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SOME OF THE DEVELOPMENTS IN THE THEORY 
OP ORDINARY DIFFERENTIAL EQUATIONS 

BETWEEN 1878 AND 1893.* 
BY PROF. T. CRAIG. 

SINCE the principles of the infinitesimal calculus were es­
tablished, the analyst has been confronted by three problems, 
to wit: 

The solution of algebraic equations; 
The integration of algebraic differentials; 
The integration of differential equations. 
The history of these three problems is the same. After long 

and ineffectual efforts to conduct them to simpler problems, 
mathematicians have reconciled themselves to study these 
three great problems for themselves, and have been rewarded 
by abundant success. 

For a long time the algebraist hoped and strove to solve all 
algebraic equations by aid of radicals. That hope has, how­
ever, been abandoned, and to-day the algebraic functions are 
as well known as the radicals to which it was hoped to 
conduct them. In the same way the integrals of algebraic 
differentials, which were long studied with the aim of reducing 
them to the elementary functions of algebra, to the logarithmic 
or trigonometric functions, are to-day expressed by the aid of 
new transcendants; and the elliptic and Abelian functions 
have as well defined a place in analysis as the logarithmic and 
trigonometric functions had less than a century ago. 

Much the same thing is true of differential equations. The 
number of equations integrable by quadratures is extremely 
limited, and before the mathematician had decided to study 
the integrals for themselves, to study them as functions de­
fined by a differential equation, all this analytical domain was 
but a vast terra incognita, which seemed to be forever inter­
dicted to the explorer. Cauchy was the first to penetrate to 
the interior of this unknown region, which he did by aid of 
the very ingenious method which he called the calculus of 
limits. Many others followed him, among whom it suffices for 
the present to mention Fuchs, Briot and Bouquet, and Ma­
dame Kowalevski, all of whom employed his method with 
success. 

Before taking up the class of differential equations with 
which these and other illustrious names have been particularly 
identified, it will be desirable to speak of the class of equa­
tions which, in simplicity at least, ranks first. These are the 
linear differential equations. 

* Read before the New York Mathematical Society, February 4,1893. 
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From the time of Euler until within recent years, the only 
class of ordinary linear differential equation« for which a gen­
eral method of integration was known, was that of equations 
with constant coefficients. These are still the only equations 
whose purely external form shows that they are integrable. 
Among these is, of course, included Legendre's equation, 

+ . . . + L(ax + b)(^ + My = 0; 

which by the transformation ax + b = et is at once conducted 
to an equation with constant coefficients. 

Since the epoch-making researches of Fuchs, published in 
Grelle in volumes 66 and 68, the systematic and well-directed 
efforts of the most illustrious mathematicians of the age have 
succeeded in increasing the number of linear differential equa­
tions, for which there exist methods of integration both sure 
and general. The distinctive characteristics of sucn equations 
are not of a nature to be perceived at a first glance as in the 
cases just mentioned, but can nevertheless be recognized by 
aid of purely algebraic operations. 

The characteristic property of a differential equation of this 
type is that its general integral is a uniform function of the 
independent variable. 

I t is by the study of the singular points of the equation that 
we recognize whether or not this characteristic exists. If it 
exists, the equation can be integrated. Its general integral is, 
in fact, the quotient of two synectic functions, of which one, 
the denominator, can be written down almost at once. This 
is a polynomial if the singular points are limited in number, 
and a holomorphic function which can be constructed by 
Weierstrass's method if there are an infinite number of singu­
lar points. The numerator function must be obtained by 
means of the differential equation. The equation is thus in­
tegrated, since its general integral is represented by one and 
the same function, the quotient of those just mentioned, for 
all values of the variable. In general this integral is a new 
function, but in special cases we can express it by aid of the 
functions already introduced into analysis. These cases are 
two in number. The first case, studied by Halphen, is when 
the general integral is uniform not only for all finite values of 
the variable, but for infinite values. When this is the case, 
the integral is a rational function. This result can only hold 
for equations with rational coefficients. The second case was 
suggested by investigations of Hermite and discovered by 
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Picard. Here the coefficients of the equation, in addition to 
being uniform functions of the variable, are doubly periodic 
functions having the same period, and the general integral is 
uniform. When this is the case the integral can be expressed 
in finite fem by means of entire polynomials, the exponential 
function, and Jacobi's H-function. 

