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Abstract

We study the constant contributions to the free energies obtained
through the topological recursion applied to the complex curves mirror
to toric Calabi–Yau threefolds. We show that the recursion reproduces
precisely the corresponding Gromov–Witten invariants, which can be
encoded in powers of the MacMahon function. As a result, we extend
the scope of the “remodeling conjecture” to the full free energies, includ-
ing the constant contributions. In the process, we study how the pair
of pants decomposition of the mirror curves plays an important role in
the topological recursion. We also show that the free energies are not,
strictly speaking, symplectic invariants, and that the recursive construc-
tion of the free energies does not commute with certain limits of mirror
curves.
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1 Introduction

The “remodeling conjecture” [5,27] asserts that the generating functions of
Gromov–Witten invariants of a toric Calabi–Yau threefold X are completely



“ATMP-16-5-A3-BOU” — 2013/4/30 — 17:18 — page 1445 — #3
�

�

�

�

�

�

�

�

TOPOLOGICAL RECURSION AND MIRROR CURVES 1445

determined in terms of a topological recursion. The particular recursion is
the Eynard–Orantin topological recursion [15, 17] applied to the complex
curve Σ mirror to X.

1.1 Constant terms

The simplest Gromov–Witten invariants are those involving constant maps
to the target space. They are encoded by the leading constant term Ng,0

in the Gromov–Witten generating functions Fg. It is known since the work
of [18, 20,28] that for g ≥ 2, the constant terms are given by:

Ng,0 =
1
2

(−1)gχ(X)
|B2g||B2g−2|

2g(2g − 2)(2g − 2)!
, (1.1)

where χ(X) is the topological Euler characteristic of X.

In this paper, we ask the following question: is the remodeling conjecture
true for the full free energies Fg, including constant terms, or just for the
“reduced free energies” without the constant terms? In other words, are the
Fg constructed from the Eynard–Orantin recursion applied to the complex
curve mirror to X reproducing the “right” constant terms as in (1.1)? The
fate of constant terms is notoriously subtle, as is well known for instance
from the DT/GW correspondence [29,30].

As far as we are aware, constant terms have not been studied yet from the
point of view of the remodeling conjecture. The main reason is that most of
the checks and proofs of the conjecture have been done by comparing with
the topological vertex on the Gromov–Witten side, which computes only
the reduced Gromov–Witten theory. Hence, not much has been said about
constant maps.

Apart from clarifying the remodeling conjecture, constant terms are inter-
esting for many reasons. For instance, over the years matrix models have
been constructed which encode Gromov–Witten partition functions Z of
various toric geometries [1, 10, 12, 13, 22, 26, 34, 35]. The spectral curves of
these matrix models give the corresponding mirror curves. However, the
constant part of the matrix models do not generally give the right power of
the MacMahon function to recover the contributions from constant maps in
Gromov–Witten theory. Thus one can ask: Are the Fg constructed through
the Eynard–Orantin recursion for these spectral curves giving the Gromov–
Witten constant terms, or the constant terms of the corresponding matrix
models? A priori, one would think that they should give the constant terms
of the matrix models, since the Fg obtained from the recursion are supposed
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to be the free energies of the corresponding matrix models. However, are
the loop equations, to which the recursion is a solution, really aware of the
overall matrix model normalization?

This question occurs already in the case of the resolved conifold. Here,
various matrix models are known (see for instance [1, 10, 26, 35]). They
all give spectral curves that are “symplectically equivalent”, hence should
all produce the same free energies through the Eynard–Orantin recursion.
However, these matrix models have different normalizations, i.e., different
powers of the MacMahon functions for the constant terms. More generally,
matrix models built from the topological vertex formalism for arbitrary toric
threefolds [12, 22, 34] by construction do not involve any factors of MacMa-
hon function, while matrix models constructed by other means [1,26,35] by
construction involve such factors. Yet, they have been shown to determine
the same mirror curves [13, 35]. How can that be? Given a spectral curve
(or two symplectically equivalent curves), the Fg are uniquely constructed
by the recursion, including constant terms. How can they reproduce the free
energies of matrix models with different constant terms?

What seems to be happening is the following. The Eynard–Orantin recur-
sion is a solution to the loop equations of matrix models. The loop equations
however do not “know” about constant terms; two matrix models differing
only by overall normalization should give the same loop equations, hence
“symplectically equivalent” spectral curves. The recursion however does
compute constant terms. Therefore, those are not necessarily the constant
terms of the corresponding matrix models; the recursion replaces the con-
stant terms of the matrix models by its own preferred constant terms.

And what we argue in this paper is that, magically, the constant terms
computed through the recursion are precisely those of Gromov–Witten theory,
as given in (1.1)! In other words, the recursion knows the right constant
terms. As a result, we assert that the remodeling conjecture holds for the
full free energies, including constant terms.

What we show is that for the simplest Calabi–Yau threefold X = C
3,

the Fg are given by the Faber–Pandharipande formula (1.1) with χ(X) = 1.
Then, we argue that for any toric Calabi–Yau threefold X, the constant part
of the Fg will be given by χ(X) times the Fg of C

3, thus recovering (1.1) for
all toric Calabi–Yau threefolds.

It would be nice to understand better, from a matrix model point of view,
why the Eynard–Orantin recursion does produce the right constant terms
as in Gromov–Witten theory. This remains quite mysterious, and should be
addressed in future work.
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As an aside we study, along the way, in more detail the notion of
“symplectic invariance” of the free energies Fg, as well as their behavior
under certain limits of mirror curves. It turns out that the Fg are not,
strictly speaking, symplectic invariants; we show that symplectic transfor-
mations that change the number of ramification points do not leave the Fg

invariant. In the context of the remodeling conjecture, what happens is that
there exist “bad choices” of framing for which the topological recursion does
not produce the correct free energies. In fact, representations of the mirror
curves quite often encountered in literature, such as (2.20) for C

3 and (2.21)
for the conifold, correspond to such pathological choices of framing. We
also demonstrate that the recursive construction of the Fg does not com-
mute with certain limits of mirror curves. We plan to clarify these issues
further.

