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ON SEVERAL THEOREMS OF OPERATION 
GROUPS. 

BY G. A. MILLER, PH. D. 

§ 1 . 
I N a recent number of the Quarterly Journal of Mathe* 

matics (vol. 28, p. 233) we proved the theorem, "Every 
group (G) whose order is divisible by p*,p being any prime 
number, contains a commutative group (Gx) of order p9." 
The following proof of this theorem is much simpler and 
can readily be extended to apply to more general theorems. 

G contains a subgroup (G') of order pa, a >3 . - G' con­
tains a subgroup of order p whose substitutions* are com­
mutative to all the substitutions of G'.f With respect to 
this subgroup G' is isomorphic to a group ( G/) of order 
p*"1. G/ contains a subgroup of order p whose substitu­
tions are commutative to all the substitutions of G/. With 
respect to this subgroup G/ is isomorphic to a group (G2') 
of order pa~2. Hence we may suppose the substitutions of 
G' so arranged that the first p^(/5= 0 ,1 , 2, 3, •-, a — 1) con­
stitute a self-conjugate (invariant) subgroup of G' and that 
each of its p sets of p^~x substitutions, in order, is trans­
formed into itself by all the substitutions of G'.J 

If we suppose p = 2 each of the p sets contain p substitu­
tions. The substitutions of p — 1 of these sets must be 
transformed, by all the substitutions of G', according to the 
cyclical group of order p or according to identity. Those 
in the first set are known to be transformed according to 
identity. Hence each of these p2 substitutions must be 
commutative to at least ^a~~1 substitutions of G' and the 
the first p4* in the given arrangement must contain a com­
mutative group of order p*. This proves the given the­
orem. 

In general, the first p$~l substitutions in the given ar­
rangement are transformed by G' according to a group (H) 
of order p0. A substitution which is commutative to all 
the substitutions in the second set of p&~2 is commutative 
to each of the given pP~x substitutions. Hence IT is simply 
isomorphic to a group whose degree cannot exceed p&~2 and 
the maximum value (M) of 0 is given by the formula § 

* The operations are throughout represented by means of substitutions. 
f SYLOW, Mathematische Annalen, vol. 5, p. 588. 
t Ibid. 
\ Cf. DIRICHLET-DEDEKIND, Zahlentheorie, p. 27. 



112 ON SEVERAL THEOREMS OF [ D e c , 

M = ^ - 3 + 2 ) 0 - * + ^ - * + ... + 1. 

This proves the 
THEOREM I : The substitutions of a group of order pa, where 

a > pP~* + ^ ~ 4 + ••• + p + 1 -f 0 — 1), can be so arranged 
that the first p&~x constitute a self-conjugate subgroup whose substi­
tutions are commutative to the substitutions of a subgroup of or­
der pP. 

By making j3 = 3 in this theorem we readily obtain the 
former theorem, since the groups of order p2 are commuta­
tive. Another important extension of the given theorem is 
based upon the fact that the given commutative group of 
order p8 is a self-conjugate subgroup of G''. The proof of this 
fact follows almost directly from the given arrangement. 
I t is only necessary to consider the case when the first p* 
substitutions in this arrangement are not commutative. 
Since the second set of p substitutions must then be trans­
formed according to the transitive group of order p they 
are commutative to only p* of the first p* substitutions. 
Hence there can be only one commutative group of order jp3, 
among the first p* substitutions, that contains the first p2 

substitutions. Since conjugate subgroups have the same 
properties this must be self-conjugate. 

Sylow's proof of the theorem that every group of order 
pa contains at least p substitutions which are commutative 
to all the substitutions of the group applies equally to all 
its self-conjugate subgroups.* We may therefore use any 
self-conjugate subgroup of order p? for the first p? substitu­
tions in the given arrangement of the substitutions of G'. 
Hence the properties which we have observed in regard to 
the first p? substitutions belong to each of the self-conjugate 
subgroups of this order. 

In particular, every self-conjugate subgroup of order p is 
composed of substitutions which are commutative to the 
entire group.f This is also a particular case of the the­
orem that a group of the order pa cannot transform any of 
its substitutions of order p into its a power unless « = 1. 
Since p has primitive roots, the^ — 1 power of the transform­
ing substitution would have to be commutative to the trans­
formed substitution. From this it follows that the first 
power of the transforming substitution would also have to 
be commutative to the transformed substitution. 

As we may consider the first p3 substitutions commuta-

* Cf. FROBENIUS, Sitzungsberichte der Berliner Akademie, 1895, p. 983. 
t Ibid, p. 982. 
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tive, in the given arrangement of all the substitutions of 
G', we readily obtain from theorem I . the following 

Corollary. Every group of order pa, « > p + 4, contains a 
commutative group of order p*. 

