp)axl3x- (apa) (aPb)axbx. 

There should be found, as the number of covariants of 
these degrees and order, three. Deruyts' final formula gives 

[422] = {422}A 

= {422} + {530} + {611} 
— {431} - {512} - {620} 
= 24 + 6 + 6 - 16 - 12 - 5 = 3. 

The expansion of a three rowed determinant A serves as a 
mnemonic for the formula. So completely is the problem 
resolved, that one can determine the required number, not 
only when the stem forms and concomitants contain n — 1 
sets each of cogredient variables, but even when more dif­
ferent sets are present, and when different groups of sets 
are subject to independent linear substitutions. 

The next desideratum in this direction is a table showing 
the nature of the irreducible covariants in the system of 
the ternary quartic, a similar one for the quaternary cubic, 
and later for the simplest simultaneous systems and for 
stem forms that contain more than one set of variables. 
For the use of geometers, also, it would appear worth while 
still to consider whether the general problem might not be 
solved if Clebsch's n — 1 sets of correlated variables were 
admitted in the stem forms, and whether the problem so 
stated can be made to depend in any way upon the results 
of the work of Deruyts.* 

§4. Hubert7 s Theorem upon Syzygies of Higher Orders. 

Between the irreducible ground forms of a system arising 
from one or more stem forms there exist relations called 
syzygies. All terms of such a relation being collected in 
one member of the equation, the aggregate is termed a 
syzygant. A syzygant of the first kind is identically equal 
to zero, not when it is expressed in terms of the ground 
forms, but only when these are further reduced to terms of 

* M. Deruyts kindly informs me ( Deo. 10, 1898 ) that he has considered 
this question in a special memoir, and has found that for ternary forms 
there is a one-to-one correspondence between covariants in the two sorts 
of reduced systems, but that this is not so for stem forms in more than 
three variables. See his essay : "Su r la réduction des fonctions invari­
antes dans le système des variables géométriques," Bull, de VAcad. roy. 
de Belgique, 3d series, vol. 24 (1892), pp. 558-571. 
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the coefficients of the stem forms. Syzygants of the first 
kind form a system similar to that of the covariants, out of 
which may be selected, as Hubert proves, a reduced system 
of ground syzygants, in terms of which all others may be 
expressed as rational and integral functions. For the an­
nihilation of this first kind of syzygant, to repeat what was 
just now said, the coefficients and variables of the stem 
forms constitute the requisite domain of rationality. But 
if the ground forms of the system of covariants be taken as 
constituting a second domain of rationality, in this new 
domain there will be annihilated certain linear functions of 
the syzygants of the first kind, and these are called syzy­
gants of the second kind. Preserving, thenceforward, the 
same second domain of rationality, there rise successive 
kinds of syzygants one beyond another, each linear in the 
coefficients occurring in the kind next lower in rank. Re­
calling the theorem or corollary cited at the close of §2, we 
understand that each of these kinds of syzygants must con­
stitute a finite system, in the sense that its ground forms are 
finite in number. For the first system there have been 
published two exhaustive methods of discovery, the first by 
Study in his concise and comprehensive *l Methoden zur 
Theorie der ternâren Formen,"* the second by Stroh,f in 
addition to that arising from the "typical representation" 
of binary forms. Upon kinds higher than the first there 
has been done practically no detail work. So much the 
more noteworthy is therefore the fundamental theorem dis­
closed by Hubert (1. c , p. 492, Theorem I I I . ) that the num­
ber of kinds of syzygants is always finite. If m denote for any 
given system the number of ground forms, then the succes­
sive kinds of syzygants are not more than m + 1 in number. 

The proof, as in the case of the theorem discussed in §2, 
is entirely divorced from the processes peculiar to the theory 
of invariants, concerning itself only with rational integral 
functions as such, and yielding therefore as much to the 
theory of algebraic loci as to the knowledge of invariants.. 
Although this proof is, as both Hilbert,J and Franz Meyer§ 
testify, " nicht mühelos," yet it is possible to convey briefly 
some idea of the scheme employed. Suppose arbitrary 
polynomials in m homogeneous variables to be denoted by 

* Leipzig, Teubner, 1889. See p. 97. 
t a U e b e r die symbolische Darstellung der Grundsyzyganten einer 

binâren Form sechster Ordnung, u. s. w . , " Math. Annalen, vol. 36 (1890), 
pp. 262-303. 

Jl. c , p. 492. 
IJahresbericht der deutschen MathematiJcer-Vereingung, vol. 1, p. 148. 
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-^11? -^12) ••" -^lmx 

\ -Fni) -Fni) '" £n\ 

and undetermined polynomials, rational in the same domain, 
to be denoted by Xv X2J •••, Xmi seek solutions to the set of 
equations 

FnXx + Fl2X2 + ••• + FlmiXmi = 0 
FnX1 + F22X2 + - + F2miXmi = 0 

Fn\Xx + Fn2X2 ••• + FnmiXmi = 0. 

