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Abstract

We construct solutions of the vacuum vector constraint equations on
manifolds with cylindrical ends.

1 Introduction

In a companion paper to this one [5] we have constructed large families of
solutions of the Lichnerowicz equation on manifolds with cylindrical ends.
This paper addresses the complementary problem of constructing solutions
of the vacuum vector constraint equation.

Suppose that (Mn, g) is a Riemannian manifold of dimension n ≥ 3, and
K a symmetric 2-tensor on M . The vacuum constraint equations take
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the familiar form

R(g) = 2Λ + |K|2g − (tr gK)2, (1.1)

divg K +∇tr gK = 0, (1.2)

where Λ ∈ R is the cosmological constant. These are called, respectively,
the scalar and vector constraint equations and data (M, g,K) which satisfy
both are called initial data sets. If τ := tr gK is constant, then the conformal
method allows one to effectively decouple these equations. We review this
below.

As explained in [5], there are compelling physical reasons for studying
this problem when the initial metric (M, g) is complete with a finite number
of cylindrically bounded ends, possibly accompanied by a finite number of
asymptotically hyperbolic or asymptotically Euclidean or conic ends. That
paper initiated the general study of the constraint equations on manifolds
with ends of cylindrical type, but focused exclusively on the Lichnerowicz
equation. More specifically, we assumed there the existence of some sym-
metric 2-tensor K̃, which need not have constant trace nor be divergence
free, and then consider only the problem of finding solutions to (1.1), for
K given by a suitable rescaling of K̃, with the same type of asymptotic
geometry as the initial metric g. Only when K̃ is transverse-traceless, i.e.,
has constant trace and vanishing divergence, do the solutions found there
directly correspond to solutions of both constraint equations. However, we
adopted this slightly more general point of view in hope that the arguments
there might eventually lead to more general non-CMC solutions of the full
constraint equations on this class of manifolds.

The goal of this paper is to show that we may produce large classes of
solutions to the vector constraint equation (1.2) with τ = tr gK constant
on manifolds with cylindrically bounded ends. This provides a satisfactory
complement to the results of [5] in the CMC setting, and the two sets of
results together establish the existence of solutions to the full constraint
equations under reasonably general hypotheses.

We refer to [5] for much of the terminology, definitions and notation used
below. In the current paper, we are primarily interested in initial metrics
(M, g), the ends of which are either asymptotically cylindrical or asymptoti-
cally periodic. Recall that this means thatM has a finite number of ends E�,
� = 1, . . . , N , such that the restriction of g to each E� is either asymptotic
to a product cylindrical metric dx2 + g̊�, where E�

∼= R
+ ×N� and (N�, g̊�)

is a compact Riemannian manifold, or else this restriction is asymptotic to
a periodic metric g̊� on R×N of period T�. Accordingly, we shall study the
vector constraint equation in either of these two settings.
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2 The conformal method and the vector constraint equation

Fix a complete Riemannian manifold (M, g) and a symmetric 2-tensor K
on M . We begin with a review of how, in the special case that τ := tr gK is
constant, to which we refer hereafter as the CMC case, one may solve the
two equations (1.1) and (1.2) in sequence rather than simultaneously. This
is known as the conformal method.

The first step is to decompose

K =
τ

n
g + L,

where L is again a symmetric 2-tensor. Let φ be any positive smooth func-
tion on M . Set

g̃ := φ
4

n−2 g, and K̃ij :=
τ

n
g̃ij + φ

−2(n+2)
n−2 Lij ≡ τ

n
g̃ij + L̃ij .

Then a straightforward computation shows that (M, g,K) satisfies
the two constraint equations if and only if (M, g̃, K̃) does; this uses
strongly that τ is constant. In the CMC case, (1.2) reduces to the sim-
pler equation

∇iL
ij = 0, (2.1)

where ∇ is the Levi–Civita connection for g and, as is well known, L is diver-
gence free for g if and only if L̃ is divergence free for g̃. Hence the advantage
of the conformal method is that if we first find a TT tensor L with respect to
g and then insert this into the first constraint equation, then (1.1) becomes a
semilinear elliptic equation for φ, which is called the Lichnerowicz
equation. We can then (attempt to) solve this, and then, having deter-
mined φ, define the corresponding K̃ and hence produce an initial data set
(M, g̃, K̃).

As explained in the introduction, we concentrate in this paper entirely on
the problem of finding appropriate TT tensors L on manifolds with cylin-
drical ends, and then appeal to [5] for the solution of the remaining steps in
this procedure.

The method for finding L proceeds as follows. Start with an arbitrary
trace-free symmetric tensor field Aij ; this will be referred to as the seed field.
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Now set

Lij = Aij + C(X)ij , (2.2)

where the operator C which appears here is called the conformal Killing
operator, and is defined by

C(X)ij := DiXj +DjXi − 2
n
DkX

kgij . (2.3)

The requirement that Lij be divergence-free can then be written as

(ΔLY )j = DiA
ij , (2.4)

where

(ΔLX)j := −Di(DiXj +DjXi − 2
n
DkX

kgij). (2.5)

This procedure is commonly attributed to York, see [3, 4]. The operator
(2.5) is usually called the conformal vector Laplacian.

For later reference, let us rewrite the operators above in an invariant way.
First, for any vector field X, write

S(X) = SymDX� = LXg;

this is the Killing operator, which is also the Lie derivative of the metric
in the direction X as well as the symmetrization of the covariant derivative
DX�, where X� is the 1-form g-dual to X. We also use the convention that
the divergence of X is

δX = −tr gDX;

the choice of sign corresponds to the formal integration by parts formula
〈δX, f〉 = 〈X,Df〉. In terms of all of these, we have

C(X) = S(X) +
2
n
δX g, and ΔLX = δC(X).

Finally, observe that

〈C(X), h〉 = 〈X,C∗X〉 = 〈X, 2βh〉,
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where βh = δ + 1
2D trh is the Bianchi operator. Since C(X) is trace-free,

we see that

ΔL = C∗C, (2.6)

so in particular, when M is complete, ΔL is self-adjoint and nonnegative.

We have now arrived at the problem which will occupy us for the rest of
this paper. Let (Mn, g), n ≥ 3, be a complete manifold with cylindrically
bounded ends. We wish to determine the solvability of the problem

ΔLY = F, (2.7)

under various conditions on the decay of the inhomogeneous term F .

3 Cylindrical ends and elliptic operators

Fix any end E = R
+
x ×N of the manifold M and consider the restriction of

the metric g to E. We say that the end is cylindrically bounded if

C1(dx2 + ĝ) ≤ g ≤ C2(dx2 + ĝ),

where C1, C2 > 0 and ĝ is a metric on N . Among these we distinguish two
cases of particular interest: the first is when g is asymptotically cylindrical,
which means that g = dx2 + g̊ + h, where g̊ is a metric on N and |h|dx2+g̊ →
0 as x→∞; the other is when g is asymptotically periodic, which means
that g = g̊ + h where g̊ is the lift to R×N of a metric on (R/TZ)×N and,
once again, |h|̊g → 0 at infinity. In [5] we work with a slightly more general
class of conformally asymptotically cylindrical or periodic metrics, but we
shall not do this here since by the discussion in the last section, the extra
conformal factor can be transformed away, and hence is irrelevant to the
problem at hand. On the other hand, in Section 5 we generalize the notion
of asymptotically periodic slightly to allow ends which are not diffeomorphic
to products R

+ ×N , but are just Z covers of compact manifolds. We refer
to the beginning of that section for a better description.

Unlike our previous paper, it is impossible to study (2.7) using barrier
methods since this equation is a system. Therefore, we must appeal to more
powerful, but more technical, parametrix methods. Fortunately, these are
very well-developed, particularly for manifolds with cylindrical ends, and we
shall be able to quote standard literature.
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The result we shall need is of the following type. Let L be a second order
symmetric elliptic operator acting on a vector bundle V over M endowed
with a Hermitian metric. We assume that L is geometric, e.g., of the form
∇∗∇+R where R is a curvature endomorphism, or at least has the same
asymptotic structure as the metric g. Both of these things are true when
L = ΔL, but we phrase things in a slightly more general way for the moment.
We let L act on weighted Sobolev spaces Hk

δ (M,V ), defined by the norm

‖f‖k,δ =
k∑

j=0

∫
M
|∇jf |2e−2δx dVg. (3.1)

Here e−2δx actually represents a weight function, which equals this expo-
nential on each end, where x is the linear variable, and equals a constant on
the compact part of M . In addition, ∇ denotes the natural extension of the
Levi–Civita connection to a map

(T ∗M)⊗i ⊗ V → (T ∗M)⊗(i+1) ⊗ V.

We are interested in determining some range of values of the weight
parameter δ such that the mapping

L : Hk+2
δ (M,V ) −→ Hk

δ (M,V ) (3.2)

is Fredholm, or even invertible. We first list a useful result whose proof
relies only on local elliptic regularity and standard duality arguments (com-
pare [2]).