1.2 Pair of pants decomposition

A related question that we address in this paper is whether the pair of pants
decomposition of the mirror curves plays a role in the recursion. Let Σ be
the curve mirror to a toric Calabi–Yau threefold X. Any such Σ has a pair
of pants decomposition. What we show is that this pair of pants decompo-
sition is in one-to-one correspondence with the C

3 patches decomposition
of the mirror toric threefold X. And just as the C

3 patches decomposition
plays a crucial role in Gromov–Witten theory through the topological vertex
formalism [2,25,31], the pair of pants decomposition also plays an important
role on the mirror B-model side through the Eynard–Orantin recursion.

It turns out that the residue process at the ramification points built in at
each level of the Eynard–Orantin recursion implements directly this pair of
pants decomposition. Each pair of pants has its corresponding ramification
point, and summing over ramification points means that we are summing
over contributions for each pair of pants, at each level of the recursion.
In particular, for a given X, we argue that each pair of pants contribute
precisely the same amount to the constant part of its Fg, namely, the con-
tribution coming from constant maps to C

3. In the case of the resolved
conifold, we prove that the two pairs of pants contribute precisely the same
amount to the full Fg, not just for constant terms. It would be very nice to
see how to understand the pair of pants decomposition of the free energies
for general toric Calabi–Yau threefolds X beyond the constant terms.

As a result, the residue process seems to be a close analog to the localiza-
tion procedure in Gromov–Witten theory of toric manifolds. It would also
very interesting to make this analogy more precise.
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1.3 Outline

In Section 2, we review the basics of Gromov–Witten theory of toric
Calabi–Yau threefolds and the construction of the corresponding mirror
curves. We also review the Eynard–Orantin recursion, and state the remod-
eling conjecture. Section 3 is devoted to the analysis of constant terms.
We first explain the role of ramification points in the recursion, and how
they are mirror to the torus fixed points of the toric Calabi–Yau threefold.
We conjecture (and check to relatively high genus) that the Fg constructed
from the mirror curve to C

3 are equal to the Gromov–Witten result (1.1)
with χ(X) = 1. Then we argue that for a general toric threefold X, each
pair of pants contributes one copy of F C3

g , thus recovering the full Faber–
Pandharipande formula (1.1) for general X. We prove this result explicitly
for the case of the resolved conifold.

Finally, in Section 4 we discuss some of the issues that were encoun-
tered during the analysis of Section 3. In particular, we discuss the notion
of symplectic invariance of the Fg. We show that under some symplectic
transformations that do not preserve the number of ramification points, the
Fg are not invariant. This analysis also gives a new meaning to the framing
of mirror curves, as some sort of “regularization parameter”. We also discuss
the relation between our results for constant terms and the limit theorem
obtained by Eynard and Orantin in [15].

2 Topological recursion and the remodeling conjecture

In this section, we review the remodeling conjecture, and the definition of
the topological recursion that we will be interested in.

2.1 Gromov–Witten theory of toric Calabi–Yau threefolds

In this paper, we will be interested in Gromov–Witten theory of toric Calabi–
Yau threefolds.

2.1.1 Toric Calabi–Yau threefolds

Let X be a toric threefold. It can be written as

X =
C

3+k \ S

(C∗)k
, (2.1)
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where the k C
∗ actions are given by

(C∗)i : (z1, . . . , z3+k) �→ (λTi1z1, . . . , λ
Ti(3+k)z3+k), i = 1, . . . , k, λ ∈ C

∗,
(2.2)

where the Tij ∈ Z and S is a subset which is fixed by a continuous subgroup
of (C∗)k. In this notation, the geometry is determined by the k vectors Ti,
sometimes known as toric charges.

It is well known that X is Calabi–Yau if and only if

3+k∑

a=1

Tia = 0, i = 1, . . . , k. (2.3)

As a result, every toric Calabi–Yau threefold is non-compact. Toric Calabi–
Yau threefolds can be represented by trivalent graphs, known as toric dia-
grams; the edges represent the torus-invariant curves in X, whereas the
vertices correspond to the torus-fixed points.

Example 1. Here, a few examples of toric Calabi–Yau threefolds and their
toric charges. The toric diagrams are shown in figure 1.

• X = C
3, which is the simplest toric Calabi–Yau threefold.

• X = OP1(−1) ⊕ OP1(−1), known as the resolved conifold. Its toric
charge is T = (−1,−1, 1, 1).

• X = OP2(−3), known as local P
2, which has toric charge T = (−3, 1,

1, 1).

2.1.2 Gromov–Witten theory

Consider the moduli space Mg,n(X, β) of stable maps f : Sg → X from
n-pointed genus g Riemann surfaces Sg, with homology class f∗[Sg] = β ∈
H2(X, Z). To define Gromov–Witten invariants, we consider the Deligne–
Mumford compactification Mg,n(X, β) of the moduli space of stable maps,
and then construct its virtual fundamental class [Mg,n(X, β)]virt. In this
paper, we focus on the case with no marked points, Mg(X.β) := Mg,0(X.β).

Roughly speaking, Gromov–Witten invariants are then defined as inte-
grals of appropriate cohomology classes over this virtual fundamental class:

〈· · · 〉g,β =
∫

[Mg(X.β)]virt

(· · · ). (2.4)
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Figure 1: Toric diagrams for C
3, resolved conifold, and local P

2. The cor-
responding mirror curves arise by thickening the edges of toric diagrams.
The trivalent vertices in the toric diagram represent torus fixed points. As
we demonstrate in Section 3.1, these torus fixed points are in one-to-one
correspondence with ramification points of the corresponding mirror curve
(for generic choice of framing). Hence, the A-model computation based on
gluing of topological vertices is mirrored by the pair of pants decomposition
of the topological recursion computation in the B-model.

For X a Calabi–Yau threefold, Mg(X, β) has virtual dimension 0. Thus we
can define the following Gromov–Witten invariants (for g ≥ 2):

Ng,β = 〈〉g,β =
∫

[Mg(X,β)]virt

1 = deg[Mg(X, β)]virt. (2.5)

Those are the invariants that we will be interested in.

As usual, we form generating functions for these invariants:

Fg =
∑

β∈H2(X,Z)

Ng,βQβ (genus g free energies), (2.6)

F =
∞∑

g=0

λ2g−2Fg (free energy), (2.7)

Z = exp(F ) (partition function). (2.8)

It is also customary to separate the constant maps β = 0 from the non-
constant ones. We define the reduced free energies and reduced partition
function as

F β �=0
g =

∑

β∈H2(X,Z)
β �=0

Ng,βQβ , (2.9)
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F β �=0 =
∞∑

g=0

λ2g−2F β �=0
g , (2.10)

Zβ �=0 =exp(F β �=0). (2.11)

Then we have that

Z = Zβ �=0Zβ=0, (2.12)

where

Zβ=0 = exp

⎛

⎝
∞∑

g=0

λ2g−2Ng,0

⎞

⎠ (2.13)

involves only the constant map contributions.