(We pause to observe that if the Fik are syzygants of the 
first kind, every solution of one such equation gives a 
syzygant of the second kind. ) Suppose this set of equations 
fully solved, and a minimum sufficient set of fundamental 
solutions determined, two steps theoretically possible. Ar­
range in a rectangle these solutions, with values of Xx in 
the first row, of X2 in the second, etc. Denote this array 
by the symbols 

: • , values of i . 
\F' ,"Ff \X 

Now seek relations linear in these horizontal rows of FJs, 
just as before among the original .F's. (Such relations will 
have for significant members the coefficients in syzygants of 
second kind, in the present application.) Continue this 
process, forming a second derived set, a third derived set, 
and so on until, if ever, the last set admit no solutions. 

To see that this interruption will come, divide the solu­
tion of every set into two parts, such that the first part are 
immediately discoverable and help in reducing the order of 
the others in respect to a selected variable, say the last or 
ra-th ; while the second part depend for their determination 
upon a new set of similar equations, containing only the first 
m — 1 variables. The device is so chosen that the second of 
these auxiliary sets is derived from the solutions of the first 
auxiliary set in the same way as each set in the principal 
series is derived from its preceding set in the same series. 
Argue now by induction : if the second series depending upon 
m —- 1 variables, is interrupted by default of solution after 
m •— 2 steps, then the principal series must be interrupted 
after m — 1 steps. For complete assurance examine the form 
of the first part of solutions of the principal set, which will 
be after m — 1 steps the complete array of solutions. I t is 
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P u — 3 » <Pvi <Pn — 9\IL Pi/x + i ••* 
^21 ^22 — ^H ^23 ' " ? V ^2,/ui + l — 

?Vl ?>2 ^ 3 "• <Pw~—%n V^n + l — 
values of xu x2, x3, ••• x^ ®n + i "' 

Here the <pik denote functions o I the first n — 1 variables. 
If these be taken by columns for coefficients of the next de­
rived set of equations, the determinant of the first //. not van­
ishing, obviously there can be no solutions. 

The theorem is, therefore, true for any number of vari­
ables so soon as it is true for a single variable, i. e., for 
equations in numerical constants. If we limit the field of 
rationality to the natural domain, this is in effect to reduce 
the inquiry to the question : whether linearly independent 
sets of solutions of a set of Diophantine equations are linearly 
independent ! Hilbert chooses rather to establish a founda­
tion proof for binary equations, introducing unnecessary 
complication, excusable on account of the elegance of his 
independent demonstration. 

On this particular part of Hubert 's ample contributions 
to the theory of invariants I have dwelt at some length, 
though giving only the bare outline, and omitting entirely 
the critical points, first, because it has received less notice 
and excited less discursive activity than the more elementary 
theorems announced in the same essay ; and because, in the 
second place, it serves admirably to illustrate the statement 
that it is time for the theory of invariants to attach itself 
firmly to the most modern developments of algebra. The 
sequel to this essay, a treatise on the production of com­
plete fundamental systems of covariants,* has pushed the 
frontier in this direction a long distance ahead, establishing 
the main thesis : that a finite number of trials of perfectly 
definite kind will always lead to the knowledge of the com­
plete system of ground forms when the stem forms are given. 
Kronecker's theory of entire algebraic functions proves itself 
indispensable and effective, and the argument leading up to 
the definition of canonical null forms is likely to become 
the standard concrete illustration of Kronecker's highly ab­
stract theory. 

§ 5 . Miscellaneous Topics. 

One other question of principal moment has been dis­
cussed, by Maurer, in vol. 107 of the Journal für reine una 

* D. Hilbert : " Ueber die vollen Invariantensysteme.,, Math. Anna­
len, vol. 42 (1893), pp. 313-373. 



1 8 9 9 . ] PROJECTIVE INVARIANTS. 173 

angewandte Maihematih :* the division of stem forms and 
systems into classes according to the number of conditions 
satisfied by their coefficients, and equivalence of forms with­
in classes. The subject seems to promise more interest 
when better developed. 

Not less important for the growth of the science than 
original articles is the preparation of treatises and text 
books. Of these, at least two of high grade beside that of 
Deruyts, have come to my notice within this decade, those 
of Study and Elliott already cited above. Study's book in­
troduces substantial improvements in notation, and gives 
precision to the notion of rationality, and is full of origin­
ality in every chapter. Elliott's is intended less for ad­
vanced students, but is admirable pedagogically. Others 
that I have seen announced are evidently elementary books 
for beginners. 

Of value higher than text books, as every scholar un­
derstands, are exhaustive résumés and reference compends. 
For such a work, replete with description, discriminating 
and impartial in its estimates, students of invariants are 
indebted to Professor W. Franz Meyer, now of the Uni­
versity of Königsberg.f Undertaken at the instance of the 
Deutsche Mathematiker-Vereinigung, it has placed in a 
favorable light the utility of such cooperative organizations. 