Proposition 3.1. The mapping (3.2) is Fredholm for some value of δ if and
only if the corresponding mapping with δ replaced by −δ is also Fredholm.
In addition, for all such Fredholm values of the weight parameter, (3.2) is
injective, respectively surjective, if and only if the mapping with δ replaced
by −δ is surjective, respectively injective.

The problem then becomes one of determining the set of values δ for which
(3.2) is Fredholm, and then the finer problem of determining for which of
these Fredholm values it is injective or surjective.

As we have already remarked, there are good general criteria for this in
both of the geometric settings of interest here. These criteria depend on a
set of values λ ∈ C, called the indicial roots of L. While the abstract def-
inition of these indicial roots is simple enough, and there are some simple
general structural results about them, it can be difficult to say much about
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their precise locations in any given situation. Our main results here address
this question. Namely, we derive a set of constraints on the indicial roots
of the conformal vector Laplacian ΔL on manifolds (M, g) with asymptoti-
cally cylindrical or asymptotically periodic ends. Rather than giving further
definitions at this general level, we now specialize to the operator of interest.

In the next two sections, we consider the structure of the conformal vector
Laplacian ΔL on manifolds of the form R×N with translation invariant
metric dx2 + g̊ or else periodic metric g̊. In either setting we define the
indicial roots and make a series of calculations which gives some information
about their location. We then use this information in Section 6 to describe
the resulting global mapping properties of ΔL on weighted Sobolev spaces,
and then describe the existence theorems for TT tensors, which we can
derive from these.

4 The conformal vector Laplacian on product cylinders

In this section we study the analytic properties of the conformal vector
Laplacian ΔL on the cylinderM = R×N endowed with the product metric

g = dx2 + g̊. (4.1)

We first derive a more explicit expression for this operator adapted to this
product structure, which leads to the definition of its indicial roots. The
remainder of the section is devoted to the statement and proof of a result
about the location of these roots.

4.1 A formula for the conformal vector Laplacian

Let X be a vector field on R×N . There is a natural decomposition

X = f∂x + Y, (4.2)

where Y is tangent to the N factors. We label these components as X⊥ = f
and X‖ = Y . Also, denote by D the Levi–Civita connection of (N, g̊) and
S(Y ) = LY g̊ the symmetrization of DY �.

In the calculations below, we use both invariant notation as well as
adapted coordinates (x, y), where x ∈ R and {yA} is a coordinate system
on N . We sometimes use the index 0 for x and then assume that A ≥ 1.
First note that D∂x ≡ 0, and if Y, Y ′ are tangent to the N factors, then
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so is DY Y
′, hence DY Y

′ = DY Y
′. (These statements are equivalent to the

vanishing of all Christoffel symbols for g which have x indices, and the iden-
tification of all the remaining ones with the Christoffel symbols for g̊.)

We begin by calculating C(X) for X as in (4.2). First, by the remarks
above,

DX = DY + ∂xY ⊗ dx+ ∂xf ∂x ⊗ dx,

whence

C(X)00 = 2
(
1− 1

n

)
∂xf +

2
n
δg̊Y, (4.3)

C(X)0A = ∂Af + ∂xYA, (4.4)

C(X)AB = S(Y )AB +
2
n
(δg̊Y − ∂xf )̊gAB

:= C̃(Y )− 2
n
∂xfg̊AB, (4.5)

where, by definition

C̃(Y ) = S(Y ) + 2
n
δg̊Y g̊. (4.6)

Note that while this “reduced” conformal Killing operator is an operator
on N , it is not the conformal Killing operator CN for (N, g̊) because of the
different constant in front of the second term (the correct constant in CN is
2/(n− 1)). For later use, we record that

C̃(Y ) = CN (Y )− 2
n(n− 1)

δg̊Y g̊

⇒ tr g̊C̃(Y ) = − 2
n
δg̊Y. (4.7)

We then derive that

(ΔLX)⊥ = −2
(
1− 1

n

)
∂2

xf +Δg̊f +
(
1− 2

n

)
∂xδ

g̊Y, (4.8)

(ΔLX)‖ = −∂2
xY + Δ̃LY +

(
2
n
− 1

)
∂xDf. (4.9)

The operator Δ̃L which appears here is given by

Δ̃L = δg̊C̃. (4.10)
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It is once again the reduction to N of the conformal vector Laplacian on
R×N . Since C̃(Y ) is not necessarily trace-free, this operator is not the
same as 1

2 C̃
∗C̃, nor is it equal to the conformal vector Laplacian for (N, g̊).

However, it is still self-adjoint and nonnegative, as can be seen from the
identities

Δ̃L =
1
2
C̃∗C̃ +

2
n(n− 1)

Dδg̊, (4.11)

and the quadratic form version

〈Y, Δ̃LY 〉 = 1
2
‖C̃(Y )‖2 + 2

n2
‖δg̊Y ‖2. (4.12)

4.2 Indicial roots

Any elliptic operator L on the cylinder R×N which is translation invariant
in the x-direction determines a set of indicial roots Λ(L), which is a discrete
set of complex numbers {λj} with the property that |Imλj | → ∞ as j →∞.
These numbers measure the precise rate of exponential growth or decay of
the special “separation of variable” solutions to the equation Lu = 0.

Focusing directly on the conformal vector Laplacian ΔL, define the indi-
cial family Iλ(ΔL) to be the conjugate of L by the Fourier transform F ,
Iλ(ΔL) = F ◦ΔL ◦ F−1. This amounts to replacing ∂x by iλ. Thus, denot-
ing the Fourier transforms of the various components with hats, we have
Iλ(ΔL)(X) = ŵ∂x + Ŵ , where

ŵ =
(
Δg̊ + 2

(
1− 1

n

)
λ2

)
f̂ + iλ

(
1− 2

n

)
δg̊Ŷ ,

Ŵ =
(
Δ̃L + λ2

)
Ŷ + iλ

(
2
n
− 1

)
D f̂ .

(4.13)

It is immediate from the fact that ΔL itself is elliptic when n ≥ 3 that
Iλ(ΔL) is elliptic for each λ, and determines a Fredholm mappingHk+2(N)→
Hk(N) for any k. Furthermore, it is a polynomial in λ; such families are
sometimes called operator pencils. The analytic Fredholm theorem states
that either there exists no value of λ for which Iλ(ΔL) is invertible, or else
it is invertible away from a discrete set of complex numbers Λ(ΔL) = {λj},
which is by definition the set of indicial roots of ΔL. Standard elliptic reg-
ularity implies that this set is independent of k. It is also straightforward
to see, using the semiboundedness of Δg̊ and Δ̃L, that any horizontal strip
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{a < �(λ) < b} contains at most a finite number of indicial roots; this shows
that Λ(ΔL) �= C, and also vindicates the assertion that |�(λ)j | → ∞. This
latter statement was proved in [1] (see also [10, 12]). Finally, since Iλ(ΔL)
is invertible for some values of λ, this family has index zero, which means
that λ is an indicial root if and only if there exists a nontrivial solution
to Iλ(ΔL)(f̂ , Ŷ ) = (0, 0), or in other words, it suffices to check injectivity
rather than surjectivity.

Note that I0(ΔL)(f, 0) = (0, 0) for f ≡ const. This means that 0 is always
an indicial root. It is not hard to see that ∂t generates the entire nullspace
of this operator.

The paper [6] calculates the full set of indicial roots for ΔL when (N, g̊)
is S2 with its standard metric; the analogous calculation for (N, g̊) a sphere
of any dimension (with its standard metric) is given below in Appendix B.

4.3 Mapping properties on product cylinders

We now explain the significance of indicial roots for the mapping properties
of ΔL on weighted Sobolev spaces.

Proposition 4.1. The mapping

ΔL : eδxHk+2(R×N) −→ eδxHk(R×N) (4.14)

is Fredholm if and only if δ �= Imλj where λj is any indicial root of ΔL.
Furthermore, if this map is Fredholm, then it is invertible.

One direction of this is easy. If δ does equal the imaginary part of an
indicial root, then there exists a solution of ΔLu = 0 which grows or decays
like eδx both as x→ +∞ and also as x→ −∞. Because of this asymptotic
behaviour, u is right on the border of lying in eδxL2, and it is then easy
to define a sequence of compactly supported cutoffs uj of u with disjoint
support which have the property that ‖uj‖k+2,δ →∞ while ‖ΔLuj‖k,δ ≤ C.
This shows that (4.14) does not have closed range in this case.

The other implication is not much harder. The simplest proof uses the
extension of the Fourier transform in x to the complex plane. The Plancherel
theorem for this extended transform states that the Fourier transform maps
eδxL2(R×N) isometrically to L2(R×N), where the first factor R is the
real part of λ = ξ + iδ. If the line Imλ = δ contains no indicial roots, then
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the inverse of the indicial family Iλ(ΔL)−1 has norm which is uniformly
bounded along this line, and

f(x, z) �→ f̂(λ, z) �−→
∫

Imλ=δ
eixλIλ(ΔL)−1f̂(λ, z) dλ := u(x, z),

z ∈ N , provides an inverse for (4.14).