2.1.3 What is known

Gromov–Witten theory of toric Calabi–Yau threefolds has been studied
extensively. For any toric Calabi–Yau threefold X, the reduced partition
function Zβ �=0 can be computed using the so-called topological vertex [2,
25, 31]. The topological vertex however does not say anything about the
constant contributions Zβ=0.

Fortunately, the constant contributions can be computed independently
[18,20,28]. For g ≥ 2, one gets that:

Ng,0 =
1
2

(−1)gχ(X)
|B2g||B2g−2|

2g(2g − 2)(2g − 2)!
, (2.14)

where χ(X) is the topological Euler characteristic of X. For X a toric
Calabi–Yau threefold, it is easy to show that χ(X) is equal to the number
of torus fixed points (that is, the number of vertices in the toric diagram
of X). In particular, for the simplest toric Calabi–Yau threefold X = C

3,
which has χ(X) = 1, we have

NC3

g,0 =
1
2

(−1)g |B2g||B2g−2|
2g(2g − 2)(2g − 2)!

. (2.15)

For a general toric Calabi–Yau threefold, we thus obtain

NX
g,0 = χ(X)NC3

g,0. (2.16)
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The result (2.14) can be neatly rewritten as [3, 23,24,29,30]

Zβ=0 = M(q)
1
2
χ(X), (2.17)

where M(q) is the MacMahon function

M(q) =
∞∏

k=1

(
1 − qk

)−k
, (2.18)

with q = eiλ.

2.2 Mirror symmetry

The free energy F of A-model topological string theory on a toric Calabi–
Yau threefold X generates the Gromov–Witten invariants as in the previous
subsection. It is however often useful to study the free energy F from a
dual point of view. Mirror symmetry relates the A-model free energy to the
B-model topological string free energy, which we also denote by F , through
the mirror map. The remodeling conjecture proposes a recursive formula to
compute the B-model genus g free energies Fg. Let us start by explaining
what the mirror B-model theory looks like.

2.2.1 The mirror curve

Here, we construct the mirror geometry following Hori–Vafa [21]. We are
interested in the mirror B-model theory to the A-model on a toric Calabi–
Yau threefold X. The mirror theory is generally formulated as a Landau–
Ginzburg theory. However, it was shown that it essentially reduces to the
geometry of a complex curve, known as the mirror curve. In fact, the
remodeling conjecture is formulated entirely in terms of this mirror curve.
Therefore here we will define the mirror theory directly in terms of a mirror
curve, skipping the Landau–Ginzburg step.

Let X be a toric Calabi–Yau threefold defined by some toric charges Ti,
i = 1, . . . , k. Intuitively, the mirror curve can be obtained by “fattening” the
toric diagram, as shown in figure 1. Mathematically, it is defined as follows.

Definition 1. The mirror curve of a toric Calabi–Yau threefold X defined
by the toric charges Ti, i = 1, . . . , k, is given by the family of curves:

Σ =

{
1 + x2 + · · · + x3+k = 0

∣∣∣ ri =
3+k∏

m=2

xTim
m , i = 1, . . . , k

}
, (2.19)

where xm ∈ C
∗ for m = 2, . . . , 3 + k.
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Note that this defines a family of curves in (C∗)2, where the family is
parameterized by the ri. For instance, we can choose x := x2 and y := x3 to
be our C

∗ variables, and eliminate the other xm’s using the definition of the
parameters ri. The mirror curve Σ defines a Riemann surface with punctures
(which we also denote by Σ), and x and y are holomorphic functions on Σ.

Example 2. Let X = C
3. According to (2.19), the mirror curve is

Σ = {1 + x + y = 0} ⊂ (C∗)2. (2.20)

The associated Riemann surface has genus 0 and three punctures (shown in
figure 1).

Example 3. Let X be the resolved conifold, X = OP1(−1) ⊕ OP1(−1), with
toric charge T = (−1,−1, 1, 1). The mirror curve is

Σ =
{

1 + x + y + rxy−1 = 0
} ⊂ (C∗)2. (2.21)

The associated Riemann surface has genus 0 and four punctures (shown in
figure 1). Note that Σ is a family of curves, parameterized by r.

Example 4. Consider local P
2, X = O(−3)P2 , with toric charge T = (−3, 1,

1, 1). The mirror curve is

Σ =
{

1 + x + y + rx−1y−1 = 0
}

. (2.22)

The associated Riemann surface has genus 1 and three punctures (shown in
figure 1).

2.2.2 Framing

It turns out that the mirror curve can also depend on another parame-
ter, known as “framing”. In Gromov–Witten theory, the choice of framing
appears because one needs to fix the torus weights in order to apply local-
ization under the torus action. It can also be understood from the point of
view of large N dualities with Chern–Simons theory. For us, the choice of
framing appears as a reparameterization of the curve.

Definition 2. Let Σ be a mirror curve, given by the locus {H(x, y) = 0} ⊂
(C∗)2. We define the associated framed curve Σf by the C

∗ reparameteri-
zation

Y = y, X = xyf . (2.23)

The framed curve is given by the locus {Hf (X, Y ) = 0} ⊂ (C∗)2, and it
depends on a new parameter f , known as framing.
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Remark. Note that framing may seem a bit ad hoc, but as we will see it is
rather crucial.

Example 5. The mirror curve to C
3 is (2.20). The framed curve Σf is then

Σf = {1 + XY −f + Y = 0} ⊂ (C∗)2, (2.24)

or equivalently

Σf = {X + Y f + Y f+1 = 0} ⊂ (C∗)2. (2.25)

2.3 Topological recursion

The remodeling conjecture is based on a particular topological recursion,
known as Eynard–Orantin recursion [15, 17]. In this section, we define the
Eynard–Orantin topological recursion.

2.3.1 Ingredients

We start with a smooth affine plane curve

C = {H(x, y) = 0} ∈ C
2. (2.26)

It defines a non-compact Riemann surface, which we also denote by C. x, y :
C → C are holomorphic functions on C. As usual, C can be compactified
to Ĉ by adding points at infinity, and x, y : Ĉ → C∞ become meromorphic
functions on the compact Riemann surface Ĉ.

