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APOLAR TRIAKGLES ON A CONIC. 
BY ritOFESSOR F . MORLEY. 

§ 1. Apolar Triads. 

Take two triangles, or point-triads, in a plane, say T and 
T', where (attaching complex numbers to the points in the 
usual way) Ti& tl9t2, tt, and Tf is t'y £/, t9'. Take the 
polar pair of t' as to T, and the polar point of t9' as to this 
polar pair, and let this polar point be tz'. The relation thus 
imposed on T and V is symmetric both as to the points T9 
the points T', and the two triads J 'and T'; it is, in fact, 

V / - V / + 3(*. - O = 0, (1) 
where st = 2t\, s9 = 2tptv, sQ = tf^%y and similarly for T'. 
Compare Salmon, Higher Algebra, § 151. Or in the sym­
bolic notation, if T and Tf are given by at = 0, a V = 0, the 
relation is {aa')z = 0. The triads are now said to be apolar. 

This covariant notion of apolarity, stated above for triads, 
is the natural extension of the notion of harmonic pairs, and 
can be immediately generalized, as is well known. 

If the points lie on a line, we can deal with them protec­
tively. Joining them to any point we have two apolar triads 
of a pencil. Pass a conic through the vertex of the pencil; 
the triads of rays cut out apolar point-triads of the conic. 
Express the co-ordinates of any point of the conic parametri-
cally, say by 

x : y : z = t* : t : 1; 

then the parameters of the two triads of the conic obey the 
relation (I), inasmuch as the parameter t is proportional to 
the ratio in which a side of the triangle of reference is divided 
by the line joining the opposite vertex of the triangle to the 
point t of the conic. And in general this is sufficient justifi­
cation for the interpretation of binary forms and their co-
variants by means of points of a conic. 

Now if in the treatment of covariants by means of complex 
numbers (which I will call for shortness the inversive method) 
we restrict our view to points of a circle, any interpretation of 
a covariant (or rather of its vanishing), so obtained, can be at 
once stated also projectively for a conic. For if we take the 
circle as having the equation 

xz = 1, 

where x, z are conjugate complex numbers, this equation is a 
special form of the equation 

xz = y% 
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which we selected for the conic. In the transition from the 
inversive construction to the projective one, pairs of points 
inverse as to the circle must be replaced, for projective pur­
poses, by the imaginary points where their line of symmetry 
meets the circle. In particular the centre of the circle and 
the point oo must be replaced by the circular points. 

This identity of the results obtained so long as we restrict 
ourselves on the one hand to points on a circle and the pairs 
of inverse points, on the other to the single conic and auxil­
iary lines, is illustrated as far as concerns the cubic by com­
paring Beltrami's constructions for the covariants (for which 
I may refer to my article On the covariant Geometry of the 
Triangle, Quar. Jour., vol. 25) with Salmon's Conies, note, p. 
387 of the sixth edition. The identity is evident so far as it 
goes; but there is not in Salmon any projective construction 
for the polar pair of a given point. By drawing the canonical 
figure, in which the conic is a circle, the cubic is represented 
by an equilateral triangle, and the Hessian points are there­
fore the circular points, we can verify at once the following 
statement :— 

Let tx, tf2, td be the fundamental points, j1>j\,j\ the Jaco-
bian points, x any other point of the conic. Draw xy)k har­
monic with t\j\; then the lines t\y\ meet at the pole of the 
line required. This pole lies on the Hessian line, so that the 
line required passes through the intersection of the three 
lines tkjk. 

The inversive point of view is taken in the special problem 
of the next section ; the rest of the article is projective, but 
the statements are made for the point as primary element, and 
are not repeated in the reciprocal form. And in accordance 
with this one-sided mode of statement, the word triangle is 
often loosely used here as meaning point-triad. 

§ 2. Feuerbach's Theorem. 

Many of the proofs which have been given of this remark­
able and familiar theorem employ the method of ordinary 
inversion; but, so far as I know, none of them have stated 
the covariant aspect of the matter. The theorem is, for my 
purpose, as follows : 

From a triangle T, and an auxiliary point x, form a new 
triangle Tx ay taking the harmonic of x as to each pair of 
points of T. From Tx and an auxiliary point y form in the 
same way a third triangle Txy. Let x and y he inverse points 
as to the circumcircle (T) of T. Then the circles (T) and 
( Txy) touch at a point t. 