4.4 The indicial-root-free region

Our goal in the remainder of this section is to describe a region of the plane,
which depends on the lowest eigenvalue λ1 for the scalar Laplacian Δg̊ only,
which contains no indicial roots of ΔL.

Proposition 4.2. Let n ≥ 3, and let λ1 denote the smallest nonzero eigen-
value of the scalar Laplacian Δg̊. Then the only indicial roots of ΔL on
R×N in the region

{
|�(λ)| ≤ 4(n− 2)2

n− 1
|λ|

}
∪

{
|�(λ)| <

√
λ1

4(n− 2)
, |λ| <

√
λ1

2(n− 1)

}

are either λ = 0 or else lie on the imaginary axis. In any case, there is a
horizontal strip {|�(λ)| < η} which contains only the indicial root λ = 0.

The excluded region, pictured in figure 1, is the union of a sector con-
taining the positive and negative real axes and the region inside a disc and
between two horizontal lines.

Proof. We first establish the much simpler fact that the only indicial root
on the real line is 0.

First, if λ = 0, then Δg̊f = 0 and Δ̃LY = 0, so f is constant and by (4.12),
C̃(Y ) = 0 and δg̊Y = 0. Thus, Y is a Killing vector on N , if any.

To proceed further, we establish some identities satisfied by solutions of
Iλ(f̂ , Ŷ ) = 0. For convenience henceforth, we omit the hats from f and Y ,
and also omit the superscript g̊ from δ.
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Figure 1: There are no indicial roots in the shaded region except at the
origin.

We first take the L2(N) inner product of the first equation in (4.13) and
integrate by parts to get

‖Df‖2 + 2
(
1− 1

n

)
λ2‖f‖2 + iλ

(
1− 2

n

)
〈δY, f〉 = 0, (4.15)

and

1
2
‖C̃(Y )‖2 + 2

n2
‖δY ‖2 + λ2‖Y ‖2 + iλ

(
2
n
− 1

)
〈Df, Y 〉 = 0. (4.16)

In this second equation we used (4.12).

Next, recalling that we are using the sesquilinear inner product which is
complex antilinear in the second factor, integration-by-parts leads to the
following three identities:

‖Df‖2 + |λ|2‖Y ‖2 − ‖Df + iλ̄Y ‖2 − iλ〈Df, Y 〉+ iλ̄〈Y,Df〉 = 0, (4.17)

1
2
‖C̃(Y )‖2 + 2

n

(
1− 1

n

)
|λ|2‖f‖2 − 1

2

∥∥∥∥C̃(Y )− 2iλ
n
fg̊

∥∥∥∥2

− 2iλ̄
n2
〈δY, f〉+ 2iλ

n2
〈f, δY 〉 = 0, (4.18)
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and

2
n2
‖δY ‖2 + 2|λ|2

(
1− 1

n

)2

‖f‖2 − 2
∥∥∥∥iλ(

1− 1
n

)
f +

1
n
δY

∥∥∥∥2

+
2iλ
n

(
1− 1

n

)
〈f, δY 〉 − 2iλ̄

n

(
1− 1

n

)
〈δY, f〉 = 0. (4.19)

For λ �= 0, we now form the combination

λ

λ
(4.15) + (4.16)− (4.17)− (4.18)− (4.19) = 0

to get

1
2

∥∥∥∥C̃(Y )− 2iλ
n
fg̊

∥∥∥∥2

+ 2
∥∥∥∥iλ(

1− 1
n

)
f +

1
n
δY

∥∥∥∥2

+ ‖Df + iλ̄Y ‖2 +
(
λ̄

λ
− 1

)
‖Df‖2 + (λ2 − |λ|2)‖Y ‖2 = 0. (4.20)

For simplicity below, we write this as

P +Q+R+
(
λ̄

λ
− 1

)
‖Df‖2 + (λ2 − |λ|2)‖Y ‖2 = 0, (4.21)

where the first three terms here correspond to the first three terms of (4.20),
in their respective order.

Suppose now that λ ∈ R \ {0}. Then λ̄/λ = 1 and λ2 = |λ|2, so we deduce
from (4.20) that Df = −iλ̄Y and δY = −iλ(n− 1)f . Together these give
Δg̊f + (n− 1)|λ|2f = 0, whence f = 0 since Δg̊ is nonnegative. This implies,
in turn, that Y = 0. Hence, there are no nonzero real indicial roots.

Now we proceed to study indicial roots off the real line. As a first step,
we note two identities, which are only valid when arg λ �= π/2, 3π/2. The
first, obtained by taking the imaginary part of (4.20), states that

‖Df‖2 = |λ|2‖Y ‖2. (4.22)
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(The reason this does not hold when λ ∈ iR is that this imaginary part has
an overall factor of sin(2 arg λ).) Next, take the real part of (4.20) and
substitute (4.22) to get

P +Q+R = 4(�(λ))2‖Y ‖2. (4.23)

If λ ∈ C \ (R ∪ iR), then it is clear from (4.22) and (4.13) that if (f, Y ) is a
nontrivial solution to Iλ(ΔL)(f, Y ) = (0, 0) then both f and Y are nontrivial.
Multiplying this solution by a constant, we assume that

‖Y ‖ = 1⇒ ‖Df‖ = |λ|.

On a compact manifold, integration by parts shows that the first nonzero
eigenvalue of the Laplacian is nonnegative. An identical calculation applies
to Δ̃L, leading to the same conclusion, compare (4.12). We note the follow-
ing:

Lemma 4.3. Suppose Iλ(ΔL)(f, Y ) = 0 with λ �= 0. Then, if λ1 > 0 and
ν1 > 0 are the lowest nonzero eigenvalues of Δg̊ and Δ̃L, we have that

‖f‖2 ≤ 1
λ1
‖Df‖2, and

‖Y ‖2 ≤ 1
ν1

(
1
2
‖C̃Y ‖2 + 2

n2
‖δY ‖2

)
.

Proof. On the compact manifoldN we have the decomposition: f =
∑∞

k=0 fk

where fk is an eigenfunction of Δg̊ associated with the eigenvalue λk and
where {λi}i≥0 is a strictly increasing sequence with λ0 = 0. The kernel of
Δg̊ is the space of constant functions; integrating the first of (4.13) with
ŵ = 0 one gets 〈f, 1〉 = 0, whence f0 = 0. Then:

‖f‖2 =
∞∑

k=1

‖fk‖2 ≤ 1
|λ1|

∞∑
k=1

|λk|‖fk‖2 = − 1
|λ1| 〈Δzgf, f〉 = 1

|λ1|‖Df‖
2.

The second inequality is proved in the same way, after checking that for
all Z such that Δ̃LZ = 0 we have 〈Y, Z〉 = 0; this is done by multiplying
with Z the second of (4.13), after setting Ŵ = 0 there, integrating over N ,
and using the fact that divg̊ Z = 0 for Z in the kernel of C̃.
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Returning to the proof of Proposition 4.2, define

ψ := iλ(1− 1
n
)f +

1
n
δY,

so that, by (4.23),

‖ψ‖ ≤ 2|�(λ)|. (4.24)

Inserting δY = nψ − iλ(n− 1)f into (4.15), and recalling (4.22) gives, after
some simplifications,

0 = |λ|2 + λ2(n− 1)‖f‖2 + iλ(n− 2)〈ψ, f〉 = 0. (4.25)

Dividing by |λ|2 we find that

−1 = (n− 1)
λ2

|λ|2 ‖f‖
2 + i

λ

|λ|2 (n− 2)〈ψ, f〉. (4.26)

We claim that this equation has no solutions when λ is sufficiently small.
Indeed, let us denote the two terms on the right by J1 and J2. Then, using
Lemma 4.3 and (4.24) gives

|J2| ≤ 2(n− 2)
|�(λ)|
|λ|

‖Df‖√
λ1

= 2(n− 2)
|�(λ)|√
λ1

.

Hence, the last term in (4.26) will have norm smaller than 1/2 if

|�(λ)| <
√
λ1

4(n− 2)
.

Similarly, |J1| < 1/2 provided

|λ|2 < λ1

2(n− 1)
.

We conclude that there are no indicial roots in the intersection of these
regions, which is the intersection of a ball with a slab.

We turn to showing that λ cannot lie in the sectorial part of this region.
Suppose that arg λ ∈ (−π/4, π/4) ∪ (3π/4, 5π/4). Then J1 has positive real
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part, while |J2| ≤ 2(n− 2)‖f‖. Thus, for

‖f‖ ≤ 1
2(n− 2)

the equality (4.26) cannot be true, since J2 must have modulus greater than
one to compensate for the positive real part of J1.