Starting with these three categories of linear differential 
equations as a basis, Halphen, in his crowned " Mémoire sur 
la réduction des équations différentielles linéaires aux formes 
intégràbles" proposed the following double problem : 

(1) Having given a linear differential equation in the varia­
ble X and the unknown Y, to determine if there exists a sub­
stitution 

such that, taking x for the new variable and y for the new 
unknown function, the transformed equation shall belong to 
one of the three categories : 

I. Equations with constant coefficients; 
II . Equations whose general integral is rational; 

III. Equations whose general integral is uniform, and whose 
coefficients are doubly periodic functions having the same 
periods. 

(2) Having found such a substitution, to effect the integra­
tion. 

In solving a new problem the attempt is always made to 
simplify it by a series of suitable transformations; but there is 
a limit to these transformations, for in any problem there is, 
so to speak, something essential, which it is impossible for any 
transformation to alter. From this arises the importance of 
the general notion of invariants, which presents itself in every 
mathematical question. Laguerre was the first to introduce 
this conception of invariant into the theory of linear differen­
tial equations, which can thus be changed into their simplest 
possible forms. Brioschi has also made important contribu­
tions to the theory of the invariants of linear differential 
equations; but it was Halphen who, starting from his already 
established theory of differential invariants, has, in the memoir 
cited, made the most important contribution to the theory of 
these invariants, and employed it to solve the above problems. 
It is impossible to give here the results of Halphen's investi­
gations, but two or three of his conclusions may be mentioned. 

First, he says, in order that there may exist a substitution 
of the above form which will transform a given equation into 
one with constant coefficients, it is necessary and sufficient 
that its absolute invariants be constants. 

Second, in order that there may exist a transformation of 
the above form which will transform a given equation into an 
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equation whose general integral is rational, or into an equation 
with doubly periodic coefficients whose general integral is 
uniform, it is necessary but not sufficient that the invariants 
be connected by algebraic relations of deficiency zero or one. 
For the further study of this second proposition Halphen 's 
memoir must be consulted. 

Two interesting results in the case of the second problem 
may also be mentioned here. 

(1) Having given a differential equation in which the in­
dependent variable and the coefficients are rationally expressi­
ble in terms of a parameter a: 
If the ratios of the integrals regarded as functions of a have 
only algebraical critical points in number three at most (in­
finity included), and, when these points are three in number, 
if their orders m, n, p satisfy the condition 

I + 1-+1->1; 
m n p 

we can make a change of the variable and the unknown func­
tion which will transform the equation into one whose general 
integral is rational, 

(2) Having given a linear differential equation in which the 
variable and the coefficients are rationally expressible in terms 
of a parameter a : 
If the ratios of the integrals considered as functions of a have 
only algebraical critical points (infinity included); and if these 
points are three in number and their orders satisfy the rela­
tion 

i + L+Ui, 
m n p 

or if they are four in. number and all of the second order; 
we can find a substitution which will change the equation into 
one whose coefficients are doubly periodic and whose general 
integral is uniform. 

This last proposition is of particular interest as it gives 
new cases of integrability of Gauss's equation, an equation 
whose importance has been recognized by the ablest analysts, 
and upon which an enormous amount has been written. It 
is sufficient here to mention the names of Schwarz, Fuchs, Bri-
oschi, and Klein. The new cases of integrability recognized 
by Halphen's theorem are when the equation can be in­
tegrated by aid of the elliptic functions. Halphen concludes 
the third chapter of his memoir, which deals with the general 
theory of invariants of linear equations of all orders, by in­
dicating the method of procedure which it is desirable to 
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follow when in the study of the critical points we substitute 
the consideration of the invariants for the consideration of the 
equation itself. In closing his introductory chapter Halphen 
says, " En résumé, I have treated in this memoir a theoretical 
question relative to the transformation of linear equations into 
other equations belonging to those types for which we know 
the integration to be possible. The developments indispens­
able to the solution of this question constitute a part, less 
than half, of this work. All the rest is devoted to applica­
tions which I have thought it best to multiply, even at the 
risk of wearying the reader. But it seems to me that in 
such a matter as this applications treated completely ought 
to dominate, and that the aim to be pursued is this : to in-
integrate effectively equations which we know to be inte­
gra te . " 