In particular, for jp==2, we have that every group whose 
order is a power of 2 and larger than 64 contains a commu­
tative group of order 16. In the given article we proved 
that there are seven groups of order 32 that do not contain 
such a commutative group. We shall presently construct 
a group of order 64 which contains no commutative group 
whose order exceeds eight. This will prove that we can­
not assign a smaller value to a in the given corollary, at 
least not without restricting the values of p. 

Suppose that the following group (G') of order 32 is 
made simply isomorphic to itself in such a way that the 
elements in the corresponding substitutions differ only with 
respect to subscripts. 

1* 
ae. bf. eg. dh. im.jn. ko. lp. qu. rv. sw. tx. yy. zd. ae. $6 
ai. bn. ck. dp.fj. em,, hi. go. qy. rd. sa. W. vz. uy. xfi. we 
am. bj. co. dl. ei. fn. gk. hp. qy. rz. se. tft. uy. vd. wa. xO 
aceg. bdfh. ikmo.jlnp. qsuw. rtvx. y aye. zfidO 
agec. bhfd. iomk. jpnl. qwus. rxvt. yeya. zOdfi 
akeo. bpfl. cmgi. djhn. gaue. rdvz. sywy. tzxd 
avek. blfp. cigm. dnhj. qeua. rfivO. sywy. tdxz 
abedefgh. ifklmnop. qrstuvwx. yzafiydeO 
adgbehef. ilojmpkn. qtwruxsv. yfiegydad 
afchebgd. inkpmjol. qvsxurwt. ydadyzefi 
ahgfedcb. iponmlkj. qxwvutsr. yOedyftaz 
ajgpencl. bohmfkdi. qzwdudsfi. rsxyvaty 
alcnepgj. bidkfmho. qfisàudwz. rytavyxe 
anglejep. bkhifodm. qàwftuzsO. raxyvety 
apcjelgn. bmdofihk. qOszuftwd. rytevyxa 
aq. bz. cw. do. eu, p. gs. hft. iy.jr. ke. lx. my. nv. oa. pt. 
au. bâ. es. d(S. eq. fz. gw. hO. iy. jv. ka. It. my. nr. oe. px. 
ay. bv. ce. dt. ey. fr. ga. hx. iq. jô. kw. Ift. mu. nz. os. pO. 
ay. br. ca. dx. ey. fv. ge. ht. iu. fz. ks. 10. mq. nô. ow. pp. 
as. bjS. cq. dz. ew. fâ. gu. hd. ia. ft. ky. Ir. me. nx. oy. pv. 
aw. bd. eu. dd. es. fp. gq. hz. ie.jx. ky. Iv. ma. nt. oy. pr. 
aa. bx. cy. dv. ee. ft. gy. hr. is.jO. kq. U. mw. nfi. ou. pz. 
ae. bt. cy. dr. ea. fx. gy. hv. iw. jft. ku. Iz. ms. nO. oq. p$. 
* It may be observed that these substitutions are arranged in the given 

manner, i. e., the first pP ( p = 2, p = 0,1, 2, 3, 4) constitute a self-conju­
gate subgroup of G' and the first ps are commutative. That each of the 
first p sets of pP*1 substitutions is commutative to Of gives additional 
information only when p > 2. 
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arkdevoft. bapufelq. cxmdgtiz. dyjshynw. 
atkzexoà. bypwfyls. erm6gvift. dajuhenq. 
avkfteroO. bepqfalu. ctmzgxid. dyjwhyns. 
axkdetoz. bypsfylw. cvmftgriO. dejqhanu. 
azotedkx. bwlyfspy. cdirgfimv. dunahqje. 
afioveOkr. bqlsfupa. czitgdmx. dwnyhsjy. 
adoxezkt bslyfwpy. cfiivgOmr. dqmhuja. 
adoreftkv. bulafqpe. côixgzmt. dsnyhwjy. 

If we multiply the resulting group (K) of order 32 and 
degree 64 by 

brhft. ckgo. dOfv. im. jàpx. Unz. qsya. uwye. bx rx hx f$v cx k1g1 ov 
di ei fi vv h mv i i *i Pi xv k K nx zv ft si Tx ai> ui ™i 2/i £- ^ 
where t is of the second order and interchanges the ele­
ments of K which differ only with respect to the subscript, 
we obtain the required group of order 64. For if this 
group should contain a commutative group of order 16, K 
would have to contain just 8 of its substitutions.* At least 
4 of these would have to be found among the first 16 substi­
tutions, since these constitute a self-conjugate subgroup of 
K. Hence we see that the tail to K does not contain any 
substitution which is commutative to the substitutions of a 
commutative group of order 8 found in K. The entire 
group can therefore not contain a commutative group whose 
order exceeds 8. 

