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KBONECKER AND HIS ARITHMETICAL THEORY 
OF THE ALGEBRAIC EQUATION. 

LEOPOLD KRONECKER, one of the most illustrious of con­
temporary mathematicians, died at Berlin on the 29th of last 
December in his 68th year. 

For many years he had been one of the famous mathe­
maticians of Germany and at the time of his death was senior 
active professor of the mathematical faculty of the University 
of Berlin and editor in chief of the Journal für reine und 
angewandte Mathematik (Orelle). 

He was the last of the great triumvirate—Kummer, Weier-
strass, Kronecker—to be lost to the university. Kummer 
retired nearly ten years ago because of sickness and old age, 
and recently Weierstrass followed him ; but younger than 
the other two, Kronecker was overtaken by death in the midst 
of the work to which his life had been devoted. Despite his 
years he was much too early lost to science. The genius 
which had enriched mathematical literature with so many 
profound and beautiful researches showed no signs of weak­
ness or weariness. 

Kronecker was born at Liegnitz near Breslau in 1823. 
While yet a boy at the Gymnasium of his native town his fine 
mathematical talents attracted the notice of his master, 
Kummer, whose distinguished career was then just beginning. 
Kummer's persuasions rescued him from the business career 
for which he was preparing and brought him to the univer­
sity.* 

He studied at Breslau, whither in the meantime Kummer 
had been called, Bonn, and Berlin, making his degree at 
Berlin in 1845 with a dissertation of great value : De unitati-
bus complezis. 

Of his instructors besides Kummer he was most influenced 
by Dirichlet, owing in part to Dirichlet's commanding 
abilities, in part to the strong arithmetical bent of Kronecker 
himself. As long as Dirichlet lived Kronecker's relations 
with him, as with Kummer, were those of the closest personal 
intimacy. 

From the university Kronecker returned for a number of 
years to business and the management of his estates. But 

* Kronecker makes this graceful acknowledgment of his debt to Kum­
mer in the dedication of the Festschrift with which he honored Kum-
mer's Doctor Jubeldum (GrwndzUge einer arithmetischen Theorie der 
algebraischen Grössen) : " In Wahrheit verdanke ich Dir mein mathe­
matisches Dasein ; ich verdanke Dir in der Wissenschaft die Du mich 
früh zugewendet wie in der Freundschaft die Du mir früh entgegenge­
bracht hast, einen wesentlichen Theil des Giücks meines Lebens." 
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his mathematical activity was continuous and his fame grew 
apace. In 1853 he communicated to the Berlin Academy the 
solution of the problem : to determine all abelian equations 
belonging to any assigned " domain of rationality," and in 
1857 the first of nis famous memoirs on the complex multipli­
cation of the elliptic functions. His letter to Hermite : sur 
la résolution de Vequation du öme degré m which his solution 
of the equation is indicated appeared in 1858. 

In 1861 he was made a member of the Berlin Academy of 
Sciences and in 1867 corresponding member of the Paris 
Academy. 

His election to the Berlin Academy was an event of the first 
importance for his subsequent career, inasmuch as it was the 
occasion of his resuming the academic life. As member of 
the Academy he had the right to lecture at the University, and 
of this right—following the example of such men as the 
brothers Grimm, Kiepert, Jacobi and Borchardt—he forth­
with availed himself, beginning in the winter of 1861-62 
those lectures on Algebra which nave for many years been one 
of the chief glories of Berlin. In 1883 his relations with the 
University were made closer still through the appointment 
"Professor ordinarius'9 and director—with Kummer and 
Weierstrass—of the mathematical Seminar. 

The range of Kronecker's productive activity was very 
great. Besides distinguished work in the theory of definite 
integrals, he did work of the first importance in no less than 
three great departments of mathematics : the theory of num­
bers, algebra, and elliptic functions. As an arithmetician 
his name is associated with the great names of Gauss, Dirich-
let, and Eisenstein ; as an algebraist with those of Abel and 
Galois. 