We assume that the map x : C → C has only simple ramification points.
Let {a1, . . . , an} ∈ C be the set of simple ramification points of x. Locally,
at each aλ, λ = 1, . . . , n, the map is a double-sheeted covering, hence we
have a deck transformation map

sλ : Uλ → Uλ, (2.27)

which is defined locally in a neighborhood Uλ of aλ. The deck transformation
map means that

x(t) = x(sλ(t)) (2.28)

for some local coordinate t near aλ.
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The type of objects that we will be interested in are meromorphic
symmetric differentials. Let M1

C be the sheaf of meromorphic one-forms
on C. A degree n meromorphic differential Wn(p1, . . . , pn) is a section

Wn(p1, . . . , pn) ∈ H0

(
Cn,

n⊗

i=1

π∗
i M

1
C

)
, (2.29)

where Cn is the Cartesian product of n copies of C, and the πi, i = 1, . . . , n
are the projections on each individual factor. In local coordinates zi := z(pi),
pi ∈ C, i = 1, . . . , n a degree n differential can be written as1

Wn(p1, . . . , pn) = wn(z1, . . . , zn)dz1 · · · dzn, (2.30)

where w(z1, . . . , zn) is meromorphic in each variable.

To define the recursion, we need to introduce a particular degree 2 differ-
ential.

Definition 3. We define W 0
2 (p1, p2) to be the fundamental normalized

bi-differential [19, p. 20] which is uniquely defined by the conditions:

• It is symmetric, W 0
2 (p1, p2) = W 0

2 (p2, p1).
• It has its only pole, which is double, along the diagonal p1 = p2, with

no residue; its expansion in this neighborhood has the form

W 0
2 (p1, p2) =

(
1

(z1 − z2)2
+ regular

)
dz1 dz2. (2.31)

• It is normalized by requiring that its periods about a basis of A-cycles
on C vanish.2

Example 6. For C = P
1, W 0

2 is simply the Cauchy differentiation kernel:

W 0
2 (p1, p2) =

dz1 dz2

(z1 − z2)2
. (2.32)

Having now defined the main ingredients, we can introduce the Eynard–
Orantin recursion.

1For simplicity, we will omit the tensor product symbol ⊗ between the differentials.
2W 0

2 (p1, p2) has also been called Bergman kernel in the literature. It is the second-order
derivative of the log of the prime-form on C [19].
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2.3.2 The Eynard–Orantin topological recursion

Let {W g
n} be an infinite sequence of meromorphic differentials W g

n(p1, . . . ,
pn) ∈ Mn

C for all integers g ≥ 0 and n > 0 satisfying the condition 2g −
2 + n ≥ 0. We say that the differentials with 2g − 2 + n > 0 are stable;
W 0

2 (p1, p2) ∈ M2
C is the only unstable differential.

Let us introduce the shorthand notation S = {p1, . . . , pn}. Then:

Definition 4. We say that the meromorphic differentials W g
n satisfy the

Eynard–Orantin topological recursion if:

W g
n+1(p0, S) =

n∑

λ=1

Res
q=aλ

Kλ(p0, q)

×

⎛

⎜⎝W g−1
n+2(q, sλ(q), S) +

∑

g1+g2=g
I∪J=S

W g1

|I|+1(q, I)W g2

|J |+1(sλ(q), J)

⎞

⎟⎠,

(2.33)

where Kλ(p0, q) is the Eynard kernel defined below. The recursion here is on
the integer 2g − 2 + n, which is why it is called a topological recursion. The
initial condition of the recursion is given by the unstable W 0

2 ∈ M2
C defined

above.

Definition 5. The Eynard kernel Kλ(p0, q) is defined, in local coordinate
q near aλ, by

Kλ(p0, q) =
1
2

∫ sλ(q)
q W 0

2 (p0, q
′)

ω(q) − ω(sλ(q))
, (2.34)

where ω(q) is the meromorphic one-form ω(q) = y(q)dx(q). Here, 1
dx(q) is

the contraction operator with respect to the vector field
(

dx
dq

)−1
∂
∂q .

Definitions 3, 4 and 5 together define the Eynard–Orantin topological
recursion for the curve C.

2.3.3 The Fg ’s

We can also extend the construction to n = 0 objects, Fg := W g
0 , which are

just numbers. To construct the Fg, g ≥ 2 (the stable ones), we need an
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auxiliary equation. Let us first define

Φ(q) =
∫ q

0
ω(q′), (2.35)

which is the primitive of the one-form ω(q) for an arbitrary base point 0.
We then define:

Definition 6. The numbers Fg, g ≥ 2, are constructed from the one-forms
W g

1 (p) by:

Fg =
(−1)g

2 − 2g

n∑

λ=1

Res
q=aλ

Φ(q)W g
1 (q). (2.36)

Remark. We note that in the definition of Fg we introduced a factor (−1)g

which is absent in the original formalism [15]. This factor arises from the
fact that the generating parameter λ in Gromov–Witten theory, introduced
in (2.7), is related to the generating parameter � considered in the formalism
of [15] as � = −iλ. One way to see this identification arises from the fact
that MacMahon function (2.18) should be expressed in terms of a unified
parameter q = e−� = eiλ.

To summarize, given an affine curve C, the Eynard–Orantin topologi-
cal recursion constructs an infinite tower of meromorphic differentials W g

n

(p1, . . . , pn) (definition 4), and numbers Fg := W g
0 (Definition 6), for g ≥ 0,

n > 0, satisfying the stability condition 2g − 2 + n > 0. The recursion kernel
is the Eynard kernel (Definition 5), and the initial condition of the recursion
is the fundamental normalized bi-differential on C (Definition 3).

The Eynard–Orantin topological recursion appeared in the realm of
matrix models. It turns out that the large N limit of Hermitian matrix
models is encoded in an affine curve, known as the spectral curve of the
matrix model. If we choose C to be this spectral curve, then the meromor-
phic differentials W g

n and numbers Fg compute respectively the correlation
functions and free energies of the matrix model in its large N limit. This is
where the recursion comes from. For this reason, we will often refer to the
W g

n as correlation functions, and to the Fg as free energies.