The notion of invariants arrived at by a substitution in the 
case of differential equations, is only part of a much more 
general theory which can only be briefly alluded to here. 
All branches of mathematics, whether pure or applied, are 
intimately connected the one with the other, and notions at 
first restricted to a special field of research are susceptible of 
receiving unforeseen extensions. Such is the notion of group, 
met with to-day in every branch of mathematical research. 
Poincaré in his "Notice sur Halphen99 says: " T h e mode of 
procedure of mathematical science is always the same. It 
studies transformations of different natures; and, to that 
end, it must search for that which remains constant and un­
altered during these transformations. Above all, it has for 
aim the study of groups and for means the search for invariants. 
This does not appear in every case with the same distinctness, 
but it is always true. If we can see at first sight that projec­
tive geometry is nothing else than the theory of linear sub­
stitutions, we do not perceive so quickly that elementary 
geometry is conducted to the theory of orthogonal substitu­
tions." 

Since the time of Galois the theory of groups of substitu­
tions has played a rôle of the highest importance in algebra. 
An analytical theory presenting close analogy to Galois's 
theory has been developed by Lie in his " Theorie der Trans-
format ions ff r tippen/9 a most admirable account of which by 
Dr. Chapman has recently appeared in the BULLETIN of this 
Society. Lie has made the discovery of prime importance, 
that tlie search for all these groups for a given number of 
variables and parameters is conducted to the integration of 
ordinary differential equations. Lie's theory is of the 
highest importance in the integral calculus, the real aim of 
which is to integrate differential equations; it is not confined 
to the transformations of points, but concerns itself with the 
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contact transformations, so important in the theory of partial 
differential equations. Lie has also considered the subject 
of continuous groups of infinite order and developed the 
general principles involved in the research for the invariants 
of differential equations. 

The detailed investigations of Laguerre, Brioschi, and 
Halphen in the case of linear differential equations have 
already been mentioned. To these names must also be added 
that of Forsyth, who in his memoir " Invariants, covariants, 
and quotient-derivatives associated with linear differential 
equations " and in other papers has added important and in­
teresting results to the general theory of the linear differential 
equations. 

It must suffice here to merely mention a most interesting 
memoir by Appell on the study of the invariants and the 
cases of integrability: 
(1) of equations of the form 

dl - <*Q + g»y + aJ? + - - * + "»ff* /„ ^ „x 
dx~ b. + biy+...+bd* KP<n) 

which preserve this form when we make the substitution 

y = rfu{x) + v{x), -^ = /*(#), 

5 being the new independent variable, and 7 the new un­
known function ; 
(2) of algebraic differential equations which are homogeneous 
with respect to y and its derivatives and which preserve their 
form after the substitution 

y = rju(x), j£ = p(z). 

The second part of this memoir is exceedingly interesting 
and suggestive, especially in its use and suggested generaliza­
tion of a theorem of the author, by which, under certain con­
ditions, the integration of an algebraic differential equation 
of any order and degree is conducted to the integration of a 
linear differential equation of an order one higher—an exten­
sion in a certain sense of the known property of Riccati's 
equation. The investigations of M. Roger Liouville on the 
invariants of non-linear differential equations of the first and 
second orders merit special attention, as also those of Rivereau 
and Painlevé, but they can only be referred to in this paner. 