From these considerations it follows that while we can 
always assume the presence of a commutative group of or­
der 8 in a group whose order is divisible by 16, yet we can­
not assume the existence of a commutative group of order 
16 unless the order of the group is divisible by 128. These 
facts are of practical importance in group construction since 
the presence of a large commutative group often simplifies 
the work very much. 

§2. 
THEOREM I I : If a group contains a subgroup whose order is 

equal to the order of the group divided by p (p being any prime 
number), and if this subgroup contains substitutions of order 
paj a > 0, all the substitutions of this order for any given value of 
a, which are contained in the subgroup must generate a self-conju­
gate subgroup. 

Let the substitutions of the given subgroup ( (?) be 

If G is not self-conjugate, multiply it into any substitution 

* Quarterly Journal of Mathematics, vol. 28, p. 250. 
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(t) which is not commutative to it. If the transform ( G J 
of G with respect to any one of these products contains a 
substitution (tf-1 st) of order pa which is not found in G and 
if s does not transform Gt into itself we may form the fol­
lowing rectangle with p conjugate rows of I elements : 

t s2t 8f - 8f 
tS 82t8 SjS '" Sjts 
tS2 S2tS

2 Sjs2 '" Sft2 

tsp~l sjs*"1 s^"1 - sfsv-1 

All the substitutions of a given row transform G into the 
same group while any two substitutions from different rows 
transform G into two different groups. As no substitutions 
in the given rectangle can be equal to each other the entire 
group would have to contain at least l(p + 1) substitutions. 
This is contrary to the hypothesis. As the opposite to the 
assumptions made above would in each case assume the 
truth of the theorem, the proof is complete. 

Corollary. If G is generated by substitutions of order pa it is 
self-conjugate. 

In particular, if we assume that the order of G is pa~l 

we obtain on important theorem due to Frobenius, which 
he has proved in a number of different ways as a special 
case of other general theorems.* 

§3. 

By means of the operation sts~l t~* we may readily deter­
mine the smallest self-conjugate subgroup with respect to 
which a group is isomorphic to a commutative group, or, in 
other words, the order of the largest commutative group to 
which a given group can be made isomorphic.f Since s and 
s_1 have the same sign and a group can be isomorphic to 
only one commutative group of the maximum order we 
have the following : 

THEOREM I I I : If we make a group isomorphic to the largest 
possible commutative group the substitutions which correspond to 
identity in the commutative group are positive. 

The application of the symbol sts'H*1 to operation groups 
has a two-fold importance as it simplifies the study of a 
group with respect to its solvability and tends to bring into 
prominence some of the similarities which exist between 
Lie's transformation groups and the older operation groups 

* Cf. SUzimgsberiehte der Berliner AJcademie, 1895, p. 962. 
t Quarterly Journal of Mathematics, vol. 28, pp. 266-268. 
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which have been developed mainly under the form of sub­
stitution groups. 

I t may be well to add that the symbol sts~H~x has been 
used in substitution groups for a long time, but its use has 
been very limited. As far as we know its practical appli­
cation to determine important properties of a group was 
first explained in the recent article in the Quarterly Journal 
to which we referred above. 

GÖTTINGEN, 
September, 1896. 

NUMEEICALLY EEGULAE EETICTJLATIONS UPON" 
SUEFACES OF DEFICIENCY H I G H E E THAN 1. 

BY PROFESSOR HENRY S. WHITE. 

By the term reticulation I shall designate for present pur­
poses any system of lines lying upon a closed surface, 
together with all the points in which these lines intersect 
one another. Further I shall assume that they divide the 
surface into portions, of which each by itself is simply con­
nected, i. e., has deficiency zero. These portions of the 
closed surface may be termed faces, and their intersection 
points vertices, while each boundary line terminated by two 
consecutive vertices is an edge. If F, V and E denote the 
numbers of faces, vertices and edges, respectively, in a 
reticulation, and p the deficiency of the supporting surface, 
then Euler's relation for convex polyedra, generalized, 
will be E= V+F+2p—2. 

A reticulation is clearly entitled to be called numerically 
regular when it has: 

1. In every vertex a constant number of termini of edges; 
call this number p+2=r. 

2. In every circuit bounding a face a constant number of 
edges, call this number <J+2=S. 

We may for the present regard these two numbers /> and 
a alone as characteristics of a regular reticulation; there 
will remain for subsequent inquiry the determination of the 
number of essentially different types having any given set 
of characteristics p, <r, and p. From these three the values 
of F, V, and E can be computed, as will be seen below. 
Counting then as one class all regular reticulations char­
acterized by the same values of p and a, it can be shown that 
on a surface of given deficiency p, there can exist only a finite 
number of classes of numerically regular reticulations. 