To reduce this statement to the usual form, take for x the 
centre of (T)9 and therefore for y the point oo. Then Tx is 
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a triangle whose sides touch (T), and the middle points of 
these sides make up Txy. 

It is natural to suppose that the points x, y, t are apolar 
with T; this I have to verify. 

FIG. 1. 

Taking x = 0, y = oo, we have from (1) 

t = sjsx. 

The harmonic of 0 as to t^ and tv is 

The harmonic of oo as to x^ and xv is 

yx = i ( ^ + a>„) 

+ tv ' h + 
Hence 

#A (fc + t„)(tk + t,y 

T) 

and therefore 

t\ + tv t\ + t > 

~^ (tx + tj(h + tvy 

y\ — h __ sjx 
t — yx tytv 

(2) 

(8) 
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Now introduce the condition that the origin is the centre 
of the circle (T); supposing this circle to have the radius 1, 
then 

y\ — t} 

t — y\ = *, 

where # = jsj = distance between the circumcentre and or-
fchocentre of T. 

Now if the stroke from t to yx meet (T) again at Zx, we 
have, by elementary geometry (Euclid iii. 36), 

VA - tx 

1* —yx 

\zx — yx 
\t — yx 

= 

—*** 

zx - yx 
y\ — t\ 

â\ 

Hence 

that is, Zx divides the stroke from t to yx in the ratio 
1 — tf2 : a*. Since this ratio is independent of À, the circles 
(Txy) and (T) touch at t. 

We have taken as origin the circumcentre. If also we take 
as real axis the line through the centroid, so that now s1 is 
real and = o% then 

Therefore 

iA + V*. + V*. = *, 
S, = OS,. 

t, = s Jô, = s,. 

Thus the triangle T is given by the equation 

h ' - t - d(h' - ht) = 0, (*) 

and this for different values of S represents an involution of 
triangles on a circle, any two of which are apolar, as appears 
on applying the condition (1). But it includes also triangles 
of which one point is on the circle, and the other two are 
inverse as to the circle, for when we write for tx and t their 
reciprocals, we get the same equation, and we can suppose 
either that £A is conjugate with l/tx, when X = 1,2, 3, or that 
tft is conjugate with l/tv> in which case one pair of points is 
an inverse pair. 

For three points on the circle we have, f rorrf t = 6-3, the 
theorem that the orientation of the radii to the three points is 
constant and equal to that of the radius to t, the orientation 
being the sum of the angles made with the selected real axis. 
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§ 3. Doubly Apolar Conies. 

An involution of triads of which each pair is apolar, such 
as was given by (4), may be called an apolar involution. The 
simplest view of it is that it consists of the polar triads of a 
self-apolar* tetrad. For, first, if we take the equations of 
any two triads, as 

(a, b, c, d) (x, y)\ {b, c, d, e) {x, y)\ 

as in Salmon's Higher Algebra, § 203, then when the triads 
are apolar 

ae — 4bd + 3ca = 0, 

and the tetrad of which they are polar triads is self-apolar. 
And second, taking for the equation of the tetrad 

x* + 4txy% = 0, 

it is verified at once that any triad which is apolar with two 
polar triads is itself a polar triad. 

Such an involution will now be considered in connexion 
with a special system of conies. 

Inversively, we say that an equilateral triangle and the 
point oo are self-apolar. Hence protectively we can say that 
adjacent corners of a regular hexagon in a circle, and the 
circular points, are self-apolar points of the circle. 

Now imagine a o^uilt formed of equal regular hexagons, say 
of side 1; draw circles round the hexagons, and take two 
visibly intersecting circles. Their four intersections are self-
apolar points of each circle. 

Referring to Salmon's Conies, p. 336, Ex. 3, we see that the 
intermediate invariants © and ©' both vanish ; for we have 

r = r' = 1, a7 + f = 3. 