To speak of Poincaré's researches in differential equations 
is to speak of the most important discoveries in analysis of 
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modern times. His theory of fuchsian functions is connected 
at once with the theory of differential equations, since it 
enables us to integrate linear differential equations with 
algebraic coefficients, and with the general theory of func­
tions, since these transcendents present certain remarkable 
f)eculiarities which are of such a nature as to cast considerable 
ight on the manner of being of analytical functions. These 

fuchsian functions are generalizations of the modular func­
tions, studied by Hermite in his researches on the elliptic 
functions, which possess an infinite number of singular points 
distributed along a circle. I t will be sufficient to mention 
one single property, discovered by Poincaré, of these func­
tions, for the geometer to recognize their importance. The 
fuchsian functions are of two kinds : one existing in the en­
tire plane, the other existing only in the interior of the fun­
damental circle. In both cases there exists an algebraic 
relation between two fuchsian functions which have the same 
group. The determination of the deficiency of this relation 
is of the highest importance, and has been obtained by Poin­
caré both by analytical processes and by aid of the geometry 
of position. The existence of these relations makes it possible 
to utilize these functions in the study of algebraic functions 
and algebraic curves. Thus, we can express the co-ordinates of 
a point of any algebraic curve whatever as fuchsian functionsy 
that is as tiniform f unctions o f a single parameter. ' 

So profound a result is sufficient in itself to show the in­
terest and importance attaching to these new functions ; but, 
for the present purpose, it is desirable to give at least a faint 
idea of their relations to the linear differential equations. To 
attempt to give a full idea of the importance of these func­
tions of Poincaré's, would be, for the present writer, to attempt 
the impossible ; indeed, a mere statement of Poincaré's re­
sults produces an impression of exaggeration. 

Since the time of Cauchy, mathematicians, recognizing the 
enormous difficulties and complications of the problem, have 
not attempted to study the nature of the integrals of differ­
ential equations, ordinary or partial, for all values of the 
variable,—that is, throughout the plane,—but have confined 
themselves to the investigation of the properties of these 
integrals in the neighborhood of certain given points. They 
thus perceived that these properties are very different accord­
ing as we are concerned with an ordinary point or a singular 
point. The researches of Briot and Bouquet are too well 
known to need more than mention, and since their appearance 
most important additions to the theory of non-linear equations 
have been made, notably by Fuchs, Poincaré, Picard, and 
more recently by Painlevé. But the study of the integrals 
of differential equations in the neighborhood of a given point, 
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whatever may be its utility from the point of view of numer­
ical calculation, can only be regarded as a first step in this 
study. These developments, which hold only in a very 
limited region, do not teach us concerning the integrals of 
differential equations that which the ^-functions teach us 
concerning the integrals of algebraic differentials : they can­
not be considered as true integrations. 

They must then be taken as a point of departure for a 
more profound study of the integrals of differential equations, 
in which it is proposed to free ourselves from the restrictions 
of these "limited regions," where, to use a phrase of Poin-
caré's, "on s'était systématiquement cantonne'9 and to follow 
the integral as the variable moves throughout the entire 
plane. 

This generalized study can be entered upon from two points 
of view. 
(1) We may propose to express the integrals by developments 
which alioays hold, and are no longer limited to a particular 
domain. This leads to the introduction of new transcendants 
into the theory ; but this introduction is necessary in any case, 
for the functions which have previously been introduced into 
analysis will only permit us to integrate a very small number 
of differential equations. 
(2) This method of integration, though affording us a knowl­
edge of the properties of the differential equations from the 
point of view of the theory of functions, is not in itself suffi­
cient if, for example, we wish to apply the equations to 
questions of mechanics or physics. These developments 
would not readily teach us, for example, if the function was 
one which continually increased, if it oscillated between cer» 
tain limits, or if it'increased beyond all limit. In other 
words, if the function is considered as defining a plane curve 
we would not know the general form of the curve. In certain 
applications all these questions are of as much importance as 
the numerical calculation. We have here then a new prob­
lem for solution. These are the two problems that Poincaré 
proposed to himself and undertook and succeeded in the task 
of solving,—truly a task for a giant of intellect. 

" Desiring," to quote Poincaré, " to express the integrals of 
differential equations by the aid of series always convergent, I 
was naturally led first to attack the linear differential equa­
tions. These equations, in fact, which have been during 
recent years the object of the investigations of Fuchs, Thome, 
Probenius, Schwarz, Klein, and Halphen, were the best 
known of all. We had for a long time possessed the develop­
ments of their integrals in the neighborhood of a given point, 
and in a quite large number of cases had succeeded in com­
pletely integrating them by aid of functions already known. 
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It was then in commencing my studies at this point that I 
had the most chances of arriving at a resuit. 