Next, note that the three points (−1, 0, J1) form a triangle in the complex
plane which, for λ with argument as above, has angle larger than π/2 at 0.
This implies that |1 + J1| > |J1| = (n− 1)‖f‖2. Thus

|J2| = |J2|
|J1| |J1| < |J2|

|J1| |1 + J1|,

so (4.26) is impossible if |J2|/|J1| < 1. We have already ruled out the pos-
sibility that ‖f‖ ≤ 1

2(n−2) , so we can assume the opposite. Hence

|J2|
|J1| ≤

2(n− 2)(|�(λ)|/|λ|)‖f‖
(n− 1)‖f‖2 <

4(n− 2)2

n− 1
|�(λ)|
|λ| ,

and this is less than or equal to one if |�(λ)|/|λ| ≤ (n− 1)/4(n− 2)2.

Finally, the estimates above do not give information about the indicial
roots on the imaginary axis. As we have already described, it is known that
the set of all indicial roots is discrete in the plane, so from this general result
there is necessarily a strip |�(λ)| < η such that the only indicial root in it
is λ = 0. This is sufficient for the mapping properties we describe later, but
is not particularly satisfactory given the explicit nature of the other bounds
above.

This proves Proposition 4.2. �

5 The conformal vector Laplacian on Z-periodic cylinders

Let us now consider a spaceX which is the cyclic cover of a compact manifold
X̊. This means that the map X → X̊ induces a surjection in fundamental
group with kernel isomorphic to Z. Choose a generator Γ for the group of
deck transformations on X; this can be thought of as a translation, and
X itself as being cylindrical, although it need not be homeomorphic to a
product R×N . If X̊ carries a Riemannian metric g̊ and a TT tensor K̊,
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then we can lift these to a metric g and TT tensor K on X, and (X, g,K)
is an initial data set if and only if (X̊, g̊, K̊) is.

There are already some interesting examples when X is a product R×N
and g is periodic. Indeed, the paper [5] classifies the “one-dimensional”
solutions of the Lichnerowicz equation in this setting, i.e., the solutions on
a product cylinder which depend only on x ∈ R, at least assuming that
‖K‖g is constant. There is an interesting family of periodic solutions in
this case where the metric g = w

4
n−2 (dx2 + h) is conformal to the product

metric on R× (N,h), and the conformal factor w(x) is periodic. In the
special case K ≡ 0, these are the well-known Delaunay solutions for the
Yamabe equation; when K �= 0, they are a new family of deformations of
these which we call the constraint Delaunay solutions. There are many other
one-dimensional solutions one might consider, for example when ‖K‖g is
periodic; these more general solutions were not studied in [5], but it would
certainly be interesting to do so.

In any case, we now describe some linear analysis describing the map-
ping properties of the conformal vector Laplacian ΔL for any such periodic
manifold. These results will be used in §6 to find a rich class of TT tensors
on manifolds with asymptotically periodic ends. As in the cylindrical set-
ting, the emphasis is on developing a criterion for determining when ΔL is
Fredholm on a given weighted Sobolev space. There is an analogue of the
notion of indicial roots in this setting which determines the allowable weight
parameters. This material is somewhat less standard than the correspond-
ing theory for cylinders, so we describe it more carefully. The discussion
below is drawn from [11].

Let (X, g) be a Z-periodic manifold, and Γ the generator for the deck
transformations of the covering X → X̊, as described above. Choose a fun-
damental domain F for this action which is a smooth compact manifold with
two boundary components, ∂−F ∪ ∂+F , where Γ induces a diffeomorphism
between F− and F+. The basic example to keep in mind is the cylinder
X = R×N , where F = [0, T ]×N and Γ(x, y) = (x+ T, y), y ∈ N .
We begin with the direct integral decomposition

L2(X) =
∫ ⊕

L2(F )θ dθ, (5.1)

described in [13, p. 290], where L2(F )θ consists of the space of L2 functions
u on F which satisfy u(Γ(z)) = eiθu(z) almost everywhere on X. We explain
this theory for functions, but it extends immediately to sections of tensor
bundles. The equivalence of function spaces (5.1) is defined through the
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Fourier–Laplace transform on X,

u(z) �−→ û(ẑ, θ) =
∞∑

k=−∞
e−ikθu(Γk(z)).

This is initially only defined for smooth functions u which are rapidly
decreasing on X, but is extended to all of L2(X) using the Plancherel for-
mula ∫

X
|u(z)|2 dVg =

∫ 2π

0

∫
F
|û(ẑ, θ)|2 dVg̊ dθ, ẑ ∈ F.

In fact, this Plancherel formula shows that (5.1) is an isometric equivalence.
The inverse Fourier–Laplace transform is given by

u(z) =
1
2πi

∫ 2π

0
eikθû(ẑ, θ) dθ,

where k ∈ Z is determined by the fact that z lies in the kth translate of
the fixed fundamental domain F , z ∈ Γk(F ). Note that û(ẑ, θ) satisfies
û(Γ(ẑ), θ) = eiθû(ẑ, θ). In other words, we may regard û as a section of
a flat line bundle Vθ over X̊ which has holonomy eiθ; the L2 sections of
this bundle are precisely the elements of L2(F )θ. One further important
observation is that the flat connection on this bundle is unitary if and only
if θ ∈ R.

All we have done here is to recast in geometric language the classical
Bloch–Floquet wave theory, as described in [13]. Its use in geometry was
initiated by Taubes [14], and developed further in [11].

If L is an elliptic operator on X which commutes with Γ, then it induces
an operator Lθ acting on C∞(X̊, Vθ) for any θ ∈ C. We suppose just to be
definite that the degree of L is 2. If L is symmetric, then for θ ∈ R, Lθ

uniquely determines a self-adjoint operator on L2(X̊, Vθ), which thus has
discrete (and real) spectrum {λj(θ)}, with λj(θ)↗∞ as j →∞. These
functions satisfy λj(θ) = λj(2π − θ) provided Lu = Lu. All of this can be
used to prove that the spectrum of L on L2(X) consists of the union of
‘bands’ ∪j{λj(θ) : 0 ≤ θ ≤ π}.
For functions u which decay sufficiently rapidly on X we can define the

Fourier–Laplace transform also for complex values of θ. In particular, if u ∈
C∞0 (X), then û(x̂, θ) extends to be an entire function of θ and the identity
û(ẑ, θ + 2π) = û(ẑ, θ) holds for all θ ∈ C. This defines Lθ as a holomorphic
family of Fredholm operators, and it is then a standard result in functional
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analysis that either Lθ is never invertible for any θ ∈ C or else L−1
θ is a

meromorphic family of operators, and the coefficients of the singular terms
in the Laurent expansion at each pole are all finite rank operators. Note
that to be in the second case, it is necessary that Lθ have index zero for
every θ. We now say that θ0 is an indicial root of L provided Lθ0 is not
invertible, or equivalently, if L−1

θ has a pole at θ0. Since the index is zero, θ0
is an indicial root if and only if there exists a solution of Lθ0 φ̂ = 0. Thus φ̂
corresponds to a function φ on X which satisfies φ(Γ(z)) = eiθ0φ(z), and if
Im θ0 �= 0, then this solution grows exponentially in one direction and decays
exponentially in the other on X. Thus, as in the cylindrical setting, indicial
roots determine the precise rates of exponential growth or decay of solutions
of the homogeneous equation Lu = 0, and these in turn dictate the weighted
Sobolev spaces on which L is Fredholm.

We now state the mapping properties on weighted Sobolev spaces. First,
letHs

g(X) denote the usual Sobolev space relative to the periodic metric g on
X. Denote by ρ ∈ C∞(X) a function on X which satisfies ρ(Γ(z)) = ρ(z) +
k, normalized so that ρ(z) vanishes at some point in the given fundamental
domain F . We then define the weighted Sobolev spaces eδρHs

g(X) for any
δ ∈ R. The following general result is proved in [11]:

Proposition 5.1. With all notation as above, the mapping

L : eδρHs+2(X) −→ eδρHs(X) (5.2)

is Fredholm for all s ∈ R if and only if δ �= Im θj where θj is an indicial root
of L.

Since the set of indicial roots of L is invariant when translated by any
integer multiple of 2π, we may restrict attention to only those roots in the
vertical strip S := {θ ∈ C : −π ≤ Re θ < π}. Since the set of indicial roots
is discrete in C and 2π-periodic, it follows that the set of imaginary parts of
these roots is discrete in R, from which we obtain the

Corollary 5.2. The mapping (5.2) is Fredholm for every δ ∈ R \ Λ, where
Λ is the discrete set of imaginary parts of indicial roots. In particular, there
is a value δ∗ > 0 so that (5.2) is Fredholm provided 0 < |δ| < δ∗, and if there
are no indicial roots on the real line, then (5.2) is Fredholm for every δ with
|δ| < δ∗.

We now specialize this analysis to the conformal vector Laplacian ΔL.
The specific issue we wish to address is the existence of indicial roots on the
real line.
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Lemma 5.3. Suppose that the vector field Y on the periodic manifold X lies
in L2(F )θ, i.e. Γ∗Y = eiθY , and satisfies the equation ΔLY = 0. If θ ∈ R,
then Y is a conformal Killing field, C(Y ) = 0.