However, it has been realized that the same topological recursion has
many applications in other areas of mathematics, in particular in Gromov–
Witten theory and mirror symmetry, which is the content of the “remodeling
conjecture” [5, 27] to which we now turn to.
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2.4 The remodeling conjecture

The remodeling conjecture [5, 27] is an application of the Eynard–Orantin
recursion in the world of Gromov–Witten theory and mirror symmetry.
Roughly speaking, the statement of the conjecture is that if we apply the
Eynard–Orantin recursion to the complex curve Σ mirror to a toric Calabi–
Yau threefold X, the Wn

g and Fg constructed by the recursion compute
respectively the open and closed genus g amplitudes of B-model topologi-
cal string theory on Σ, which are mirror to the open and closed generating
functions of Gromov–Witten invariants of X.

2.4.1 The Eynard–Orantin recursion on mirror curves

Let us now be a little more precise. We explained how to construct the
mirror curves Σ in Section 2.2. Now we want to apply the Eynard–Orantin
topological recursion, described in Section 2.3 to these mirror curves.

The first thing to note is that the mirror curves are slightly different from
the affine curves used to define the Eynard–Orantin recursion.

First, the mirror curves Σ are families of curves, depending on the param-
eters ri, i = 1, . . . , k. This means that the differentials W g

n will depend on
the ri, and the Fg will also be functions of the ri.

Second, the mirror curves are algebraic curves in (C∗)2 instead of C
2.

Nevertheless, we can still apply the Eynard–Orantin recursion, if we replace
the one-form ω(q) by its C

∗ version ω(q) = log y(q)dx(q)
x(q) .3 This being said,

the fact that the mirror curves are in (C∗)2 has important consequences
for properties of the meromorphic differentials and free energies constructed
through the recursion.

2.4.2 Statement of the conjecture

We can now state the remodeling conjecture more precisely. Its statement
could be split in two parts:

Conjecture 1 (Remodeling conjecture [5, 27]). Let Σf be the framed
mirror curve to a toric Calabi–Yau threefold X.

(1) The free energies Fg constructed by the Eynard–Orantin recursion are
mapped by the mirror map to the genus g generating functions of
Gromov–Witten invariants of X.

3Equivalently, we could work in exponential variables, in which case the one-form would
remain ydx.
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(2) The correlation functions Wn
g are mapped by the open/closed mir-

ror map to the generating functions of framed open Gromov–Witten
invariants.

Remark. Note that we did not define open Gromov–Witten invariants in
this paper; henceforth we will concentrate on the first part of the conjecture,
involving the Fg and the standard Gromov–Witten invariants.

The conjecture has been tested computationally for many toric geome-
tries (see for instance [5,6,8,27]). For the simplest case X = C

3, it has been
proved that the correlation functions obtained through the recursion repro-
duce the topological vertex calculation [9, 36, 37]. A proof for the resolved
conifold is provided in [10] (although it does not address the constant terms).
A general proof of the conjecture (aside from constant terms again) was out-
lined in [12, 13], although a few gaps remain. The special case of Hurwitz
numbers [7], which can be seen as a consequence of the remodeling conjec-
ture, has been proved in [4, 14].

2.4.3 Constant maps

However, one subtle point was not addressed carefully in the original conjec-
ture and subsequent work. According to the remodeling conjecture, the free
energies Fg should be mapped to the generating functions of Gromov–Witten
invariants. As we saw in Section 2.1, the leading term in the generating func-
tions of Gromov–Witten invariants Fg correspond to the contribution from
constant maps with β = 0, Ng,0; see (2.13). Then one could ask:

Question. Is the remodeling conjecture true for the whole free energies Fg,
including the constant terms, or just for the reduced free energies F β �=0

g ?
In other words, are the Fg constructed from the Eynard–Orantin recursion,
when we set the parameters ri = 0, giving the same constant terms Ng,0 as
in Gromov–Witten theory?

As far as we are aware, all the checks and proofs of the remodeling con-
jecture so far only involved non-constant terms, since they compared with
the topological vertex, which only computes the reduced Gromov–Witten
theory. In this paper we argue that the answer to the above question is a
surprising yes: the Fg constructed by the recursion, miraculously, compute
precisely the constant terms in Gromov–Witten theory ! This is surprising
for various reasons, as mentioned in the introduction. However interestingly,
it turns out that it is due to the particular geometry of mirror curves. Let
us now see how it goes.
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3 Contributions for constant maps

3.1 The role of the ramification points

Before we address the computation of constant terms for general toric
Calabi–Yau threefolds, we need to understand the geometry of mirror curves
a little better, and the relation between this geometry and the form of the
Eynard–Orantin recursion. One particular thing which is rather puzzling
is the role of the ramification points of the x-map. Those are fundamental
from the recursion point of view, but seem to come out of nowhere from
a mirror symmetry standpoint. Let us now see how they can interpreted
geometrically.

Recall that a mirror curve Σ is an algebraic curve in (C∗)2; its associated
Riemann surface has a certain number of punctures.

Lemma 1. Let Σ be a curve mirror to a toric Calabi–Yau threefold X. Let
n be the number of ramification points (which are all simple) of the x-map
x : Σ → C

∗. Assume that the x-map is a branched covering. Then

n = χ(X) = number of torus fixed points of X. (3.1)

In particular, the number of ramification points does not depend on the degree
of the x-map.

Proof. The lemma is a consequence of the Riemann–Hurwitz formula. Recall
that given a branched covering f : X → Y between (not necessarily com-
pact) Riemann surfaces, the Riemann–Hurwitz formula tells us that

χ(X) = dχ(Y ) − b, (3.2)

where d is the degree of f, χ(X) and χ(Y ) are the topological Euler charac-
teristics, and b is the branching index. In our case, assuming that the map
x is a branched covering and that its ramification locus is composed of n
simple ramification points, we get

χ(Σ) = dχ(C∗) − n. (3.3)

However, χ(C∗) = 2 − 2g(C∗) − 2 = 0, hence

n = −χ(Σ). (3.4)

In particular, n does not depend on the degree d of the x-map.
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Now any Σ has a pair of pants decomposition, and χ(Σ) is equal to the
number of pair of pants times the Euler characteristic of a pair of pants (a
thrice punctured sphere), which is −1. However, recall that Σ can be seen
as fattening the toric diagram of X (see figure 1), hence each pair of pants
correspond to a trivalent vertex of the toric diagram. Therefore, if we let V
be the number of vertices in the toric diagram of X, we obtain χ(Σ) = −V .
Hence n = V = number of torus fixed points of X = χ(X). �
Remark. Note that this result is special to the case of curves in (C∗)2.
For affine curves in C

2 as originally considered by Eynard and Orantin, the
number of ramification points of course depends on the degree of the map,
as can be seen by applying Riemann–Hurwitz to that case.