" But it was further necessary to make some hypothesis 
concerning the coefficients of the equations which I wished to 
study. If, in fact, I had taken for coefficients any functions 
whatever, I would equally have obtained for integrals any 
functions whatever, and consequently would not have been 
able to say anything precise on the subject of the nature of 
these integrals, which was my aim. I was thus led to ex­
amine the linear equations with rational and with algebraic 
coefficients." 

The following is Poincaré's classification of these linear 
equations, the one which, from the point of view of the pro­
posed problem, is the most natural. 

Let y be an integral of a linear equation of order n with 
rational coefficients. Write 

where X and the F's are rational functions of x. I t is clear 
that z, like y, will satisfy a linear equation of order n with 
rational coefficients. Poincaré says that these equations belong 
to the same family. In fact, it is easily seen that the knowl­
edge of the properties of the function y involves that of the 
properties of the function z. In each family there are an infinity 
of different equations, but certain functions of the coefficients 
have the same value for equations of the same family.. In other 
words, there are invariants which remain unaltered by the 
above substitution. These invariants are not the same as those 
of Halphen for linear equations. These latter arise from a 
transformation which consists in replacing x by any function 
whatever of x' and multiplying y by any other f unction what­
ever of x'. On the contrary, the functions entering into 
Poincaré's substitution are not any whatever, but are rational. 
This shows well the difference between Halphen's investiga­
tions and those of Poincaré. Halphen sought above all to 
find the relations between different integrals, and could thus 
with impunity introduce any functions whatever into his cal­
culations. Poincaré, on the other hand, sought to study the 
nature of the integral itself ; this nature would manifestly be 
altered if the integral were multiplied by an arbitrary func­
tion, as is the case in Halphen's work. 

This intimate study of the nature of the integrals can only 
be made by the introduction of new transcendents. These 
new transcendents have a close analogy to the elliptic func­
tions, which is not surprising, as Poincaré was attempting to 
do for differential equations with algebraic' coefficients what 
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had already been done by aid of the elliptic and Abelian 
theta-functions for the integration of algebraic differentials. 

This analogy with the elliptic functions served Poincaré as 
a guide in all his researches. The elliptic functions are uni-
form functions which are unaltered when the variable is 
increased by certain periods. This notion is so useful in 
mathematical analysis that mathematicians had long seen the 
desirability of generalizing it by seeking uniform functions of 
a single variable x, which would remain unaltered when this 
variable was subjected to certain transformations. These 
transformations cannot be chosen arbitrarily, but must evi­
dently form a group: and further, this group must contain 
no infinitesimal transformation; that is, # must not vary by 
an infinitesimal amount. For, if this were so, on repeating 
this transformation indefinitely, x would vary continuously ; 
and our uniform function, remaining unaltered when the 
variable changed continuously, would necessarily reduce to a 
constant. In other words, the group of transformations must 
be discontinuous. 

In elliptic functions the transformations of the group con­
sist in adding constants. The functions are studied by 
dividing the plane into an infinite number of parallelograms 
of periods. All the parallelograms are obtained by trans­
forming one of them by the different substitutions of the 
group; so that a knowledge of the function in one of these 
parallelograms involves a knowledge of it throughout the 
entire plane. 

So if we consider a more complicated discontinuous group 
generated by a transcendent of higher order, we can divide 
the plane (or the part of the plane in which the function 
exists) into an infinity of regions, or curvilinear polygons, in 
such a way that we can obtain all these regions in applying to 
one of them the different transformations of the group. The 
knowledge of the function in the interior of one of these 
curvilinear polygons will involve the knowledge of the func­
tion for all possible values of the variable. 