Proof. We have already noted that when θ ∈ R, we may regard elements
of L2(F )θ as sections of a flat vector bundle over X̊, and that this flat
connection is unitary. In more concrete terms, this means that for (vector
and tensor valued) sections of Vθ, the integration by parts formula∫

X̊
DiA

ijY j dVg = −
∫

X̊
AijDiY j dVg

is still valid if both A and Y transform by eiθ when pushed forward by Γ.
The reason is that if we think of this as an integration on the fundamental
domain F , then after identifying the two boundary components of F , the
boundary term is (

ei(θ−θ̄) − 1
) ∫

∂rF
AijY jνi dσg,

where ν is the unit normal to ∂rF and dσg is the volume measure on this
boundary. This vanishes if and only if θ ∈ R. Hence, assuming this is the
case, then we can use (2.6) to deduce that 〈ΔLY, Y 〉 = ‖C(Y )‖2, so that
C(Y ) = 0 as claimed. �

Since C is a real operator, we can decompose Y into its real and imaginary
parts and hence deduce that if Y ∈ L2(F )θ with θ ∈ R solves ΔLY = 0, then
there exists a real-valued, bounded conformal Killing field on the periodic
manifold X. We summarize this in the

Corollary 5.4. The operator ΔL on the periodic manifold (X, g) has an
indicial root at θ0 ∈ R if and only if there exists a complex-valued conformal
Killing vector field Y on X which transforms by Γ∗Y = eiθY . In particular,
if X admits no bounded conformal Killing fields, then ΔL has no real indicial
roots.

6 Global mapping properties

We now describe results how the theory and results described in the pre-
vious two sections can be applied to construct solutions of the vector con-
straint equation, in the CMC setting, on manifolds with a finite number of
asymptotically cylindrical and asymptotically periodic ends. We draw on



THE VECTOR CONSTRAINT EQUATION 849

the theory developed in two papers [10] and [11], but do so partly for con-
venience since the results there are in precisely the form that we need here,
and in sufficiently general form. There are results by many other authors
which can be adapted to what we need, though none are sufficiently gen-
eral form. We mention in particular [9,12] in the asymptotically cylindrical
setting and [14] for the asymptotically periodic case.

Let (M, g) be a complete Riemannian manifold with endsE�, � = 1, . . . , N ,
where each E� (with the induced metric) is asymptotic to either a cylindrical
metric or a periodic metric. We refer to [5] for a precise description of the
decay conditions, but briefly, we require that on each end g differs from a
metric which is exactly cylindrical or periodic by a tensor h which decays
exponentially along with some number of its derivatives. The papers [10]
and [11] assume that h has a complete expansion along each end in (negative)
powers of the exponential of the distance function, but it is straightforward
to adapt those arguments to handle the case of metrics with finite regularity
and a given rate of exponential decay towards the asymptotic limit.

We have already defined the weighted Sobolev spaces eδρHs
g(M) for man-

ifolds which are exactly cylindrical or periodic, and where ρ is a distance
function. This generalizes immediately to the manifold (M, g). We let ρ
be a smooth function which equals 0 on some large compact set of M and
which agrees with the distance function on each cylindrical or periodic end.

We define the set of indicial roots of ΔL on the end Ej to equal the set of
indicial roots of the model (cylindrical or periodic) operator on that end. We
then explain in Appendix C the fundamental result that if δ is sufficiently
close to 0 and not equal to the indicial root of ΔL on any end, then

ΔL : eδρHs+2
g (M) −→ eδρHs

g(M)

is Fredholm. We now make this more precise.

For each end Ei, define the space Y (Ei) to consist of all conformal Killing
fields on the asymptotic exactly cylindrical or periodic model for Ei which
are globally bounded and, in the periodic case, spanned by (the real parts
of) vector fields which transform by Y �→ eiθY over a period domain. Then
choose a smooth cutoff function χi which equals 1 on Ei and vanishes on the
other ends and set Yi = {χiY : Y ∈ Y (Ei)}, and finally define Y = ⊕Yi.

Theorem 6.1. Let (Mn, g), n ≥ 3, be a Riemannian manifold with N ends,
each of which is either asymptotically cylindrical or asymptotically periodic.
Suppose furthermore that there is no nontrivial globally defined conformal
Killing vector field Y on M which is in L2(M). Then there exists a number
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δ∗ > 0 such that if 0 < δ < δ∗, then

ΔL : eδρHk+2
g (M ;TM)→ eδρHk

g (M ;TM) (6.1)

is surjective, while if −δ∗ < −δ < 0, then

ΔL : e−δρHk+2
g (M)→ e−δρHk

g (M) (6.2)

is injective. Moreover, if −δ∗ < −δ < 0, then for every k ≥ 0,

ΔL : e−δρHk+2
g (M ;TM)⊕ Y → e−δρHk

g (M ;TM) (6.3)

is surjective, with finite dimensional nullspace.

Remark 6.2. This theorem states that if M has no L2 conformal Killing
fields, then for any W ∈ e−δρHk

g (M) there exists a vector field Y which
decomposes as Y = Y̊ + Y ′ for some Y̊ ∈ Y and Y ′ ∈ e−δρHk+2

g (M) and
which satisfies ΔLY =W . Since Y̊ is conformal Killing, an immediate con-
sequence is that this solution Y also satisfies

C(Y ) ∈ e−δρHk+1
g (M ;S2

0(T
∗M)). (6.4)

We also observe that if Ei is an asymptotically cylindrical periodic end,
then the vector field ∂x always lies in Y (Ei). On the other hand, a generic
asymptotically periodic end has no asymptotic conformal Killing vector
fields. This implies that if all the ends of (M, g) are asymptotically periodic,
then for generic choices of g, ΔL : eδρHk+2

g (M)→ eδρHk
g (M) is an isomor-

phism for every −δ∗ < δ < δ∗.

Proof. We first assume that the difference between g and the its asymp-
totically cylindrical or periodic model along each end has an asymptotic
expansion in (not necessarily integer) powers of e−ρ. This assumption is
merely so that our hypotheses fit within the framework of the results we
quote, but is easy to remove, as we describe at the end of the proof.

There is a general principle that states in this setting that if the con-
formal vector Laplacian ΔL associated to the model cylindrical or periodic
metric on each end Ej is invertible on a given weighted space, with inverse
Gj , then we may patch together these inverses to get a parametrix G for
ΔL on all of M . This parametrix is an approximate inverse in the sense
that ΔLG = Id−K and GΔL = Id−K ′, where K and K ′ are compact
operators acting between the appropriate weighted Sobolev spaces. Slightly
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more generally, it is sufficient to produce an operator Gj on each end such
that ΔLGj = Id−Kj , GjΔL = Id−K ′

j where Gj and Kj , K ′
j are bounded

between the appropriate weighted spaces, and then the global parametrix
G can be obtained by patching together these local parametrices. We recall
the details of this argument in Appendix C below, and refer there for a more
precise formulation.

This principle shows that to prove the assertion in the statement of this
theorem about the Fredholmness of ΔL we must exhibit the local parametri-
ces for the model operators on each end. For the asymptotically cylindrical
ends, this parametrix construction is the content of [10, Theorem 4.4], while
in the asymptotically periodic case it is [11, Theorem 4.8]. (The reader
should keep in mind that the shift of the weight δ by 1/2 in [10, equa-
tion (4.3)] is simply a result of a different indexing of these weighted Sobolev
spaces.) These two results provide the existence of a suitable parametrix
which is bounded if and only if the weight parameter is not the imaginary
part of an indicial root. However, we have proved in Proposition 4.2 (cylin-
drical case) and Proposition 5.1 (periodic case) that there exists δ∗ > 0 such
that there are no indicial roots with imaginary part in the punctured interval
(−δ∗, δ∗) \ {0}. This proves the first assertion.
If we only know that g decays to the model cylindrical or periodic metric

at some exponential rate e−δ′ρ, along with a finite number of its derivatives,
then the conformal vector Laplacian for g is a sum of the conformal vector
Laplacian for an exactly cylindrical or periodic metric and a perturbation
term which has all coefficients decaying like e−δ′z. To be definite, consider
the action of ΔL on eδρHk+2

g for 0 < δ < δ∗. First, let G0 be a parametrix
for the conformal vector Laplacian for the perturbed exactly cylindrical or
periodic metric. This operator is bounded between eδρHk

g and e
δρHk+2

g , and
ΔL ◦G0 = Id−K0, where K0 : eδρHk

g → eδ−δ′Hk+2
g is bounded. However,

since eδ−δ′Hk+2
g ↪→ eδρHk

g is a compact inclusion, G0 is still a parametrix
even for the conformal vector Laplacian of the original metric g. The same
argument works if −δ∗ < −δ < 0.