So what we have found is that the ramification points of the x-map are in
one-to-one correspondence with the torus fixed points of X. Hence, taking
residues at the ramification points in the x-map seems to be a direct B-model
mirror the A-model localization of Gromov–Witten invariants with respect
to the torus action. It would be very nice to make this analogy more precise.

Moreover, what we have seen is that the ramification points are also
in one-to-one correspondence with the pair of pants in the decomposition
of the Riemann surface Σ; there is one ramification point on each pair of
pants. Therefore, it seems that there is a pair of pant decomposition built
in the residue process of the topological recursion. At each step of the
recursion, we are summing over residues at the ramification points; in other
words, we are summing over contributions from each pair of pants. This
also has an analog in the A-model; by the fattening prescription, the pair
of pants decomposition of Σ is equivalent to breaking the toric diagram
along its internal edges. However, in Gromov–Witten theory the topological
vertex theory is precisely built by gluing C

3 patches, which correspond to
decomposing the toric diagram along internal edges. Hence, the residue
process can be seen as an analog decomposition on the B-model side, where
the C

3 patch decomposition of X is replaced by a pair of pant decomposition
of Σ. We will make this remark more precise for constant terms in the
following.

Finally, note that there is a very important assumption included in the
statement of the lemma, which is that the x-map has to be a branched
covering; otherwise one cannot use Riemann–Hurwitz directly. However, is
this assumption satisfied for mirror curves? Interestingly, we can show that
it is satisfied for framed mirror curves Σf , but only for a generic choice of
framing f , as we prove below. However, there may exist a finite number
of values of f for which it is not satisfied. For these pathological choices
of framing, what happens is that the map fails to be a branched covering
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at a finite number of points in C
∗ (for instance it may not be surjective).

We can still apply Riemann–Hurwitz, but we first need to take care of these
points either by removing them or plugging in some punctures in Σ; the
result is then that the number of ramification points of the x-map becomes
less than χ(X).

As a consequence, it turns out that, as we will see, for these pathological
choices of framing the recursion does not produce the right free energies Fg.
This is rather striking, since, as explained in [5], the framing transformation
is a symplectic transformation (in the sense that it preserves the symplectic
form dx

x ∧ dy
y on (C∗)2), hence the Fg should be invariant under framing

transformations, according to [15–17]. What happens is that if we compute
the Fg for the framed curve Σf , treating f as a parameter, then the resulting
Fg do not depend on f . So they are invariant in this sense, but the calcu-
lation must be done treating f as a parameter to get the right answer. As
a result, framing becomes an essential part of the calculation, and can be
understood as some sort of “regularization” procedure for the mirror curve.

Let us now prove that the assumption is satisfied for framed mirror curves,
for a generic choice of framing.

Lemma 2. Let Σf be a framed mirror curve. Then, for generic choice of
framing f , the map x : Σf → C

∗ is a branched covering.

Proof. To construct the mirror curve, we do the reparameterization

(x, y) = (XY −f , Y ). (3.5)

The unframed curve always has the form

1 + x + y +
k∑

i=1

rix
miyni = 0, (3.6)

for some integers mi and ni. After the framing reparameterization, the curve
becomes

1 + XY −f + Y +
k∑

i=1

ri(XY −f )miY ni = 0. (3.7)

Let d be the degree of the map X : Σf → C
∗. The map will be a branched

covering if, after removing the set of branch points in C
∗ and the set of

ramification points in Σf , the resulting map is a covering. That is, for all
p ∈ C

∗ not in the branching locus, X−1(p) ∈ Σf consists in exactly d points.
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Generically, given a X the curve becomes a degree d polynomial in Y ,
hence the preimage generically consists in d points in Σf . However, the
X-map may fail to be a branched covering if for a given f , there exists a
X ∈ C

∗ such that either the term of highest or lowest degree in Y vanishes
(in the former case, we lose a point in the preimage, while in the latter
case one of the points in the preimage goes to Y = 0 which is a puncture of
Σf ). This will happen if there are two highest or lowest degree terms in Y
with different powers of X. It is easy to enumerate the possible such “bad”
choices of f , which depend on the particular integers mi and ni. The point
is that for any framed mirror curve, there is only a finite number of such
bad f ; hence the map is a branched cover for a generic f . �

Let us illustrate the role of framing with a simple example.

Example 7. As an example of this issue with framing, consider the framed
curve mirror to C

3, (2.25):

Σf =
{

H(X, Y ) := X + Y f + Y f+1 = 0
}
⊂ (C∗)2. (3.8)

The curve Σf has three punctures. Hence χ(Σf ) = 2 − 3 = −1, and since
χ(C3) = 1, we indeed have that χ(Σf ) = −χ(C3). We thus expect that the
X-map should have a single ramification point. For generic f , the ramifica-
tion point is given by the unique solution (in C

∗) of

∂H(X, Y )
∂Y

= Y f−1(f + (f + 1)Y ) = 0, (3.9)

that is,

Y∗ = − f

f + 1
, X∗ = ff (−1 − f)−1−f . (3.10)

However, this analysis fails for the choices of framing f = 0 and f = −1,
since the map X is not a branched covering anymore. In the case of f = 0,
the curve becomes

X + Y + 1 = 0. (3.11)

The point X = −1 ∈ C
∗ has no preimage in Σf under the X-map (the preim-

age would be (−1, 0), which is a puncture of Σf ), hence the map is not
surjective. Thus, it is not a branched covering. It is a branched covering
however from Σf to C

∗ \ {−1} (of course, it is one-to-one), hence X has no
ramification point.
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Similarly, for f = −1, the curve becomes

XY + 1 + Y = 0. (3.12)

Again, the point X = −1 ∈ C
∗ has no preimage in Σf . So we lose a puncture

again, and the X-map has no ramification point.

It turns out that the mirror C
3 curves are most often encountered in the

literature in the form (3.11) or (3.12), which correspond to these bad choices
of framing. Similarly, typical representations of the conifold curve (2.21), or
other curves considered in the literature, often correspond to pathological
choices of framing. As we discuss in Section 4.2, for such bad choices of
framing the topological recursion does not produce the correct free energies.