In the elliptic functions, considering the integrals of "the 
first kind," we regard the variable x by the process of inver­
sion as a function of the integral. The function thus defined 
is uniform and doubly periodic. So, considering a linear 
equation of the second order, and by a species of inversion, 
Poincaré regards the variable x not as a function of an 
integral but as a function of the ratio of the two integrals of 
the equation. In certain cases the function thus defined is 
uniform, and then remains unchanged by an infinity of linear 
substitutions changing z into 

yz + ô' 
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When this is the case, the group formed by these substitu­
tions must be discontinuous, and the curvilinear polygons 
referred to must be limited by arcs of circles. Poincaré first 
supposes the coefficients of the substitutions 

\*> yz+â) 

to be real, or, what comes to the same thing, supposes that 
these substitutions do not alter a certain circle which he calls 
the "fundamental circle." In this case the arcs of circles 
which serve as sides of the polygons cut the fundamental 
circle orthogonally. 

What is then the condition that a group generated by a 

f lven curvilinear polygon shall be discontinuous? Poincaré 
nds this condition, and then constructs the discontinuous 

groups formed by substitutions which leave the fundamental 
circle unaltered, and which he calls fuchsian groups. Here an 
important problem now presents itself: having given a fuch­
sian group, do there exist functions which are unaltered by 
the substitutions of this group ? In answering this question 
Poincaré appeals again to the analogy with the elliptic func­
tions. These functions can be regarded as the quotients of 
two 0-series. These auxiliary transcendents are not only 
uniform, but are also entire functions; they are not doubly 
periodic, but reproduce themselves multiplied by an exponen­
tial when the variable is increased by a period. So in the 
new case the fuchsian functions are expressed as the quotient 
of two "thetafuchsian" series, which are finite and uniform, 
perfectly analogous to the ^-functions, and reproduce them­
selves multiplied by a simple factor when we apply to the 
variable one of the substitutions of the group. 

In order to complete the analogy with the elliptic functions, 
it was necessary that the other properties of these functions, 
such as addition, multiplication, and transformation, should 
be extended to the new transcendents. The theory of trans­
formation is immediately generalized—always with this dif­
ference, that the group of fuchsian functions being very much 
more complicated than that of the elliptic functions, the 
cases to be considered are much more numerous and varied. 
A point of great interest in the extension of this theory of 
transformation is the new light thrown upon the reduction of 
the Abelian integrals. The theory of addition cannot be 
extended to all the fuchsian functions ; it is only possible in 
one particular case and for one special class of these trans­
cendents. The question need not, however, be entered into 
here. 

In extending the linear substitutions to the case where the 
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coefficients are no longer restricted to be real, but are arbi­
trary, Poincaré arrives at the discontinuous groups which he 
calls kleinean, and so to a new class of functions, the kleinean 
functions, which are perfectly analogous to the f uchsian func­
tions. The only difference which it is necessary to mention 
is that which arises from the form of the region inside of 
which these new functions exist. This region instead of 
being a circle is limited by a non-analytical curve which has 
no determinate radius of curvature; in other cases the region 
is limited by an infinity of circumferences. Another class of 
functions can only be mentioned. These are the zeta-fuch-
sian functions, which play the same part in the integration of 
the fuchsian functions that the zeta-functions play in the 
integration of the elliptic functions. 

In concluding this very imperfect sketch of what Poincaré 
has done for the integration of linear differential equations, 
we can say that he has shown how to express the integrals of 
linear equations with algebraic coefficients by aid of these 
new transcendents in the same way as the integrals of alge­
braic differentials were previously expressed by aid of the 
Abelian functions. Further, these latter integrals are them­
selves susceptible of being obtained by aid of the fuchsian 
functions; and we thus have for them expressions entirely 
different from those given by the ^-functions of several 
variables. 

Poincaré's further investigations on the integration of linear 
differential equations by aid of algebraic and Abelian func­
tions, his work on non-linear equations (with one exception 
to be referred to later), on curves defined by differential equa­
tions, on irregular integrals, on partial differential equations, 
and on the differential equations of celestial mechanics, must 
be passed over. Enough has been said, however, to show the 
great value of his work. In leaving the subject of linear 
differential equations a mere mention will have to suffice of 
two interesting capers which have recently appeared : one 
by Appell, on linear differential equations transformable 
into themselves by change of the function and the variable; 
and one by Helge von Koch, on infinite determinants and 
linear differential equations. 