We next observe that if Y is an L2 solution ΔLY = 0, then [10, Cor.
4.19] (cylindrical case) and [11, Prop. 4.14] (periodic case) show that Y ∈
e−δ∗ρHk

g for all k ≥ 0. Furthermore, the usual integration by parts, which
is justified by the decay of Y , shows that C(Y ) = 0, so Y must be an L2

conformal Killing field. Hence under the hypothesis that (M, g) admits no
L2 conformal Killing fields, then the mapping (6.2) is not just Fredholm, but
actually injective. Moreover, by a straightforward duality argument, (6.1)
is surjective.
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Now fix any W ∈ e−δρHk
g (M ;TM), for some −δ∗ < −δ < 0. By the sur-

jectivity statement we have just proved, there exists Y ∈ eδρHk+2
g (M ;TM)

such that ΔLY =W . We now cite [10, Thm. 7.14] (cylindrical case) and [11,
Lemma 4.18] (periodic case), which assert that this solution decomposes as
Y = Y̊ + Y ′, with Y̊ ∈ Y and Y ′ ∈ e−δρHk

g . We remark that if W = 0 and
Y ∈ L2, then these same decomposition results show that Y ∈ e−δρHk

g for
any k ≥ 0, since the term Y̊ does not lie in L2; this was the result of the
last paragraph.

This completes the proof of the theorem. �

As an immediate consequence, we obtain a result which is one of the main
goals of this paper:

Proposition 6.3. Let (M, g) be a complete Riemannian manifold with all
ends either asymptotically cylindrical or asymptotically periodic. Use all
notation as above, and assume that (M, g) admits no nontrivial global L2

conformal Killing fields. Let A ∈ e−δρHk
g (M ;S2

0(T
∗M)) be a decaying trace-

free symmetric two-tensor, with δ sufficiently small. Then there exists a
vector field Y = Y̊ + Y ′ ∈ Y ⊕ e−δρHk+1

g (M ;TM) such that A+ C(Y ) is a
solution of the vector constraint equation.

Proof. Following the procedure outlined in the introduction, and using the
mapping properties above, we see that if A ∈ e−δρHk

g , then δA ∈ e−δρHk−1
g ,

and hence there exists Y = Y̊ + Y ′ ∈ Y ⊕ e−δρHk+1
g such that ΔLY = δA.

The actual solution of the vector constraint equation is equal to A+ C(Y ).
�

We conclude this section with one further application of Theorem 6.1.
This is the analogue of the York splitting theorem in this geometric setting.

Proposition 6.4. Let (Mn, g) be a complete manifold with a finite number
of ends, each of asymptotically cylindrical or asymptotically periodic type.
Suppose that there exist no L2 conformal Killing fields on M . Then for
any 0 < δ < δ∗, k ≥ 0, and each choice of sign ±, there is a direct sum
decomposition

e±δρHk
g (M ;S2

0(T
∗M)) = {C(Y ) : Y ∈ e±δρHk+1

g (M ;TM)}
⊕ {h ∈ e±δρHk

g (M ;S2
0(T

∗M)) : δh = 0}.
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Proof. This result is simply a manifestation of the fact that ΔL has closed
range when acting on e±δHk+2

g (M ;TM), as well as the factorization ΔL =
C∗ ◦ C = δ ◦ C. However, we must argue slightly differently when proving
this decomposition on spaces with positive weights than with negative ones.

First consider the mapping (6.1), with weight δ ∈ (0, δ∗). For any h ∈
eδρHk

g (M ;S2
0(T

∗M)), we wish to write

h = C(Y ) + κ,

where Y ∈ eδρHk+1
g (M ;TM) and δgκ = tr gκ = 0. To find the appropriate

Y , take divergence of both sides of this equation to get ΔLY = δh. Using
that (6.1) is surjective, we can find a solution Y ∈ eδρHk+1

g , and if we then
set κ := h− C(Y ), then κ is trace-free and has vanishing divergence. Thus
h = κ+ C(Y ) is the required decomposition.

Note that the vector field Y is not uniquely determined since the mapping
(6.1) has nontrivial nullspace. However, using facts described in the proof
of Theorem 6.1, any element Z ∈ eδρHk

g which satisfies ΔLZ = 0 satisfies
Z = Z̊ + Z ′ where Z̊ ∈ Y and Z ′ ∈ e−δρHk

g . We have proved in SS4 and 5
that C(Z̊) necessarily vanishes. This means that the usual integration by
parts

0 = 〈ΔLZ,Z〉 = ‖C(Z)‖2

is still valid, so that C(Z) itself must vanish. This means that the term C(Y )
which appears in the decomposition for h above is actually well-defined, even
though Y itself is only determined up to an element Z of the nullspace of ΔL.

Now consider the decomposition on the negatively weighted spaces. For
this we use the injectivity of the map (6.2). Indeed, if h ∈ e−δρHk

g (M ;
S2

0(T
∗M)), then we can find Y ∈ eδρHk+1

g (M ;TM) which solves ΔLY =
δh and Y = Y̊ + Y ′, where Y̊ ∈ Y and Y ′ ∈ e−δρHk+1

g . Observing that
C(Y̊ ) = 0 on the exactly cylindrical or periodic model for each end, we
see that C(Y ) ∈ e−δρHk

g . Thus we have shown that h = C(Y ) + κ, where
Y ∈ e−δρHk+1

g , and where κ ∈ e−δρHk
g is trace-free and divergence-free. �
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Appendix A Conformal Killing vectors on cylinders

We consider the conformal Killing vector equation C(X) = 0 for a metric

g = dz2 + h, (A.1)

where h is a Riemannian metric on an (n− 1)-dimensional compact manifold
N . For the convenience of the reader we repeat here Equations (4.3)–(4.5):

Czz =
2
n
((n− 1)∂zf − divh Y ) , (A.2)

CzA = ∂Af + ∂zYA, (A.3)

CAB = DAYB +DBYA − 2
n
(∂zf + divh Y )hAB. (A.4)

It immediately follows from CAB = 0 that Y is a conformal Killing vector
of (N,h):

DAYB +DBYA − 2
n− 1

divh Y hAB = 0. (A.5)

Differentiating (A.5) with respect to z and using Czz = 0 we find that ψ :=
∂zf satisfies

DADBψ = ΔzgψhAB.

Keeping in mind that we have assumed N to be compact, we conclude
from [7, Theorem 21] that either

∂Aψ ≡ ∂A∂zf = 0, (A.6)

or (N,h) is a sphere with the round metric.

Suppose, first, that (N,h) is a round sphere, the metric g is then conformal
to the flat metric on R

n \ {0}. Now, it is not too difficult to check that any
conformal Killing vector on R

n \ {0} extends to a conformal Killing vector
on R

n. As is well known, in coordinates xi on R
n in which the Euclidean
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metric δ is represented by the identity matrix, such vector fields take the
form

Y i =
1
2
Ai

jkx
jxk +Ai

jx
j +Ai,

for a set of constants Ai, Ai
j , Ai

jk, with Ai
jk symmetric in the lower indices,

and

A(ij)k −
2
n
Am

mkδij = 0 = A(ij) −
2
n
Am

mδij .

Setting z = ln r we have

δ = dr2 + r2dΩ2 = r2(dz2 + dΩ2) = e2zg,

with g as in (A.1). So if
∑

i,j,k |Ai
jk| �= 0 the g–length of Y behaves as

|Y |g =
√
g(Y, Y ) = e−z

√
δ(Y, Y ) ∼ ez;

Otherwise, assuming that
∑

i,j |Ai
j | �= 0 the g–length of Y behaves as

|Y |g ∼ 1.

Finally, if
∑

i,j,k |Ai
jk| = 0 =

∑
i,j |Ai

j | but
∑

i |Ai| �= 0 we obtain

|Y |g ∼ O(e−z).

In particular, when h is the round metric on a sphere there exist conformal
Killing vectors that decay to zero exponentially fast along the cylindrical
ends. Note that such vectors are essential conformal Killing vectors for g,
i.e. they are not Killing vectors for g (though they are, of course, for δ).

It remains to consider (N,h) such that h is not a round metric on a
sphere. Then (A.6) holds, in particular ∂zf is constant on each level set of
z. Since the integral over N of divh Y is zero, we conclude from (A.2) that

∂zf = 0.

Hence divh Y = 0 as well, and Y is a Killing vector of h for all z. From
(A.3) we obtain ∂2

zY = 0, hence Y = V + zW for some z-independent h-
Killing vector fields V and W . Using (A.3) again we find that W = Dψ for
a function ψ. But then Δzgψ = divhW = 0, so ψ is a constant and we infer
that W vanishes. Hence Y is z-independent. From (A.3) we deduce that f
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is a constant. We conclude that X = f∂z + Y , where f is a constant and Y
is a conformal vector field on (N,h).

As a byproduct of the analysis above, we obtain:

Proposition A.1. 1) Cylindrical metrics have no Killing vector fields
that decay along the cylindrical ends.

2) Cylindrical metrics have no conformal Killing vector fields that decay
along the cylindrical ends unless (N,h) is a round sphere.