Some idea of the scope of Kronecker's contributions to 
mathematical literature may be conveyed by the following in­
complete list of his more important memoirs : Dissertatio de 
unüatibus complexis (1845) ; Zwei Sätze über Gleichungen 
mit ganzzahligen Coëfficiënten (1857) ; lieber die algebraisch 
auflösbaren Gleichungen (1853, 1856) ; Sur les facteurs irré­
ductibles de l'expression xn — 1 (1854 ) ; Ueher elliptische 
Functionen für welche complexe Multiplication stattfindet 
(1857, 1862); üeber complexe Einheiten (1857); Sur la 
résolution de Vêquation du bme degré (1858) ; lieber lineare 
Transformationen ( 1858 ) ; lieber die Theorie der algebra­
ischen Functionen (1861) ; üeber die verschiedenen Factoren 
der Discriminanten von Eliminationsgleichungen (1865) ; 
lieber den Affect der Modulargleichungen (1865) ; lieber 
bilineare Formen (1868) ; Heber Systeme von Functionen 
mehrer Variabein (1869, 1878) ; Ueber die verschiedenen 
Sturmschen Reihen und ihre gegenseitigen Beziehungen 
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(1873) ; Zur Theorie der Elimination einer Variabein aus 
zwei algebraischen Gleichungen (1881) ; Zur Theorie der 
Abelschen Gleichimgen (1882) ; Zur arithmetischen Theorie 
der algebraischen Formen (1882) ; Ueber die BernouilU'sehen 
Zahlen (1883) ; Ueber bilineare Formen mit vier Variabein 
(1883) ; Grundzüge einer arithmetischen Theorie der alge­
braischen Grössen (Kummer Jubeläum 1882) ; Zur Theorie 
der elliptischen Functionen (1883-1891) ; Ueber den Zahlbe­
griff (Zeller Jubeläum 1887). Most of his writings were pub­
lished in the Berichte der Berliner Akademie or in the Jour» 
nalfür reine und angewandte Mathematik, 

Among the finest of Kronecker's achievements were the 
connections which he established among the various disciplines 
in which he worked : notably that between the theory of quad­
ratic forms of negative determinant and elliptic functions, 
through the singular moduli which give rise to the complex 
multiplication of the elliptic functions, and that between the 
theory of numbers and algebra, by his arithmetical theory of 
the algebraic equation. 

He discovered * that to each class of quadratic forms corre­
sponds a singular modulus which allows of complex multipli­
cation ; to the aggregate of classes of the same determinant, 
an algebraic equation with rational coefficients which he 
showed to be irreducible; and, in fine, that the theory of 
quadratic forms was an anticipation of the theory of elliptic 
functions, the two theories being so closely related that one 
could have derived the notions-of class and order and other 
fundamental properties of the quadratic forms by investiga­
tion of the properties of the elliptic function. 

He was above all things the great arithmetician and no­
where does this appear more clearly than in his algebraic 
writings. I t is not merely that the purely arithmetical prob­
lems growing out of algebra were attractive to him—he " arith-
metized" algebra itself. In the Zeiler Festschrift, after 
declaring his allegiance in the words of Gauss : "Die Math­
ematik sei die Königin der Wissenschaften und die Arith­
metik die Königin der Mathematik/' he writes "Und ich 
glaube auch, dass es dareinst gelingen wird den gesammten 
Inhalt aller dieser mathematischen Disciplinen (Algebra and 
Analysis) zu ' arithmetisen ', d. h. einzig und allein auf den 
im engsten Sinne genommenen Zahlbegriff zu gründen, also 
die Modifikationen und Erweiterungen dieses Begriffs wieder 
abzustreifen, welche zumeist durch die Anwendungen auf die 
Geometrie und Mechanik veranlasst worden sind." 

Kronecker arrived at the conception of an arithmetical 
theory of the algebraic numbers and functions very early. 

