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ORTHOGONAL GROUP IN A GALOIS FIELD.

BY DR. L. E. DICKSON.

(Read before the American Mathematieal Society at the Meeting of De
cember 29, 1897.)

1. A linear substitution S on the marks of a Galois Field
of order p* (in notation GF[p*])

g =j§=laﬁsj (i=1,2,m)
will be called orthogonal if it leaves absolutely invariant
E &+ &
The conditions on the coefficients of § are seen to be
ot al 4 t=1 (j=1,-m),
ayoy+ ayay + oo a0, =0 (G k=1 mj4k),

the latter not occurring® if p = 2. Replacing «, by «, we
get the reciprocal of 8, with a set of conditions equivalent
to the above. Thus the determinant of S~ equals the de-
teI;minant A of 8, so that A* =1, being the determinant of
§78.

2. For the case p = 2, an orthogonal substitution S leaves
invariant the square root of &*+ - + £ *in the GF[2"],
viz.,

X=5+6+ +&,

Taking as independent indices X, &,, - & , S takes the form
(with unaltered determinant 4 =1):

X =X, si'.:":"zzﬁysjq-aux (i=2,-m),

where the a, are arbitrary and the §,= «;+ «, satisfy the
condition
A=|p;l=1 (i,j=2,m).

The order of the orthogonal group G on m indices in the
GF [2"] is thus
2”(,,,_1) ( (2n(m--1) — 1) (2n(m—1) — 2n) e (2n(m—1) — 2n(m—2)> )
2" —1 !

*The remark of Jordan, Traité des Substitutions, p. 169, 1. 18-21,
is thus not exact.
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the quantity in brackets being the order of the group * I' of
substitutions of determinant 1 on m — 1 indices of the
GF [2"]. @ is obtained by extending I' by the substitu-
tions

55,=5i+7’ix XI:X?

forming a commutative group self-conjugate under G.
Hence the decomposition of G reduces to that of I' (refer-
ence just given). Henceforth I suppose{ p==2.
3. We may readily generalize Jordan, §§197-199, thus:
TaEOREM: The number of systems of solutions in the GF[ p*],
P2, of

aff 4 e + o+ a5, =,
where every a; is a mark <=0 of the GF[p"], s

prm—h _ prm—D, (»=0)
pn(ZM—-l) + (p”m _p"(””"”)y (7- = 0)7

where v is 4 1 or — 1 according as (— 1)"a,a, - a, 1is a square
or not square in the GF[ p*].

Similarly from §200 (where the minus sign is a mis-
print):

THEOREM : The number of systems of solutions of

2 2 N
% 51 + 4, 52 + ot agp E§m+] =z

is p"™ 4 p™ ', where v is + 1, —1, or O according as
(—D)"aja, ay,41 % 18 o square, not-square or zero in the
GF[p].

4. In view of the succeeding paragraphs, it may be read-
ily seen that the investigation of Jordan, §§ 201-212, af-
fords the following generalization :

The orthogonal group on m indices in the GF[p"], p==2 s
generated | by the substitutions [only the indices changed being
written] :

§/ =0+ 3%, § =—F5+as (P+F=1)
and §l=—&;

*Current number of the Annals of Mathematics, article on linear groups.
1 Note the correction of Jordan, p. 169, 1. 15, in either of the ways:
2, y, 2. u,v y+z4u, 2424y, 2 u, vl
@, 9,2 u,v y+ztu, st+uto,z+y+uy ol
1 The only exception is p® =25, when other generators are necessary if
m >> 2. Thus, for m =3, we may choose the additional generator

§/=246&+&, &=6+21&, &=6+642.
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and its order is P, - P,_; -+ P\, where P, denotes the number of
solutions in the GE[p*] of &7 4 &7 + -+ 4&} =1, given by § 3.

Hence if e=+1o0or —1 according as — 1 = square or
not-square, we have

— 46—1 26—1 — int ot ,

P«u"‘pn( )_.p"( ); P“_,_l—p"-}-p”,
41 2nt 20281 21
P4,+2=p"(+)—€p"’, Pu+3 _p"("")-l—ep”("").

Thus Py, - P4t+3 = prerh (pried 1),

Except when m = 4¢ + 2, the order of the orthogonal group
on m indices is independent of the quadratic character of
—1.

If m = 2k + 1 the order is 2w, where v is the order of the
linear Abelian group on 2k indices (with the factors of
composition 2 and /2), viz.:

0= <p2nk . 1)pn(2k—l) ( pn(2k—2) _l)pn(‘zk—%}) (pzn __1)1)73'

5. To generalize Jordan, §§ 208-9, we need the theorem:

In every GF[ p"], except for p* = 3% b or 13, a marky may be
Jound, such that »* — 1 shall be at wish a square or a mot-square.

For n =1 this theorem was proved by Gauss.* Thus, if
p==5 or 13 (exceptions omitted by Jordan), an integer
v==0 exists, making »* —1 a square in the GF[p'] and
hence also a square in the GF[p"]; likewise an integer
»# — 1 exists which is a not-square in the GF[ p'] and hence
in the G F[p"], n odd. For the case n even, and thus p" =
8t + 1, we may readily generalize Gauss, 1. c. 16-18, and
obtain the formulee:

2k=i+l,m=—k+(p~—1)/8, pr=[4(k—m)+1]* +
4(1—1)?,
from which we are to provet that (in Gauss’ notation)
1=(10) and [=(30) are not both zero. But if i =1= 0,
we readily find
(j:pg_l)2=4: 0rp"=32.

