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CONDITION THAT T H E LINE COMMON TO N-l 
PLANES IN AN N SPACE MAY PIEECE A 

GIVEN QUADRIC SURFACE IN T H E 
SAME SPACE. 

BY DE. VIEGIL SNYDEE. 

(Read at the Detroit meeting of the American Association for the Ad
vancement of Science, August 10, 1897. ) 

THIS note is a generalization of a proof given in a recent 
paper * of the geometric significance of the sign of a certain 
determinant. This determinant was the combinant of four 
linear spherical complexes ; the spheres common to the four 
complexes are real when the combinant is negative. 

When applied to linear line complexes, which can be de
rived from the spherical by an imaginary transformation, 
I subsequently found, by another method,f that the corre
sponding determinant is positive when the lines which cut 
four given ones are real. 

The law is general, and will apply to determinants of odd 
order, and to imaginary transformations. 

(1) Let 2<«w* 4 -0 [fc = l ,2 , . . . , n . - . l ] 

represent n — 1 linear equations, homogeneous in n + 1 
variables xi ; these can be regarded as the equations of n — 1 
planes in space of n dimensions. 

Let the variables xi satisfy the homogeneous quadratic 
equation 

( 2 ) <p (xv x2, xv xv x6J x6) = <p O ) = 0 

which may be regarded as the equation of a quadric surface 
in the same space. The n — 1 planes will intersect in a 
line ; I propose to give the criterion for the reality of the 
two points in which this line pierces the given surface. I t 
depends upon the sign of a determinant which may be de
fined as follows : 
Let 

* " Criteria for nodes in dupin's cyclides," Ann. of Math., vol. 11, No. 
5, p. 137 ff. 

t Bulletin Amer. Hath. Soc, vol. 3, No. 7, p. 247 ff. 
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be the equation of a plane ; make it identical with 

Wi + a*y% + '" + an+iyn+i = 0 ; 
then 

d<P B<p *d<p 
(5) <h = g ^ , a2 = g - , . - an+1 = g ~ - . 

From (5) , 

3<P M d<p 
C&, iV-, —— U/, " *" 

hence 

ai xi — ®i ÖTZ" 9 " " a»H-i ^«4-1 — ^w-t-i ; 
OX* {s&n+l 

(6) 2 ^ - 2 , ^ - M - O . 

Differentiating (6), 

n+l 

(7) 2 (X ^at. +
 ai d%i) = 2 ^ -

Again, from (5), a.dx.= ^-dxv hence 

i 

»+l 3c, n+l 

(8) 2 ö;<fa t- 2 « ,< fe ( -^ 
i=l UUsj i=l 

then, from (7), 
n+l 

(9) %x.da=d<p. 
From (5), a?, is a linear function of ax ••• aw+1 and oV is a 

complete differential, hence 

n+l 3 $ 
d<p = y ^— aa, 

S da. * 

where 0 is a homogeneous quadratic function of af such 
that 

ç>(#) = #(a) and x. = -̂ — when v ' * da. 
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The combinant of the surface <p(x) = 0 and the n — 1 
planes (1) is of the form 

H= 

( « i A i - 0 #(a,a»- i ) - ^ ( a ^ ) 

where ^ ( ^ ) is $ function of the coefficients of the ^th plane 

(1): i. e.,h= i, and 0(az> aM) « 2 a«,i ~ v wy = 0(aw,a,). 

The problem of finding # when <p is given in its general 
form is coextensive with reducing <p(x) to the form 

(10) 
n-t-1 

2 *<" = o. 

As every quadric can be reduced to this form, the proof 
will be restricted to it. (Negative terms in (10) will be 
considered later.) Solve the system (1) for any n —• 1 of 
the variables, as xl9 — xn_x in terms of the other two, xn, xn+x. 
The general term will be 

( i i ) 
\n)Xn+ [n + iy 'n+1 

where D is the determinant (ax, — an_i,n-i) and I % 1 is what 

this determinant becomes when the -ith column ait h has been 
replaced by an< h [k = 1, 2, ••• n — 1] . 

Substitute these values for xi from (11) in (10) ; this gives 

+Mi(»+i),+2)']-0-
The roots of this equation are real and distinct, real and 
coincident, or imaginary, according as 

'=[ï(i)U0T-
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[l(iï+"] [KnUÏ+-] 
is positive, zero, or negative. 

This expression can be re-arranged into the form 

" Ji Si L( i ) \n + l) ~ (n + l) (n) J . 
The elements of IT are now 

n+l n+l 

0 ( O = 2 aU, 0(«*, «,) = 2 ««,* " aM 5 
&=i i = i 

JET can be expressed as the product of the two rectangular 
arrays 

ttl, 2? 

•• ctn+\,\ 
a, 'n+1,2 

ttl,n+l> n+l, n+l 

< * 1 , 1 , 

^ 1 , 2 ? 