* Cf, Hermite: Note sur M. Kronecker, Gompies Eendus, Jan. 4,1892. 
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There are indications of it even in a letter to Dirichlet written 
in 1856. As its various salient concepts and theorems were 
discovered they were announced in the Berichte of the Acad­
emy or developed in his lectures. But he did not arrange the 
whole into a consecutive and complete body of doctrine until 
1882 in his Grundzüge einer arithmetischen Theorie der 
algebraischen Grössen. Within the limits of this brief sketch 
it would be impossible to convey any adequate notion of this 
monumental work. I can attempt only to indicate the salient 
points of the first and more elementary of the two parts into 
which it is divided. 

The "domain of rationalty " (R' R". .) of any system of 
quantities R' R" embraces ail rational functions of the R's 
with integral coefficients. 

These Jfe's may be quantities of any sort whatsoever, algebraic 
or transcendental constants or variables. In particular all 
the R's may equal 1 when the domain is that of rational num­
bers in the ordinary sense, or all the JS's may be independent 
variables. In either of these cases the domain is said to be 
bounded naturally. 

An integral function of one or several variables is irreduci­
ble in the domain (Rr R".. ) when it contains no factor having 
coefficients which belong to this domain. 

Every root of an irreducible algebraic equation of the nth 

degree with coefficients which belong to the domain (R'R".. ) 
is called an algebraic function of the nth order of the R's, the 
n roots of the same equation being called conjugate functions. 

If a single such root G be "adjoined" to the É's the domain 
(G,R',R'..) is the domain of the "genus" (Gattung) G, the 
genus itself embracing those functions of the domain which 
are, like G, functions of the nth order. 

If G and G' be algebraic functions of different genera, but 
such that all functions of the genns G belong to the domain 
of G', the genus G is said to be contained in the genus Gf; 
and the order of G is a divisor of that of G'. 

More than one G may of course be adjoined to the R's, but 
it is shown that any number of G'$ may be replaced by a single 
such function which indeed is but a linear function of the given 
G% with integral coefficients. In terms of this G and the 
R's all functions of the domain {Gr, G".. : R', R"..) can be 
expressed rationally: or the domain (G', 6?"..: R', R"..) is 
equivalent to a domain (G, R', R",..). This is a theorem of 
fundamental importance. For from it follows that in the 
discussion of all algebraic questions there mav be selected as 
" elements " R\ R,".. of any domain of rationality whatsoever, 
a number of variables or indeterminates and a single algebraic 
function of them. 

A quantity x is called an integral algebraic function of the 
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i2's when it satisfies an equation in which the coefficient of 
the highest power of x is 1 and the remaining coefficients are 
integral functions of the R'$ with integral coefficients. I t is 
a fundamental theorem of the theory that for every genus 
G there exists a finite number of such integral functions 
x'y x",. .x (n+m) in terms of which all other integral functions of 
the genus can be expressed linearly ; i.e. in the form 

cp'x' + cp"x" + . . . - } - <p<*+»>a;(«+») 

where the (p's are integral functions of the R's with integral 
coefficients. Such a system of functions x f x 
is called & fundamental system of the genus. In special and 
important cases m can equal 0. 

The square of the determinant of any set of n of the func­
tions X y X y • • » X 

(n+m) a n ( j their conjugate functions is 
called the discriminant of these n functions. The aggregate 
of the discriminants of every set of n of the functions #', x"> . . 
xin + m) constitutes a system of rational functions of the R's, 
such that whatever properties are common to them all belong 
also to the discriminant of every set of n functions of the 
genus and are thus characteristic of the genus itself, forming 
a complex of " invariants" of the genus in a higher sense of 
that word. 

If there exist no algebraic relations among the R's, Le» if 
the domain of rationality be the natural domain, there exists 
always an integral function of the R's with integral co­
efficients which is a common divisor of all the discriminants 
of the fundamental system of the genus and may therefore be 
appropriately called the discriminant of the genus itself. If 
m equal 0 the discriminant of the n elements x', x", . . . #(n) 

is itself the discriminant of the genus. 
The discriminant of the genus is a divisor of the discrimi­

nant of every equation of the genus, Le. of every equation a 
root of which is a function belonging to the genus, and the 
greatest common divisor of the discriminants of all these 
equations is a divisor of the \n (n — l)th power of the dis­
criminant of the genus. 