The proposition fails for the G F[3"], which we may define
by the irreducible congruence j°=—1 (mod 3). Thus
J =+ 1is a primitive root and Gauss’ four classes are

L, —-154+1, —j—1; —j,j; —j+1L,j—1;

* Theoria residuorum biquadraticorum commentatio prima, 16-21.
1 If p be of the form 4¢ -} 1, so that p™ may be expressed as the sum of
two squares each 9= 0, the proof follows as in Gauss, Art. 18, since <=1,
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the fourth powers are 1, — 1 and thus neither is followed
(on adding + 1) by a not-square. But for p» = 3’, the
theorem of Jordan, § 208, follows by § 203 since

1_61/2=a12+bl2=1+1=—1=Sq_ua:re-

It remains to prove the theorem for 5 and 13", n’ odd
and > 1. Consider the general case p” =8n -+ 5. By
Gauss, Art. 20 generalized, there exist 2k squares and 2m
not-squares each followed by a fourth power. But A=10
gives m =n, 1 + =1, k = 2n, whence

p¥=8n+b5=(—4n+ 1)+ 4.

Hence n=0 or 1, so that p” =5 or 13. Again, m= 0
gives h 4+ k=0, h=n, so that p¥ =5. That p¥ =5 and
13 are really exceptions appears at once from the tables of
Gauss, Art. 15.

For p = 13 the result of Jordan §208 may be obtained as
follows. We have o/ = =#=1, 0 = £ 1, ¢/ = %= 5. Similarly,
as in §204, I take Bb' — y¢” =b”. Then for f= £2,
— y = == 6, the signs to agree with those of " and ¢” re-
spectively, we have b =2 + 30, 1 — b"* = 4, a case solved
by §203.

The proof needed in § 209 follows as a corollary if p" == 3?
or 5. Thus if +* — 1 and hence also 1 — +* be a not-square,
either at once 1 — »* is a not-square and 1 + »* a square, or
vice versa, when we replace » by » v/— 1, — 1 being a square.
But if p»= 3%, we cannot proceed as in §209. Since
o ==+1, ¥ ==d, 1 — d’= not-square, we must have

B==j, ==y
Thus V=4(j—1), ¢ ==£(j+1)

or vice verse, leading to a similar treatment. As in § 204,
I take

V'=p —yd'=p[EG —D]—r[E=G+ D], F+7=1).

‘We may take f=2=j, y === such that the signs com-
bine to give

V=i —D—j(J +1)=—2,

whence 1— b"’=—1= square, a case solved by § 203.

6. For §§207 we need the theorem, proved as in Jordan,
§198 or as in Gauss, 1. ¢. Art. 16:

In the GF[p*], for which —1= square, (p"—>5)/4 of the

squares are followed by squares, (p"—1)/4 by not-squares, and
one (viz., —1) by zero.



200 WEBER’S ALGEBRA. [Feb.,

7. Asin § 210, p™ + 4p™ — 1, being relatively prime to p,
must divide (p*™ —1) (p™ —1) and thus also 4p"( p** —1)
and hence* 4(17p* —5) and hence divides

20( p™ + 4p"—1)— (68p™ — 20) = p"(20p" +12)
Hence (p" 4 2)* — 5 must divide 304, since
3(68p" — 20) + 5(20p" + 12) = 304p".
Thus P+ 2 < 18> v/309.

But p" =13, 11, 9, b, 3 are readily excluded ; while p"=7
yields 76 a divisor of 304 and indeed of (7°—1) (7" —1),
but is excluded since —1 is a non-residue of 7.

8. With the hypothesis of Jordan § 211, that a’+b*+¢*=0,
etc., we have o> =" = --. Hence 3a’=3b’= =0 and
ma®*=1. Thus eithera’ =4 == lor2d’ =20 = - =1,
when 1 — o’ = o* = square.

UNIVERSITY OF CALIFORNIA,

November 20, 1897.

‘WEBER’S ALGEBRA.

Lehrbuch der Algebra. By HEeINricH WEBER, Professor of
Mathematics in the University of Strassburg. Braun-
schweig, Friedrich Vieweg und Sohn. 1895-96. 8vo.
Vol. 1., pp. 6563 ; Vol. IIL., pp. 796.

For some years the need of a thoroughly modern text-
book on algebra has been seriously felt. The great strides
that algebra has taken during the last twenty-five years, in
almost all directions, have made Serret’s classical work
more and more antiquated, while modern books like Peter-
sen’s and Carnoy’s make no claims to give a large and com-
prehensive survey of the subject. The appearance of any
book modelled on the same broad plan as Serret’s Algébre
Supérieure would thus be greeted with a hearty welcome,
but when written by such a master as Heinrich Weber, we
greet it with expressions of sincerest joy and satisfaction.

As Weber himself tells us, he has cherished for years
the plan of this great undertaking ; but before deciding to
execute it he has traversed in his university lectures many
times this vast domain as a whole, and has treated various
parts separately with greater detail. No wonder, then, that

* Jordan has 68p — 12, thus losing the divisor 76.