Now that we understand the role of the ramification points and the rela-
tion with the pair of pants decomposition of the mirror curve, let us move
on to the study of constant terms.

3.2 The simplest toric Calabi–Yau threefold: C
3

We start with the simplest toric Calabi–Yau threefold, X = C
3. In this

case, the only contributions in Gromov–Witten theory are given by con-
stant maps. From a mirror symmetry point of view, there is no Kähler
parameters, hence there is no r-parameter in the mirror curve (that is, the
mirror curve is really a curve, not a family of curves). So the question in
Section 2.4.3 translates in this case into the question whether the Fg com-
puted by the recursion give precisely the genus g Gromov–Witten invariants
Ng,0 for constant maps to C

3.

3.2.1 Calculation of the low genus invariants

Let us apply the topological recursion to the mirror curve of C
3. As explained

above, we need to used the regularized (or framed) mirror curve, given by
(2.25).

ΣC3
= {H(X, Y ) := X + Y f + Y f+1 = 0}. (3.13)

From (3.13) we determine a dependence

Y (X) = −1 +
∞∑

k=1

(−1)k(f+1) (kf + k − 2)!
(kf − 1)!k!

Xk. (3.14)
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Solving the equation ∂H(X,Y )
∂Y = 0, we find a single ramification point at:

X∗ = ff (−1 − f)−1−f , Y∗ = − f

1 + f
. (3.15)

Let us introduce a local coordinate p in the neighborhood of the branch
point Y∗

Y = Y∗ + p, (3.16)

The conjugate point Y := s∗(Y ) obtained from the deck transformation near
the ramification point a∗, that is X(Y ) = X(Y ), can be found in a series
expansion

Y = Y∗ − p +
2(f2 − 1)p2

3f
− 4(f2 − 1)2p3

9f2

+
2(1 + f)3(−22 + 57f − 57f2 + 22f3)p4

135f3
+ O(p5). (3.17)

The primitive Φ(p) of the one-form ω = log Y dX
X , as defined in (2.35), can

be determined in the exact form

Φ(p) =
f

2

(
log

(
p − f

1 + f

))2

+ log
(

p − f

1 + f

)
log

(
1 + p + fp

1 + f

)

+ Li2

(
f − p − fp

1 + f

)
. (3.18)

The curve (3.13) has genus zero and so the fundamental normalized bi-
differential is simply the Cauchy differentiation kernel (2.32). The Eynard
kernel (2.34) is found in a series expansion as

K(p, q) =
(
− f2

2(1 + f)4p2 q
− f(f − 1)

2(1 + f)3p2
(3.19)

+
f
(
4(1 + f)2p2 + 2(1 − f2)p − 3f

)
q

6(1 + f)4p4
+ O(q2)

)
dp

dq
. (3.20)

With all the above ingredients we can follow the recursion procedure. The
first correlators that we find read

W 1
1 (p) = −p2 + f4p2 + 2f3p(−1 + 2p) + 2fp(1 + 2p) + f2(−3 + 6p2)

24(1 + f)4p4
dp,

(3.21)
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W 0
3 (p1, p2, p3) =

f2

(1 + f)4p2
1p

2
2p

2
3

dp1 dp2 dp3, (3.22)

and the others are more complicated. Having found W 2
1 (p) we determine

F2 = −1
2

Resp→0Φ(p)W 2
1 (p) =

1
5760

. (3.23)

Similarly, having found W 3
1 (p), we determine

F3 =
1
4

Resp→0Φ(p)W 3
1 (p) = − 1

1451520
. (3.24)

Continuing calculations (restricting to fixed framing f = 2 for higher genera)
we find

F4 =
1

87091200
, F5 = − 1

2554675200
, (3.25)

F6 =
691

31384184832000
, F7 = − 691

376610217984000
. (3.26)

3.2.2 Comparison and conjecture

As we saw in Section 2.1, the free energies for X = C
3, which are just given

by the constant contributions Fg = Ng,0, satisfy:

Fg =
1
2

(−1)g × |B2g||B2g−2|
2g(2g − 2)(2g − 2)!

, (3.27)

for g ≥ 2. One can immediately check that the Fg that we obtained above
agree with this general formula.

From these calculations we propose:

Conjecture 2. Let Σf be the framed curve mirror to X = C
3. Then the

free energies obtained through the Eynard–Orantin recursion are given by:

Fg =
1
2

(−1)g × |B2g||B2g−2|
2g(2g − 2)(2g − 2)!

. (3.28)

This is highly non-trivial. We cannot prove this conjecture at the moment,
but we hope to report on it. If the conjecture is true, it would complete the
proof of the full remodeling conjecture for the case of X = C

3; the second
part of the conjecture, dealing with the correlation functions, has already
been proved by Chen and Zhou [9,36]. Note that it may be possible to prove
this conjecture using very recent results of Eynard [11].
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3.3 Contributions for constant maps for all toric Calabi–Yau
threefolds

In this section, we argue that for a general toric Calabi–Yau threefold X,
the constant terms Ng,0 are equal to n times the Fg of the vertex, where n
is the number of ramification points. In other words, we conjecture that:

Conjecture 3. Let X be a toric Calabi–Yau threefold, and Σf its framed
mirror curve. Let FX

g be the free energies computed from the Eynard–
Orantin recursion applied to Σf . Then

lim
ri→0

FX
g = nF C3

g , (3.29)

where the F C3

g are the free energies computed from the curve mirror
to C

3.

Thus, for constant terms we obtain a pair of pants decomposition of
the free energies, where each pair of pants contributes a single copy
of F C3

g .

Note that Conjecture 2 and 3 together imply that for all toric Calabi–Yau
threefolds X, the constant terms in the Fg computed by the recursion are
the same ones as in Gromov–Witten theory (refer to Section 2.1.3).

We checked this conjecture computationally, at low genus, in various toric
geometries. In what follows, we will also give a general argument support-
ing this conjecture, and then prove it in the simple case when X is the
resolved conifold. We plan to report on a proof for arbitrary toric geometry
soon.

3.3.1 Ramification points versus C
3 patches — examples

In this subsection we illustrate, firstly, a correspondence between ramifica-
tion points and torus fixed points (or equivalently toric vertices used to built
a toric diagram). Secondly, we argue that, as a consequence of this fact, each
C

3 patch — or pair of pants — contributes a factor of FC3

g to the constant
part of the free energy.