Again if the genus G' be contained in the genus G its dis­
criminant will be a factor of the discriminant of G. 

And finally the discriminant of the genus to which a set of 
functions belong which are defined by a system of equations 
.Fj = 0, JP = 0, . . . JP» = 0 is identical with the discrimi­
nant of this system of equations. 

The demonstration of this last theorem as well as the fur­
ther development of the theory necessitates a general investi­
gation of elimination, the principal outcome of which is that 
the complete "resolvent" of a system of m equations in n 
quantities x\ x\ x", . . . x(n) is an equation of the form 
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Fx{x, x', . . . &n~v) F, (x, x',. . . a?<—•>) . . . JFn (a?) = 0 

where x = u1a\ + n9xü + . . . + un xn> the u'% being in deter­
minates. 

The system of equations or "partial resolvents" Fx = 0, 
F2 = 0, . . . Fw = 0 is the complete equivalent of the given 
system. Each partial resolvent Fk = 0 represents a manifold-
ness of n — h dimensions, so that speaking geometrically a 
given system of equations in n quantities may define simul­
taneously systems of points, lines, surfaces, etc. 

Furthermore every divisor of the product Fx. F9 . . . Fn 
set equal to 0 constitutes the entire resolvent of a certain sys­
tem of n + 1 equations. "Whence the important theorem : the 
total content of every divisor of the resolvent of a system of 
equations in n quantities can be represented by a system of 
only n -f 1 equations, and therefore also a system of any 
number of equations can be replaced by one of only n + 1. 
Any algebraic curve of double curvature, for instance, can be 
represented by a system of four algebraic equations. 

Another most important result of this investigation of 
elimination is the demonstration that the concept of the 
algebraic function does not require any extension when 
systems of equations instead of single equations are brought 
under discussion. 

This doctrine of elimination brings out the true significance 
of Galois' theory of algebraic equations. 

Let c , c2, . . . cn be quantities belonging to the domain 
(Ä', JB", . # ) and 

(A) xn-clx
n-1 + c,xn-2- . . . ±cn = 0 

an irreducible equation with the roots £„ <?2, . . . £n. 
Further let ƒ (xl9 a?a . . . O , ƒ (xl9 x„ . . . xn), . . . 

fn (xl9 #2, . . . xn) be the elementary symmetric functions 
defined by the identical equation 

(x — xx) (x - x9) . . . (x - O 

Then the n quantities Sv <52, . . . 5» may as well be re­
garded as determined by the system of n equations 

(B) fk (xx, x, . . . O = ck (h = 1, 2, . . . n) 

as by the single equation (A). 
If F (x) = 0 be the resolvent of this system (B) or an ir­

reducible part thereof, and, as above, 

x = ux xx -b u^ x2 + . . . + unxn, 

the coefficients of F (x) are integral functions of the indeter-
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minâtes u and rational functions of the R's. And since the 
equations (B) can be satisfied only by systems of values such as 

where r1 r2. .rn is some permutation of the numbers 1 2 . . ,w, 
JP (a?) is simply the product 

IE {x — UlSn — UiSri — . . — UnSm) 

extended over certain of these permutations. 
If now 

<*{*,A,A>- •• ƒ.)=<> 
be the " Galois equation " whose n ! roots are theft ! functions 
ux xix + u^x^ -f . . .+un xin gotten by forming the n ! permu­
tations ix ia » . . in of 1 2 . . . n9 the coefficients of x, f}.. .ƒ„ in 
^ (^ /i? /2> • • • ƒ*) a r e integral functions of the u9& with inte­
gral coefficients, and one of the irreducible factors of O (x, cl9 
ci9.. cn) must be the same with F (x). Such a factor is there­
fore an integral function of x and the indeterminates ul9 ui9 
. . . un with coefficients belonging to the domain of rationality 
(R', É".. ) and may be represented by g (x, ul9 u^.u«), 

g (X, Ul9 U9, . . Un) = ZT(a —W,^—Wa£r9 —* . .—Ungrn) 

or, if the terms of each factor be arranged with reference 
to the <?'s instead of the u's 

g (x9 Ul9 W9, . . Un) = IL{x-UrxZx — Ur£^~-. . .—Wr»£«) \ 

that is to say # (^1? ̂ 1? wa, . . un)9 regarded as a function of the 
indeterminates u9 is a function which remains unchanged for 
certain permutations of these u% those represented by rl9 

In this manner, starting with any special equation (̂ 4) one 
is led to general functions of indeterminates which are char­
acteristic of the equation and have the property of maintain­
ing their values unchanged for certain permutations of these 
indeterminates. 