Beye calls a conic in point co-ordinates and a conic in line 
co-ordinates apolar when the bilinear invariant—© or ©', as 
the case may be—vanishes; hence our two circles are suffi­
ciently characterized if we may say that they are doubly 
apolar. 

Hence through four points—two real and two imaginary— 
two doubly apolar conies can be drawn; for these conies 
© = ©' = 0. And it is easy to prove, conversely, that when 
© = ©' = 0, the intersections of the conies are a self-apolar 
system on each. Cf. Clebsch-Lindemann-Benoist, vol. I. 
p. 375. 

* The term self-apolar is used in preference to the clumsy word equi-
anharmonic, which is, moreover, sometimes used with reference to any 
four points on a line and their projection. 
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§ 4. Wolstenholme's Configuration. 

With two such conies (T) and (Î7), we can associate a third 
conic ( F ) , which is equally the reciprocal of (T) as to (U), 
that of (U) as to (T), the envelope of lines divided harmoni­
cally by (T) and (U), and the locus of points divided har­
monically by (T) and (U). Moreover, the relations of the 
three are entirely symmetrical. This system of three conies, 
of which each pair is doubly apolar, was studied by Wolsten-
holme, Problems, pp. 263-4; but his results are stated with­
out reference to the theory of binary forms, and it is desirable 
to indicate the connexion. 

The quilt arrangement is not so convenient, for the system 
of three conies, as the arrangement to which Wolstenholme's 
canonical equations lead. These equations are 

x* + 2yz = 0, y* + 2zx = 0, z* + 2xy = 0, 
for (T), (U), (^respectively. 

Taking the fundamental triangle equilateral and the co­
ordinates areal (Fig. 2)*, these give three rectangular hyper­
bolas ; the real intersections form a regular hexagon, and the 
real foci form an equal regular hexagon. 

Selecting (T) as the conic on which apolar triangles are to 
be considered, we take for the co-ordinates of any point t on it, 

x : y : z = t : — f : -J. 

The intersections of (T) and (U) are points on (T) given 
by 

f4 + * = 0 ; (5) 

* How to do this appears from a remark of Clifford, Papers, p. 412. 
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these we take as the fundamental self-apolar tetrad on (T). 
Now taking any point t0, its polar triad, t\, t^, tv, is given by 

*.(«• + 1) + M = 0, (6) 
so that 

2tk = 0, 2tJ9 = yUQ, htjv = - 1/4. (7) 

Rotating the figure round its centre through angles 27r/3, 
the points ta pass into the points ua and va, where or = 0, 
1, 2, 3; the co-ordinates of all these points being given by 
the scheme : 

ta IS ta ) — ta > "2> 
Vso. IS "J, ta , — f a , 
Va IS — ta y if ta* 

Now the line joining t^ and tv is 

B(*H + tv)+y — Mat* = 0, 
or from (7) 

- 2a*x" + 2y*x + « = 0, 

and this is the tangent of ( Z7) at u\. 
So also the sides of the triangle ux> wa, us touch (V) at 

vl9v%9 t y 
The triangle w t, u^, u^ is harmonic as to (T). For two 

points xl,ylyZl, and #a , #a , 2a are harmonic as to x* + 2yz 
= 0 when 

^ A + y A + y A = o ; 
and in this case the left side 

= 0. 

Thus Wolstenholme's main results are verified. 
Next, #Ae ̂ ree Kwes fo^x wê tf at the point t0, with which we 

began. 
For the join of t0 and h is 

*('• +*i)+y~ 2^ 0 'A = 0 : 

this passes through uK if 

*(*• + <*) + «A + 2W = 0, 
which is equation (6). 
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Similarly, the join of t0 and uQ passes through the polar 
point of t0. 

The tangent at u0 meets (T) at the (imaginary) Hessian 
points of tx9ti9 t^ For this tangent is 

-2xt; + 2yt0 + z = 0; 

it meets (T) where 

- Ut: - 2tf + i = 0; 

and the left is the Hessian of the left of (6). 
The tangent at v0 meets (T) at the polar pair of t0. F 

this tangent is 
x - tyt; + 2**o = 0 ; 

it meets (T) where 

t +10 + m; = o, 
and the left is the second polar of tQ as to the fundamental 
tetrad. 