As showing the ample attention that is paid to this de­
partment of mathematics, it is of interest to note the num­
ber of titles, reviewed in the Jahrbücher über die Fortschritte der 
Mathematik, which can fairly be classified under theory of 
invariants. There were : 

in 1889, 46 titles, 
" 1890, 42 " 
" 1891, 41 " 
" 1892, 38 " 
" 1893 and '94, 50 " 
" 1895, 30 " 
" 1896, 30 " 

Of special papers in this field, since the important one 
of Story's referred to above, the most interesting one pro­
duced in this country is without doubt the recent essay by F. 
Morley in vol. 49 of the Mathematische Annalen, wherein he 
gives the long wished for geometric construction of the linear 

*Ueber In varianten-Theorie, pp. 89-116. 
f" Bericht über den gegenwârtigen Stand der projektiven Invarianten-

Theorie im letzten Vierteljahrhundert ;" in the Jahresbericht der deutschen 
Mathematiker-Vereinigung, vol. 1 (1892), pp. 79-292. 
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covariants of a binary quintic. This skilful synthesis re­
moves from geometers the reproach which it is said Clebsch 
used in his lectures to cast upon them, in that none of them 
had yet been able to derive uniquely and symmetrically a 
sixth point from five given points on a straight line. The 
zeros of the quintic are denoted in Professor Morley's con­
struction by five arbitrary points upon a conic. 

§6. Desiderata, and Remarks upon Courses of Instruction* 

Two things appear to me as proximate possibilities, arid 
essentials to uniform advancement. Those familiar with 
Lie's group theory and interested in differential invari­
ants will no doubt criticise this choice, which is perhaps in 
a narrower field. 

(1) The working out of complete systems of syzygies of 
the first kind, second kind, and all higher kinds which oc­
cur among the covariants of binary forms of lowest orders. 
For the quintic and sextic the first kind are already tabu­
lated by Stroh. This work will give tangible examples for 
the understanding and estimation of Hubert 's great theory. 

(2) The revision of complete form systems already 
known, with the object of discovering subordinate systems 
among them. The most obvious point of attack, if we ex­
cept the suggestive processes used in Clebsch and Gordan's 
classic treatise on the ternary cubic in vol. 6 of the Mathe­
matische Annalen^ is offered by polars, symmetric in two 
sets of variables, derived from binary covariants of even 
order, and by ternary concomitants whose order and class 
are equal. By using these as transformers, systems of co-
variants can certainly be determined which are closed ; and 
particular covariants ought to be looked for, which shall be 
automorphic under such transformations. The next step 
would be, by transformers which are analogous to these in 
all save that they raise the order of the operand, to produce 
infinite series of covariants and to discover their recurrent 
laws. These again might be expected to develop some sub­
ordinate closed systems, and others probably coextensive 
with the complete form system. 

Finally, there is to be remembered the least explored and 
most fascinating portion of the field, equally promising to 

* With regard to the following paragraph it should be explained that 
the Sectional Committee of Section A of the American Association for 
the Advancement of Science expressly requested of authors of reports the 
formulation of problems suitable for cooperative attack and of pedagogic 
theses inviting discussion. H. S. W. 

t P p . 436-512 (1873). 
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the analyst and the geometer, the realm of irrational co-
variants. 

Upon the question of courses of instruction I wish to 
formulate two propositions : 

(1) A first or elementary course in invariant theory 
ought never to be restricted to binary forms. 

(2) Preliminary to or concurrent with an advanced 
course, there should be given courses in the theory of sub­
stitution groups or abstract groups, and in the algebra of 
modular systems and of entire functions. 

EVANSTON, I I I . , 
August, 1898. 

EEYE'S GEOMETEIE DEE LAGE. 

Lectures on the Geometry of Position. By THEODOR EEYE, 
Professor of Mathematics in the University of Strassburg. 
Translated and edited by THOMAS F. HOLGATE, M.A., 
P H . D . , Professor of Applied Mathematics in Northwestern 
University. Part I. New York, The Macmillan Com­
pany, 1898. 8vo, xix + 248 pp. 
T H E true geometry of position has hardly been accessible 

in English up to the present time. Townsend's Modern 
Geometry and Lachlan's Modern Pure Geometry are 
vitiated by the use of the circle, they are essentially metric ; 
Cremona's Projective Geometry, in Leudesdorf's translation, 
is curiously uninteresting and unattractive, and does not 
seem to take the student sufficiently into the heart of the 
subject. Eussell's Pure Geometry follows the French 
treatment of cross ratio, which is based on apparently 
metric relations, though it is shown that these relations 
are such that the metric quality is eliminated. Thus while 
it is a thoroughly useful book, it only gradually frees the 
student from the limitations of Euclidean geometry, in­
stead of enabling him to walk at liberty from the first. I t 
is possibly one of the easiest books to read on the subject ; 
grafting the new ideas on to those already established, it ex­
presses the unknown in terms of the known, whereas the 
more correct and satisfactory treatment, building up geom­
etry ab initio, is apt to strike a student at first as an elaborate 
and artificial expression of the known in terms of the un­
known. But while the grafting of projective geometry on 