The true significance of Galois' principle thus lies in the 
fact that it takes as basis for the investigation of an equation 
the system of equations which define its conjugate roots 
simultaneously. 

The functions g to which it leads may themselves be made 
the starting point of the discussion. The problem then is 
when one replaces the indeterminates ui9 u%9 . . un by xi9 
x29 . . xn : the investigation of integral functions of n inde­
terminates xl9 x^9 . . xn with respect to the changes which 
they experience when the #'s are permuted in all possible 
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ways, the investigation taking its place in the general arith­
metical theory when one regards the x*& as algebraic functions 
of the n elementary symmetric functions ƒ.. 

If the f s take the place of the iTs so that the domain of 
rationality is (fv / 2 , . . fn) eyery rational fonction of the 
x's is an algebraic function of this domain and as such be­
longs to a definite genus, called simply genus of functions 
ofxx, #2, . . xn. 

The order of the genus of any single one of the x's is n, 
that of ux xx -f u^ x2 + . . . + un xM the " Galois genus," n ! 
This genus contains all others and therefore their orders are 

TV ^ 

all divisors of n ! If p be the order of a genus g and —'be r, 
r i s the "number of permutations of the genus g," i.e. the 
number of permutations of the x's for which any function of 
the genus g remains unchanged. 

A genus g is said to be a genus u proper " if after it is ad­
joined to the domain of rationality the equation 

Xn —fl %n~l + • . - ±fn = 0 
remains irreducible. When such a genus g is adjoined, so 
that the domain of rationality becomes (fl9 f2, . . fn, g), the 
algebraic character of a function defined by xn —f xn~l + 
. v . ± fn— 0 is changed, it falls into a special "class" of 
algebraic functions. All algebraic equations belong to the 
same class which go over into each other by rational transfor­
mation and for which the functions of the roots belonging to 
a definite genus g belong also to the given domain of ration­
ality (fi', R" . .) 

This characteristic property of the class of an algebraic 
equation and the function which it defines may be called its 
affect. An irreducible equation 

xn — Ctx*-1 + . . . ± cn — 0 

whose coefficients belong to the domain ( JB', B", . . ) is said 
therefore to have a special affect where there exists a special 
function of its roots, which may be called the affect -genus, 
which likewise belongs to the given domain. The group of 
permutations of this genus is called the Galois group of the 
equation. 

The affect-genus being g (%ly x2, . . xn), it is the system of 
n + 1 equations 

g = Co, fk = ck, (k = 1, 2, . . n) 

which by Galois' principle takes the place of the single given 
equation. This system is satisfied only by the r systems of 
values 
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which correspond to the f permutations of the genus g. Its 
order is therefore r and it constitutes the irreducible part of 
the system fk = ck, (h = 1, 2, , . n) whose order is n I 

The n ! functions 

xhi xh* . . . x^n-i (h = 0, 1, . . n — h ; J = 1, 2, . . w — 1) 
J 2 76—1 ^ AS ' 

are the elements of a " fundamental system " of the Galois 
genus ; but the number of elements can be reduced to p, the 
order of the genus, if fractional numerical coefficients be 
allowed. 

If the discriminant of the genus xk> i.e. 

n (%i - »*) (h * = 1, 2, . . w ; i > < h), 

be D, the discriminant of the Galois genus is ZttnI. There­
fore, since the discriminant of every other genus is a divisor 
of that of the Galois genus and D is irreducible, the discrim­
inant of every genus is a power of D. From this fact it follows 
that for any given set of values of fufi9 . . fn for which D 
does not vanish, an infinite number of special functions of 
each genus can be determined all of whose conjugates differ 
from one another, and in terms of which every other function 
of the same genus can be expressed rationally. Moreover 
this theorem leads to a remarkably simple demonstration of 
the " arithmetical existence " of the roots of algebraic equa­
tions. 