Lastly, the lines vj\ meet (T) again at the Jacobian of 
tl9t9, t^ For evidently vQ, fa,jv\ are collinear; and V\ is the 
pole of tftfp as to (T). Hence v0t\ and t^U are harmonic as to 
(T) ; but harmonic lines meet a conic in harmonic pairs. 

The configuration is determined when we take a conic and 
on it two apolar triangles. To return to the original case of 
a circle, and on it two triangles tl9 ta, tt> and t, 0, GO , § 2, we 
project figure 2 so that the points where a tangent of ( Ü) 
meets ( T) pass into the circul ar points. ( T ) becomes the circle, 
( U) a parabola touching the sides of the system of triangles 
T> {V) a rectangular hyperbola on which lie all the points of 
the tangent triangles T0. 

§ 5. The Complementary Line. 

In general a line which cuts two çlane curves of degree 3, 
say a J = 0, by = 0, in two apolar triads, envelops a curve of 
class 3, in Clebsch's notation (abu)* = 0. Compare Clebsch's 
Geometry, vol. i. p. 344 et seq. of the French edition.* Let the 
given cubics reduce to line-triads, and let these triads touch 
a conic and be apolar triads of that conic; then the class-
cubic is clearly this conic and some complementary point. 
Keciprocally, then, in our case, where we begin with two 

* Clebsch gives the method ; the fact is stated in some lecture notes 
of Clifford, Works, p. 534. It appears that the equation by which 
Clifford defines apolar (or harmonic) triads should have only three terms 
on the left, as the second three terms are only a rewriting of the first 
three. 
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apolar point-triads of a conic, the locus of points which are 
divided apolarly by the two triads is the conic itself and some 
complementary line. It remains to identify this line. 

In the study of harmonic pairs the degenerate case when 
one of the elements is arbitrary is of great use. Then we 
know the other elements all coincide. Here, in the study of 
apolar triads, the Hessian pair of a triad and an arbitrary 
element are apolar with that triad. For we know that the 
polar pair of an arbitrary point, as to a point-triad, is har­
monic with the Hessian pair. 

Now, taking the triangles tl9 t2, t9 and t, 0, oo, where t is 
Feuerbach's point (§ 2), we know, first, that lines forming 
an equilateral triangle determine on the line infinity a triad 
whose Hessian pair is the circular points 0, oo, so that three 
such lines on the one hand and an isotropic pair and an arbi­
trary line on the other cut the line infinity apolarly; and we 
know, secondly, from elementary geometry (Quar. Jour., 
vol. 25, p. 190) that there are two points e, the lines from 
which to tl9 £2, t% form a vanishing equilateral triangle—those 
points, namely, which have been called the equiangular points 
of the triangle. Hence the line-triads from e to tl9 £2, t9 and 
t9 0, oo are apolar; for the pencil is cut apolarly by the line 
infinity. The equiangular points do not lie on the circum-
circle, hence any point on the join of the equiangular points is 
divided apolarly by the two triads. 

Thus the complementary line is determined for this case. 
To pass to a covariant statement, we notice (Q. <ƒ., loc. cit.) 
that the line passes through the symmedian point of t$J:-t9 
that is, through the pole of the Hessian line. Thus given 
two apolar triads on a conic, the points divided apolarly by 
them lie either on the conic itself or on the line through the 
poles of their Hessian lines, that is, on the line which meets the 
conic at the Jacobian of the Hessians of the triads. 

In conclusion, it is hoped that the instance of Apolarity 
which has now been worked out may be useful to the student 
of Meyer's work, Apolaritàt und Rationale Curven, to which, 
above all, reference must be made for the projective develop­
ment of the theory. 

HAVBRFORD COLLEGE. 

AN INSTANCE WHERE A WELL-KNOWN TEST TO 
PROVE THE SIMPLICITY OF A SIMPLE GROUP 
IS INSUFFICIENT. 

I N the December number of this journal (page 64, foot­
note) Professor Moore asks whether an instance is known 
where the test used by Klein in his " Vorlesungen über das 