The linear differential equations possess one remarkable 
property,—the singular points are the same for all the integrals 
In the case of equations whose coefficients are entire polyno­
mials in x9 these singular points are the values of x which 
annul the first coefficient. It is upon this circumstance that 
the method of integration of these equations by the zeta-fuch­
sian functions is founded. Non-linear equations do not in 
general possess this property. This has led to important in-
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vestigations by Fuchs and Poincaré with the end of ascertain* 
ing whether or not there existed other classes of differential 
equations for which all the particular integrals had the same 
singular points. The researches of these mathematicians 
were confined to equations of the first order. 

Fuchs found the necessary and sufficient conditions that an 
integral of the equation 

where y, y' enter algebraically, shall have only fixed critical 
points xt. These conditions once satisfied, if we wish the gen­
eral integral to be uniform, it remains to express that these 
points xi9 which are known, are not critical points of the inte­
grals. Poincaré resuming the question, arrived at conclusions 
as interesting as unexpected. He found that when the critical 
points of the equation 

are fixed this equation can either be integrated algebraically, 
or by a quadrature, or can be conducted to a Riccati's equation. 

Picard has undertaken the generalization of the work of 
Fuchs and Poincaré to the case of differential equations of 
the second order. He says : " It would seem at a first glance 
that the extension of the reasonings employed in the case of 
equations of the first order would be easy, but this is not the 
case. We may indeed commence by following the methods 
of reasoning employed by Poincaré ; the end of his reasoning 
is unfortunately not applicable. We find ourselves always in 
presence of the same fact : A certain bi-uniform transfor­
mation is not necessarily bi-rational, and it is this fact which 
changes throughout the entire character of this theory." 
Picard confines himself to the case of bi-rational transforma­
tions. The difficulties in the way of a study of non-linear 
differential equations of the second order have caused this 
subject to remain as yet almost untouched ; indeed, though 
in recent years much has been done, the non-linear equations 
of the first order still afford a vast field for research. 

A problem of the highest importance connected with the 
differential equations of the first order and degree is to deter­
mine in any case whether or not the equation is integrable 
algebraically. To solve this problem it is manifestly sufficient 
to find a superior limit for the degree of the integral ; after 
that the only operations remaining to be performed would be 
purely algebraical. This is a problem on the solution of 
which, it would seem, mathematicians might have been 
tempted to bestow much labor ; nevertheless, they have con­
cerned themselves very little with it. Indeed, from the time 
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of Darboux's masterly memoir in 1878, the problem was en­
tirely neglected, until the Académie des Sciences, recognizing 
the importance of a more profound study of differential equa­
tions of the first order and degree, proposed as a subject of 
competition for the Or and Prix des Sciences Mathématiques 
for 1800 the following : 

" To perfect in some important point the theory of the dif­
ferential equations of the first order and first degree." 

The outcome of the competition has been two important 
memoirs : one by M. Painlevé, to which was awarded the 
Grand Prize ; and the other by M. Autonne, who received 
honorable mention. 

M. Autonne takes for point of departure a geometrical in­
terpretation of which every differential equation of the first 
order is susceptible. He shows that such an equation can be 
considered as giving curves situated on a certain algebraic 
surface, and of which the tangents belong to a certain linear 
complex. The surface is unicursal if the equation of the first 
order is at the same time of the first degree. Taking then a 
unicursal surface, the author forms the equation which cor­
responds to it, and which he calls "réglementaire." His work 
then consists of a study of the equations of the first order and 
degree considered as "réglementaires" Autonne makes a 
classification of the critical points of the equation. I t will 
be sufficient to mention, in addition to the ordinary critical 
points forming the general case, those which he calls " di-
criiicaV9 These are points through which pass an infinite 
number of simple branches of integrals having an arbitrary 
tangent. 

Painlevé's researches constitute one of the most important 
contributions ever made to the theory of the non-linear dif­
ferential equations of the first order and degree. He con­
siders any differential equation whatever of the first order 
where the function and its derivative figure algebraically, and 
makes at first an important distinction between the fixed and 
the movable critical points of the integrals,—by movable criti­
cal points meaning those which are susceptible of changes of 
position as the constant of integration changes. Such points 
cannot be points of indétermination for the integral. The 
utility of making this remark explicitly is seen if it is noticed 
that equations of an order higher than the first can have 
movable singular points. As an illustration, take the equa­
tion 

W-y/y + W^o, 
whose general integral is 

-L 
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the essential singularities of the integrals depend evidently on 
the constant G9. 