Upon the profound researches of the second part of the 
Grundzüge we cannot now enter, though this contains the 
heart of the arithmetical theory. Here, by aid of the " Mo-
dul-systeme" and the principle of "association " the distinc­
tively "arithmetical" properties of the integral algebraic func­
tions are developed, their properties, namely, when consid­
ered with respect to their divisibility by other integral 
functions of the same genus ; and the nnal step is taken in 
the " reduction " of the domain of rationality, whereby the en­
tire theory of the algebraic functions is reduced to a theory of 
the integral functions of variables and in de terminates with 
integral coefficients. 

Thus Kronecker's theory completes that of Galois. For it 
carries the general theory of equations back to a theory of 
indeterminates, which, before Galois, it was always assumed 
to be in the superficial and false sense, that the coefficients, 
and therefore the roots, of any equation may be treated as 
indeterminates. 

The fine quality of Kronecker's work is even more notable 
than its range or the importance of its results. It possesses 
the rigor and elegance of the theory of numbers. 

Early in the Grundzüge,when defining an irreducible f une-
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tion, Kronecker remarks : "Die Definition der Irreductibili-
tät entbehrt so lange einer sicheren Grundlage als nicht eine 
Methode angegeben ist, mittels deren bei einer bestimmten 
vorgelegten Function entschieden werden kann, ob dieselbe der 
aufgestellten Definition gemäss irreductibel ist oder nicht,"* 
and proceeds therewith to supply the missing test. 

This criterion, according to 'which no definition may be 
considered justified, no theorem established, until a method 
is supplied for determining in every given concrete case 
whether the definition or theorem actually applies or not, he 
everywhere insisted upon, scrupulously meeting its require­
ments in his own work and sharply criticising all failures to 
meet them in the works of others. A definition which did 
not stand this test he denominated the invention of a mere fic­
tion, an artificial abstraction for which there should be no 
place in mathematics. 

This is the rigor of the ancient Greek geometry—in re­
jecting hypothetical constructions Euclid recognized a sim­
ilar criterion—and though far enough from being always 
realized in the modern analysis, must characterize every 
mathematical theory in its finite form. For until it has been 
attained, either the ultimate elements of the theory have not 
been reached or the artificial concepts with which it has aided 
itself in its growth have not been set aside and the theory de­
duced directly from these elements. 

Closely related to this fine conception of mathematical rigor 
are the other salient traits of Kronecker's work. 

It possesses that high artistic merit which consists in the 
perfect adaptation of means to ends. His methods are al­
ways pure, fit, direct, and the simplest which the require­
ments of absolute rigor will allow. Writing to Dirichlet in 
1856 he says of a method which he has discovered for deduc­
ing the properties of solvable equations of prime degree that 
it meets all the proper requirements of simplicity and rigor, 
" denn die Methode verlangt keinen irgend höheren Stand­
punkt mathematischen Fassungsvermögens als das Problem 
selbst, welches dadurch erledigt wird/'f And again for his 
principle of "association" he claims: "Sie gewahrt den 
' einfachsten ' erforderlichen und hinreichenden Apparat, um 
die arithmetischen Eigenschaften der allgemeinsten alge­
braischen grossen ' vollständig9 und ( auf die einfachste Weise9 

darzulegen,"J adopting the phrases which are quoted from the 
first proposition of Kirchhoff 's Mechanics. This " Einfach­
heit" to be sure, is of a kind which it oftentimes requires 

* Grundzüge, etc., p. 11. 
t Göttinger Naehrichten, 1885, p. 364. 
X Grundzüge, etc., p. 93. 
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much reflection to appreciate. He was a foe not only of arti­
ficial concepts but of all artificial methods and of all artificial 
or purely formal tendencies in mathematics. He would have 
rid mathematics of the artificial numbers and of its " sym­
bolic" methods, and the devising of new functions seemed 
to him a foolish waste of energy. "God created numbers and 
geometry/' I once heard him say, "bu t man the functions." 