Appendix B Indicial roots of the sphere S
n−1

In this paragraph we give a complete description of the set of indicial roots
in the case where the manifold Ω is the sphere S

n−1 with its standard unit
round metric h. The Ricci tensor of (Sn−1, h) is given by Ric = (n− 2)h
and this provides an important simplification in the study of the equations
for the indicial exponents, Aλ(f, Y ) = 0:

−2
(
1− 1

n

)
λ2f −Δhf + iλ

(
1− 2

n

)
divh Y = 0, (B.1)

−Δ̃LY + iλ

(
1− 2

n

)
Df − λ2Y = 0. (B.2)

This is due to the fact that on a round sphere we have simple commutation
properties for the operators div, grad and Δ̃L (from now we suppress the
subscript h for these differential operators as they will always refer to h).
We recall that the eigenvalues of Δ when considered as acting on functions
on S

n−1 are λj = j(n− 2 + j) where j runs from 0 to ∞. For each function
f we can write f =

∑∞
j=0 fj where fj satisfies Δfj = λjfj . The announced

commutation properties are the following ones: for all smooth vector field Y
on S

n−1 we have, keeping in mind that we use the convention Δ = −∇b∇b,

−Δ(div Y ) = ∇b∇b∇aY
a = ∇b

(
∇a∇bY a +Ra

cdah
dbY c

)
= ∇a∇b

(
∇bY a +Rb

cba∇cY a +Ra
cba∇bY c

)
−∇bRiccdhdbY c

= ∇a∇b∇bY a − (n− 2)∇bY
b

= −div (ΔY )− (n− 2) div Y. (B.3)

A similar computation gives:

Δ (grad f) = ∇ (Δf)− (n− 2) grad f. (B.4)
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It then follows that:

div
(
Δ̃LY

)
= 2(1− 1

n
)Δ(div Y )− 2(n− 2) div Y,

and

Δ̃L (grad f) = 2(1− 1
n
)∇(Δf)− 2(n− 2) grad f.

Let μj denote the eigenvalues of Δ acting on vector fields on S
n−1. Inte-

gration by parts shows that μj > 0, and from (B.3) to (B.4) we deduce that

−μj = −λj + n− 2 = (1− j)(n− 2)− j2 ∈ {. . . ,−n− 6,−1}, j ∈ N
∗.

Let us now turn attention to the determination of the indicial roots. Given
λ �= 0, assume that (f, Y ) is a nontrivial solution of Aλ(f, Y ) = 0. Taking
the divergence of equation (B.2) and combining with (B.1) we get:

−Δ2f +
(
2λ2 − n2 − 2n

n− 1

)
Δf +

(
2(n− 2)λ2 − λ4

)
f = 0. (B.5)

As 〈f, 1〉 = 0, as one can see integrating equation (B.1), we have the decom-
position f =

∑∞
j=1 fj where the sum starts with j = 1. Inserting this expres-

sion in (B.5) we get that for each fi which is not identically equal to zero
we must have:

−λ4 − 2μjλ
2 − μ2

j +
(n− 2)2

n− 1
(−μj + 1) = 0. (B.6)

Conversely if λ satisfies (B.6) for at least one j, one gets a nontrivial solution
of Aλ(f, Y ) = 0 choosing f as an eigenfunction of Δ associated to λj and Y
as κ grad f where

κ =
−2(1− 1

n)λ
2 + λj

ıλjλ(1− 2
n)

.

We now solve (B.6). Since μj ≥ −1 the discriminant (n−2)2

n−1 (−μj + 1) is
nonpositive, and we get:

λ2
+ = −μj + ı

√
−(n− 2)2

n− 1
(−μj + 1).
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and

λ2
− = −μj − ı

√
−(n− 2)2

n− 1
(−μj + 1).

Using the fact that the solutions of the equation z2 = a± ıb with b ≥ 0

are z1 =
√

a
2 +

√
a2+b2

2 ± ı
√
−a

2 +
√

a2+b2

2 and z2 = −z1 we conclude that the
nonzero indicial roots on the sphere S

n−1 are the complex numbers:√
−1
2
μj +

1
2

√
μ2

j +
(n− 2)2

n− 1
(μj − 1)

± ı
√
1
2
μj +

1
2

√
μ2

j +
(n− 2)2

n− 1
(μj − 1)

and their opposites, where j runs from 1 to ∞. Note that the first indicial
root is

√−1 (associated with μ1 = 1) and that there are no nonzero indicial
roots such that �(λ) < 1.

Appendix C Fredholm properties of elliptic operators for
manifolds with many ends

In this appendix we formulate and prove an abstract result about Fredholm
theory of elliptic operators on complete manifolds with more than one end.
We begin with the following abstract result.

Lemma C.1. Let A : X −→ Y be a bounded linear operator between two
Banach spaces. Then A is Fredholm, i.e., has closed range, and finite-
dimensional kernel and cokernel, if and only if there exists a bounded oper-
ator B : Y −→ X which satisfies

B ◦A = Id−Q1, A ◦B = Id−Q2,

where Q1 : X → X and Q2 : Y → Y are compact operators. If this is the
case, then we can modify B, so that the remainder terms Q1 and Q2 are
finite rank projectors onto the nullspace and a complement to the range of
A, respectively.

We apply this in the concrete setting of elliptic operators on complete
manifolds with a finite number of ends, and where X and Y are weighted
Sobolev or Hölder spaces. The main application we have in mind, of course,
is to the conformal vector Laplacian ΔL on a complete Riemannian manifold
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(M, g) which has some combination of asymptotically cylindrical, periodic,
Euclidean, conic, or hyperbolic ends. The results here apply equally well to
the linearized Lichnerowicz operator, as studied in [5], on the same class of
manifolds. The guiding principle is that while Fredholmness of an operator
is a global property, it is sufficient to check it ‘locally’, i.e., on each end. This
‘local Fredholmness’, in turn, is equivalent to the existence of parametrices
with compact error terms on each end. (We assume we are working with
an elliptic operator, so a parametrix with compact error is available on any
bounded region of the manifold.)

To set up the notation, suppose that (M, g) is a complete Riemannian
manifold with ends E1, . . . , EN . We assume that each Ei is an open set,
that Ei has compact smooth boundary, and that there is a ‘radial function’
r, which is a smooth, strictly positive function which satisfies

C1r ≤ 1 + dist (·, ∂Ei) ≤ C2r.

To be very specific, we assume that each end E has one of the following
types of geometries:

(a) Asymptotically cylindrical; thus E = [0,∞)×N , where N is compact,
and g ∼ dr2 + g̊ for some Riemannian metric g̊ on N .

(b) Asymptotically periodic; here E is one half of an infinite periodic cylin-
der, as described in Section 5, which covers a compact manifold X̊,
and g is asymptotic to the lift of a smooth metric from X̊. The func-
tion r is commensurable with the number of fundamental domains (or
period lengths) between a given point and ∂E. As a special case,
E = [0,∞)×N , X̊ = S1 ×N , and g is asymptotic to a metric on E
which has period T .

(c) Asymptotically hyperbolic. As before, E = (1,∞)×N , with (N, g̊)
compact Riemannian, and g ∼ dr2 + e2rg̊.

(d) Asymptotically conic; we assume that E = [1,∞)×N , (N, g̊) compact
Riemannian, and g ∼ dr2 + r2g̊. The most important special case is
when (N, g̊) is the sphere Sn−1 with its standard unit metric, in which
case we say that E is an asymptotically Euclidean end; however, the
results we describe here apply equally easily in this slightly more gen-
eral setting.

In each of these cases, we say that g is asymptotic to a model metric ĝ
provided g − ĝ = k decays as r →∞ along with a certain number of its
derivatives. We make precise in each case the precise rate of decay needed.

We also let E0 denote an open interior region ofM , so that E0 is a compact
manifold with boundary and {Ei}N

i=0 is an open cover of M . Choose a
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partition of unity χi subordinate to this open cover. Thus each χi is smooth
and nonnegative and has support in Ei and

∑N
i=0 χi = 1. We also choose

smooth nonnegative functions χ̃i such that supp χ̃i ⊂ Ei for all i and χ̃i = 1
on suppχi. Note that the

∑
χ̃i �= 1, in general, i.e., these do not form a

partition of unity, but that χ̃iχi = χi for each i.

The two standard choices of function spaces are weighted Sobolev and
weighted Hölder spaces. We define the unweighted versions of these spaces
first. Let (M, g) be any complete Riemannian manifold with bounded geom-
etry and injectivity radius bounded below. The last hypothesis is not entirely
necessary for this definition, but is true in all the cases of interest here, so
we assume it for simplicity. For any ball B1(q) of unit radius around any
point q ∈M , we can define the local Sobolev and Hölder norms

‖u‖s,g,B1(q) =

⎛⎝∑
j≤s

∫
B1(q)

|∇ju|2 dVg

⎞⎠ 1
2

,

‖u‖k,α,g,B1(q) =
∑
j≤k

sup |∇ju|+ sup
q1,q2∈B1(q)

|∇ku(q1)−∇ku(q2)|
distg(q1, q2)α

.