Painlevé draws a system of cuts in the plane of the inde­
pendent variable, which prevent this variable from turning 
round the fixed critical points, and then studies the equations 
for which the integrals take only a limited number of values 
around the movable critical points. Under this hypothesis 
we can conceive the general integral put into a form which 
will bring into evidence a class c of algebraic curves associ­
ated with the given equation. 

Every curve of this class is a rational transform of the 
curve represented by the differential equation when for any 
ûxeà value whatever of the variable we regard the function 
and its derivative as the co-ordinates. If the deficiency of the 
curves c is greater than unity, we can by algebraic operations 
determine the class, and the integral itself can be obtained 
algebraically. If the curves c are of deficiency one, it may be 
necessary, in order to find the integral, to obtain a solution of 
a linear equation, and to ascertain if a certain Abelian inte­
gral has only two periods. Only the case of deficiency zero 
escapes this method ; this circumstance necessarily presents 
itself when the equation is of the first degree with respect to 
the derivative. 

Painlevé's methods can be applied in the attempt to ascer­
tain whether or not the integrals of a given differential 
equation are algebraic, or can take only a limited number of 
values in the plane. The distinction between fixed and 
movable critical points permits the separation of this ques­
tion into two parts, and in some cases the solution of this 
problem can be arrived at,—a solution which in all its gen­
erality will doubtless not soon be found. 

The equalities and inequalities added by. Au tonne and 
Painlevé to those of Darboux constitute a very important 
progress in the solution of the problem of finding out whether 
or not a differential equation of the -first order and degree is 
algebraically integrable; but, as Poincaré has pointed out in 
a recent paper in the Rendiconti del Gircolo Mat&matico di 
Palermo, much remains to be done. Suppose, in fact, that 
the general integral is written 

F = const., 

where J77 is a rational function. Anoüier form of the general 
integral will be given by equating to a constant any entire 
polynomial whatever in F. It follows as a consequence of 
this that the superior limit of the degree of the general alge­
braic integral cannot be found, at least unless some means 
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can be found of expressing in the inequalities that this in­
tegral is irreducible. 

Painlevé himself clearly perceived this difficulty, but was 
unable to overcome it. He was unable to solve the problem 
in all its generality, but only to show that in a certain num­
ber of cases the integral could not be algebraic. As already 
stated, Painlevé's problem was to determine whether a given 
differential equation admitted an algebraic integral of a 
given deficiency. In the paper referred to, Poincaré gives a 
formula which contains the complete solution of Painlevé's 
problem whenever the dimension of the equation exceeds 4. 
He has also demonstrated some properties of equations which 
are integrable algebraically. Such results, he says, may not 
for the moment possess any great value, but they may acquire 
one the moment it is known whether these properties can be 
extended to non-integrable equations, or if they are not 
always true for these equations. In the first case we would 
have a general theorem applicable to all differential equations, 
and in the second case we would have a criterion which would 
enable us to demonstrate that the equations of certain cate­
gories were non-integrable. 

In the subject of partial differential equations most impor­
tant researches have been made during the past ten years, 
notably by Goursat, Poincaré, Picard, and Darboux. Indeed, 
the latter's treatise on the theory of surfaces might, from a 
certain point of view, be regarded as a treatise on these equa­
tions, particularly the equations of the second order. Picard 
has incorporated some of his more important results in the 
first fascicule of the second volume of his Traite iVAnalyse. 
There also, among other methods for the proof of the exist­
ence of an integral of a differential equation, he gives his 
own elegant method of proof by successive approximations, 
an English translation of which by Dr. Fiske has been pub­
lished in the BULLETIN of this Society. Picard has made 
some interesting extensions of this method, particularly to 
partial differential equations. The whole subject, however, 
of the recent developments of the theory of these equations 
and their applications to geometry must be reserved for 
another paper. 

JOHNS HOPKINS UNIVERSITY, 
BALTIMORE, January 15, 1893. 