- at 'n+l, 1 

V f 1, 2 

V. ttl, n+l •*«+!, n+l 

which, when developed, gives 

+ terms of the form I7., where 

H[(i)( .J i)-( i)Ui)]"-^ 
Then A = - D 2 j f f . 

The points are real, coincident or imaginary, according as 
i f is negative, zero or positive. So much for the case when 
all the terms in (10) are positive, but it is not always pos
sible to reduce (2) to the form (10) by a real transforma
tion. A real transformation can always reduce it to the 
sum and difference of squares, where the excess of terms of 
one kind over those of the other is a constant, then a pure 
imaginary transformation to the form (10). 

* Cf. Muir's Determinants, p. 309 ff. 
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Suppose that any one term, as xe
2 has a negative sign in 

(10) ; the corresponding terms in H are also negative. 
Now, by making the transformation xv = xj [y = 1, ••• n + 1, 

V=t=€ 

xe = ix/, the form is reduced to (10) ; the modulus of this 
transformation is i, hence to preserve the reality of the com
mon elements H should be multiplied by — 1 for every nega
tive term that appears in (10). Further, it makes no dif
ference whether (10) has m positive and n + 1 — m negative 
terms, or conversely. If n + 1 is even, both of these num
bers are odd or even together ; if n + 1 is odd, they would 
be different, but H is now of odd order, and the sign of 
every term would also be changed. The two changes of 
sign would be neutralized, hence : 

The line common to n — 1 planes in space of n dimensions 
pierces a given quadric surface in the same space in points which 
are real, coincident or imaginary, according as ( — l ) f t r l • H is 
positive, zero or negative, where h is the number of negative 
terms which appear in the equation of the quadric when it 
is reduced to the algebraic sum of squares, and I f is the 
combinant of the surface and the planes. 

Applications, n = 2. 
Let <p (x) = x2 — 4 xx #3 = 0 ; find the points where the 

curve cuts a1x1 + a2x2 + a3#3 = 0. 

2 x2 x-2 — 4 xx xj — 3 #3 a/ = 0. 

ax = — 4 #8' ; a2 = 2 x2 ; a3 = — 4 xv 

. . .*(a) = ? » - - ? & . 
v y 4 4 

h = 1, hence the points where the line axxx + a2x2 + a3#3 + 0 
cuts the parabola are real when a2

2 ==: axaz. 
In line coordinates, n = 2 would express whether a given 

point lies within or without a given conic. 
n = 3. Two planes and a quadric surface ; this case is 

self dual. 
Points common to two circles (in tetracyclical coordi

nates) . 
n = 4. Points common to three spheres (pentaspherical 

coordinates). 
Circles cutting three given circles cv c2, c3 at given angles 

<PV ?2> <PV 

n = 5. Lines cutting four given lines, or belonging to 4 
linear complexes. 
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Spheres cutting 4 given spheres sv s.2, ss1 s^ at given an
g l e s cpv <p2, <pv <p±. 

H contains the determinant formed by the discriminant 
of <p, bordered with the coefficients of the planes as a factor. 
This expression is of the same degree as H, both in ait k and 
the coefficients of <p, hence the remaining factor is numer
ical. By comparing corresponding terms in the two ex
pressions, this is seen to be ± 1 . The sign to be prefixed 
depends upon h in both cases, but the H method has two 
advantages, viz.: 

IT is of order n — 1; the bordered discriminant is of or
der 2n. 

H appears in many other connections ; the bordered dis
criminant would have to be calculated for this purpose. 

COKNELL U N I V E E S I T Y , 
July 19, 1897. 

FLUID MOTION. 

Hydrodynamics. B Y HORACE LAMB, F . E. S. Cambridge 
University Press. 1895. 8vo., pp. 604. 
The appearance of a new treatise on any branch of higher 

mathematics rarely calls for anything else than congratula
tions to the author, and the volume before us is no excep
tion to the rule. The problems of hydrodynamics present 
so many difficulties and the opportunities for students to 
obtain a connected view of them are so rare that any addi
tional help is valuable. Professor Lamb, however, has 
gone much further than merely producing a continuous ac
count of the subject as it stands at the present time. He 
has given us a treatise which will easily rank first amongst 
those in the English and perhaps in any language. The 
only other English treatise of the same scope, that by Bas
set published in 1888, although an advance on those which 
had previously appeared, rather suffers by comparison, 
both in its plan and the manner in which it is carried out. 

In looking over the list of authors which Professor Lamb 
gives in an index, we are struck by the frequency with 
which four or five names occur, and a closer examination 
of the references attached to other names reveals the fact 
that the mathematical development of hydrodynamics has 
been almost entirely due to these four or five writers. I t 
must be concluded from this, either that some cause has 
prevented all but a very few mathematicians from seriously 