It was his boast that he was tne most practical of mathema­
ticians. He said whimsically to me one day last summer : 
" It is a pity that you, Americans, do not know me better. You 
would surely appreciate me, I am so practical." And in a 
somewhat transcendental sense of the word, to be sure, he was 
profoundly practical. He sought to avoid all mere abstrac­
tions and to give his theories concrete form. Thus in the 
Galois theory he replaced the abstraction, a group of substi­
tutions, by concrete functions which remain unchanged 
for the substitutions of the group. Neither definition, 
theorem, nor method had value in his eyes which could not 
be applied to concrete cases, which could not be made to yield 
concrete results. On this account he did not set great store 
by the services of the theory of substitutions to algebra. 
With all its beauty, he would urge, it is only formal, it does 
not show how to construct the group of a given equation. 

Kronecker influenced the mathematical thinking of Ger­
many as much through his lectures as through his published 
writings. He was a very stimulating and interesting lecturer. 
To an unusual degree he took his hearers into his confidence 
and allowed them the privilege of watching the actual evolu­
tion of his thoughts. His lectures were not overprepared, but 
the details of even important demonstrations were left to take 
their chances in the lecture room. Occasionally there would 
be a disastrous slip in the reckoning or argument, or the 
outcome would be the discovery that the theorem sought to be 
established was false. But that only afforded opportunity to 
see the marvellous quickness with which he would run an 
error down and recover himself. 

His lectures were always fresh. The principal courses were 
on determinants, theory of numbers, algebra, and definite 
integrals, and one of these in its turn he delivered each se­
mester. But he never merely repeated himself. If a lecture 
did not differ from all its predecessors in content, it surely 
did in point of view or method. It was always the most re­
cent product of his mathematical thinking. 

In his lecturing, moreover, he avoided the excessive concise­
ness, which is the chief cause of the difficulty of his published 
writings. 

Personally, Kronecker was most charming and amiable, a 
polished gentleman and man of the world. He was very gen-
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erous with his time and thoughts, loving to talk to an appre­
ciative listener of some favorite doctrine, or of the famous 
mathematicians with whom he had been associated. 

He was a man of rare genius, a mathematician of the first 
rank in this century of great mathematicians. 

HENRY B. P I N E . 
PEINCETON COLLEGE, April 20,1892. 

MULTIPLICATION OF SERIES. 

BY PKOF. FLORIAN OAJORI. 

T H E salient feature of the new era which analysis entered 
upon during the first quarter of this century is vividly illus­
trated in the history of infinite series. Extending from that 
time back to Newton we have a formal period which gave 
rise to general theorems, the validity of which was not 
thoroughly tested. Thus, in series, there were put forth 
during that epoch the binomial theorem, the theorems of 
Taylor, Maclaurin, John Bernoulli, and Lagrange. Infinite 
series were used by Newton, Leibnitz, and Euler in the study 
of transcendental functions. As a rule, the convergency of 
expressions was not ascertained, and the confusion which 
prevailed in the theory of series gave rise to curious para­
doxes. But with the advent of Gauss, Cauchy, and Abel, 
began the new era which combined dexterity in form with 
rigor of demonstration. 

In the multiplication of series, mathematicians of the ear­
lier period considered simply the form of the products and 
hardly ever thought of inquiring further into the validity of 
the operation. Reliable tests for convergency were unknown. 
The product of any two infinite series was accepted with 
nearly the same degree of confidence as was the product of 
finite expressions. Thus, De Moivre * extended the binomial 
formula to infinite series and deduced the following formula : 
(az + bz* + . . .)m 

= ß Y + ^am~lbzm^ + ^\r^am~ib2zm+2 + . . . 
1 1 2> 

This was accepted as true without any limitations what­
ever. 

* A method of raising an infinite multinomial to any given power, or 
extracting any given root of the same. Philosophical Transactions, 
No. 230, 1697. 