Here s, k ∈ N and 0 < α < 1. We then define

‖u‖s,g = sup
q∈M

‖u‖s,g,B1(q), ‖u‖k,α,g = sup
q∈M

‖u‖k,α,g,B1(q)

as norms on the spaces Hs
g(M) and Ck,α

g (M), respectively. This definition
applies equally well if u is a section of any Hermitian vector bundle over M
for which there is a standard trivialization over each of the balls Bq(q); this
is certainly the case of we are dealing with sections of a tensor bundle over
M . (We could equally easily have defined Lp-based Sobolev spaces for any
p ∈ (1,∞) and for any real s, and all results below have analogues in this
more general setting.)

For each i = 1, . . . , N , choose a weight function wi; this is a smooth
strictly positive function on M which equals 1 away from the end Ei, and
in each of the cases (a) to (d) has the following description: when Ei is
asymptotically cylindrical, periodic and hyperbolic, we set wi = e−r; when
Ei is asymptotically conic, we take wi = r. Finally, if a = (a1, . . . , aN ) is
any N -tuple of real numbers, we write

waCk,α
g (M) = {u : w−a1

1 . . . w−aN
N u ∈ Ck,α

g (M)},
waHs

g(M) = {u : w−a1
1 . . . w−aN

N u ∈ Hs
g(M)}.
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We can also localize these spaces to each end, and thus define wai
i Ck,α

g (Ei)
and wai

i H
s
g(Ei). Finally, a subscript 0 indicates the subspace of functions

which vanish at ∂Ei; thus, for example, Ck,α
g,0 (Ei) consists of all functions

ui ∈ Ck,α
g (Ei) such that ui = 0 at ∂Ei.

Let A be any natural geometric elliptic operator associated to one of the
metrics above; we have in mind that A is the scalar Laplacian, the Hodge
Laplacian on k-forms, the trace Laplacian ∇∗∇ acting on a tensor bun-
dle, or the conformal vector Laplacian ΔL, however the results we describe
below apply to a broad class of elliptic operators with similar asymptotic
behaviour. To be definite, we suppose that A has the following form in each
of the geometries of interest:

(a) A ∼ ∂2
r +Δg̊;

(b) A ∼ Ag̊, where Ag̊ is the lift to the asymptotically periodic end of an
elliptic operator on the compact manifold X̊;

(c) A ∼ ∂2
r + a∂r + e−2rΔg̊;

(d) A ∼ ∂2
r + ar−1∂r + r−2Δg̊.

In each case, the notation A ∼ A0 indicates that the coefficients of A−A0

decay to zero at a rate e−δr in cases (a) to (c), like r−δ in case (d). For
simplicity we have omitted the typical terms of order 1 and 0 which might
appear in the operators of interest; perhaps the most important thing to
note is that these lower order terms need not decay in cases (a) to (c), but
the terms of order 0 in the asymptotically conic case (d) must decay like
r−2.

We have set up the notation so that

A : waHs+2
g (M) −→ waHs

g(M)

in cases (a) to (c) for any values of the weight parameter ai, whereas

A : waHs+2
g (M) −→ wa−2Hs

g(M)

in case (d). The mapping properties between weighted Hölder spaces is
phrased analogously, but for the purpose of brevity we do not state these
separately.

We finally come to the main Fredholm mapping properties for each of
these classes of operators. As before, we do not state these in the most gen-
eral contexts, but specialize to natural geometric elliptic operators on ends
which are asymptotic to warped products as given by the descriptions above.
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To state these results, we must define the indicial roots of the operator A in
each case.

We have already described in SS4-5 the indicial roots of the conformal vec-
tor Laplacian ΔL on asymptotically cylindrical and asymptotically periodic
ends. If the end E is asymptotically hyperbolic, then ζ is an indicial root
of A if Ae−ζr = O(e−(ζ+ε)r) for some ε > 0. Note that since the tangential
derivatives in A are already accompanied by the factor e−2r, these terms do
not affect the calculation of the indicial roots; in other words, the indicial
roots in the asymptotically hyperbolic case are determined by an algebraic
equation involving the coefficients of the derivatives in the normal direction.
Finally, in case d), the number ζ is an indicial root if there exists a function
φ on the cross-section N such that A(rζφ) = O(rζ−2−ε) for some ε > 0. This
corresponds to a leading order cancellation, since for an arbitrary value of
ζ and smooth function φ, one always has A(rζφ) = O(rζ−2). Just as in the
asymptotically cylindrical case, the indicial roots and the coefficient func-
tions φ in this case are determined by eigendata for the induced operator on
the cross section (N, g̊).

The basic result that we state below is that A is Fredholm acting between
weighted Sobolev or Hölder spaces if and only if none of the weight param-
eters ai are equal to the imaginary part of an indicial root on the corre-
sponding end. Actually, if any one of the ends is asymptotically hyperbolic,
then this condition must be modified, as we now describe. As described
in [10] (see Theorems 5.16 and 6.1 in particular), in order to show that A
is Fredholm, it is necessary that a certain model operator for A at each
point at infinity, called the normal operator N(A), must be an isomorphism
between these same weighted spaces. In our setting where g ∼ dr2 + e2rh
is asymptotically hyperbolic and A is the conformal vector Laplacian, the
normal operator N(A) turns out simply to be equal to the conformal vector
Laplacian on hyperbolic space H

n itself. Thus the extra condition we are
imposing is that if the end Ei is asymptotically hyperbolic, then the weight
parameter ai must be chosen so that

ΔH
n

L
: xaiH2(Hn;TH

n) −→ xaiL2(Hn;TH
n)

is an isomorphism. Here we are thinking of H
n as the upper half-space model

with x > 0 and y ∈ R
n−1. It turns out that there is always an allowable range

of weight values for which this is true; see [8]. We call this the critical weight
range associated to the operator A = ΔL on an asymptotically hyperbolic
end.

Proposition C.2. With all notation as above, suppose that no weight
parameter ai is indicial, and in addition, if Ej is an asymptotically hyperbolic
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end, then aj lies in the critical range described above. Then for any k ≥ 0,

A : waHk+2
g (M) −→ wa′Hk

g (M)

is a Fredholm mapping; here a′i = ai unless Ei is asymptotically conic, in
which case a′i = ai − 2.

Proof. The way to prove this result in a uniform way independent of the
type of geometry on each end is to draw from the literature the existence
of a parametrix, or approximate inverse modulo a compact error, for A on
each of the types of ends. More specifically, we assert that for i = 0, . . . , N ,
there exist operators Q1i and Q2i such that

|A|Ei
◦Bi : Id−Q1i, Bi ◦ A|Ei

= Id−Q2i,

where

χiBi : wa′Hs
g(Ei) −→ waHs+2

g (M),

and

χiQ1i : wa′Hs
g(Ei) −→ wa′−εHs+1

g (M),

χiQ2i : waHs+2
g (Ei) −→ wa−εHs+3

g (M)

are all bounded. We have included the cutoff functions χi on each of these
factors as a simple way to localize to each end. The important fact here is
that

χiQ1i : wa′Hs
g(Ei) −→ wa′Hs

g(Ei),

χiQ2i : waHs+2
g (Ei) −→ waHs+2

g (Ei)

are both compact operators.

Although we have phrased this in fairly abstract operator-theoretic terms,
we do need one specific fact about the structure of these operators, which
is that the Bi are pseudodifferential operators of order −2, hence have the
following special property that for each i, the commutator

[A, χ̃i]Biχi

is compact. In fact, [A, χ̃i] is a first order operator with compactly supported
coefficients which have support disjoint from the support of χi. This means
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that the composition above is actually a smoothing operator which maps
functions on M into C∞0 (Ei).

From these local parametrices we now define the global parametrix

B =
N∑

i=0

χ̃iBiχi.

We compute that

A ◦B =
∑N

i=0 (χ̃i(Id−Q1i)χi − [A, χ̃i]Biχi)
= Id−∑N

i=0 ([A, χ̃i]Biχi + χ̃iQ1iχi) .

By our various hypotheses, all terms in the final sum are compact operators,
and hence

A ◦B = Id−Q1,

where Q1 is compact. A similar computation and argument gives the corre-
sponding conclusion for B ◦A. �

It remains to cite the relevant places in the literature where the existence
of these local parametrices are proved. We first mention the paper [10],
which gives a comprehensive treatment of parametrices for the class of ellip-
tic differential operators of ‘edge type’. These naturally include cases (a),
(c) and (d), where we note that although a second-order asymptotically
conic operator A is not actually an edge operator, but r2A is, and this
suffices for the purposes above. Parametrices for elliptic operators in the
asymptotically periodic case were first constructed by Taubes [14], and that
construction was generalized in [11] to allow for the possibility of indicial
roots with real part 0, as occurs in our applications here. An earlier source
which treats elliptic theory in both the asymptotically cylindrical and conic
cases is the work of Lockhart and McOwen [9]. Finally, parametrices in the
asymptotically hyperbolic case have also been constructed in [8]. �
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