We recall that a toric diagram is dual to the Newton polygon, which
can be read off from the equation of the mirror curve. After appropriate
triangulation of the Newton polygon, it consists of triangular patches which
are in one-to-one correspondence with trivalent vertices of the toric diagram.
From Lemma 1 proved in Section 3.1, these patches and vertices are also in
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one-to-one correspondence with ramification points of the mirror curve (for
generic framing). Below we demonstrate how, upon relevant rescalings of
variables in the mirror curve equation, and taking infinite limit of Kähler
parameters, one can get rid of all but one ramification points, and reduce
the curve to the local neighborhood of such a single ramification point of
his or her choice. In this limit the remnant of the original curve is just
the mirror C

3 curve, whose ramification point can be identified with the
single ramification point which survived the above limit. This is similar to
the subtlety described after Lemma 1 in Section 3.1; however, then losing a
ramification point was a feature of a pathological choice of framing, while
presently it is a natural consequence of the limit which we consider, and the
fact that in this limit the corresponding parameters Q are set to zero in the
mirror curve equation.

Let us consider now the behavior of constant contributions Zβ=0 to the
partition function in the above limit. By definition these contributions do
not change when parameters Q are varied. However they will change dis-
continuously when, in the above decoupling limit, some parameters Q are
set strictly to zero, so that we lose corresponding ramification points. As we
argue below, we can take such a decoupling limit in various ways, in order
to focus on local neighborhood of a chosen ramification point. As each such
neighborhood can be identified with the mirror C

3 curve, its contribution
to the total partition function will be that of FC3

g . If we take a decoupling
limit in which such a ramification point is not lost, it will still contribute
F C3

g . If we take a limit so that we lose this point, the corresponding FC3

g

factor will drop out of the computation. We can also start with a single C
3

mirror curve, whose free energy is FC3

g , and consider the opposite process, in
which we turn on certain (combination of) Q parameters, and build up more
general curve, by bringing in additional ramification points to the picture.
Each such new ramification point will contribute FC3

g to the free energy
of the more general curve. In consequence, if the mirror curve we wish to
consider has n ramification points, in total they will contribute nFC3

g to the
partition function, in agreement with (3.29).

Instead of being general, we illustrate now how this mechanism works in
some examples. To start with we note that even for a single C

3 patch, whose
toric diagram involves a single trivalent vertex and the Newton polygon
consists of a single triangular patch, the form of the corresponding single
branch point depends on a particular form of the mirror curve. For example,
for the curve H(x, y) = 1 + x + y = 0 given in (2.20), the Newton polygon
and the dual toric diagram are shown in the left panel in figure 2. For
another parametrization H ′(x, y) = x + y + xy = 0 the Newton polygon and
the toric diagram are shown in the right panel. Regularizing these curves
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Figure 2: Toric diagrams for C
3, corresponding to H(x, y) and H ′(x, y) dis-

cussed in the text, involve a single trivalent vertex. There is a single corre-
sponding branch point, whose regularized form, for the two forms of C

3 in
our example, is presented in (3.31).

by introducing framing x → XY f we get, respectively4

H−f (X, Y ) = 1 + Y + XY f , H ′
−f (X, Y ) = Y + XY f + XY f+1, (3.30)

and the corresponding ramification points are characterized by

Y∗ =
f

1 − f
, Y ′

∗ =
1 − f

f
. (3.31)

These two curves H = 0 and H ′ = 0 are related by a (multiplicative) sym-
plectic transformation (X, Y ) �→ (X−1, Y −1). Therefore their free energies
should be the same and equal to F C3

g ; we also checked that this is the case
by explicit computations.

Let us discuss now the behavior of ramification points in case of the coni-
fold. We will also consider two forms of such curve, however related by a very
simple symplectic transformation, involving just a multiplication of X or Y
by a constant. Therefore, even though the equations for two such curves are
different, there is an obvious one-to-one correspondence between their rami-
fication points. To start with, we introduce the notation X = rxy−1, Y = y
and Q = r−1 for the curve in (2.21), so that the mirror curve equation takes
the form H̃(X, Y ) = 1 + X + Y + QXY = 0. The Newton polygon consists
of two triangular patches, and the dual toric diagram involves two triva-
lent vertices, as shown in figure 2. Regularizing this curve by introducing

4Note that this corresponds to the framing −f in definition (2.23).
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Figure 3: Toric diagram for the conifold. By appropriate reparameteriza-
tion of X and Y in the mirror curve equation, and subsequently sending
the Kähler parameter Q → 0, we can focus on either C

3 patch highlighted
in gray, reproducing one of the C

3 patches in figure 2. One of the two ram-
ification points of the conifold in (3.34) or (3.37) runs away in Q → 0 limit,
while the remaining ramification point reduces to the relevant C

3 branch
point in (3.31).

framing X → XY f we get

H̃−f (X, Y ) = 1 + Y + XY f + QXY f+1, (3.32)

and there are two ramification points,

Ỹ∗,± =
1 − f − Q − fQ ±√−4f2Q + (−1 + f + Q + fQ)2

2fQ
, (3.33)

whose expansion in small Q takes form

Ỹ∗,+ =
f

1 − f
+

fQ

(1 − f)3
+ O(Q2), Ỹ∗,− =

1 − f

fQ
+

1
f(f − 1)

+ O(Q2).

(3.34)

We see that for Q → 0, the curve H̃−f (X, Y ) reduces to the C
3 case H−f

(X, Y ) in (3.30), and the ramification point Ỹ∗,+ reduces to the C
3 ramifica-

tion point Y∗ in (3.31), while Ỹ∗,− runs away from the picture. In this limit,
only one trivalent vertex survives, and the corresponding dual triangular
patch, shown in gray in the left panel in figure 3, reduces to the C

3 patch
in the left panel in figure 2. In consequence, after this limit has been taken,
the remaining constant contribution to the free energy will be just the FC3

g

of the corresponding ramification point Ỹ∗,+.

We can also focus on the other patch of the conifold diagram, shown in
gray in the right panel in figure 3. To achieve that we introduce rescaled
coordinates X ′ = QX, Y ′ = QY , so that H̃(X, Y ) = 1 + X + Y + QXY �→
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H̃ ′(X ′, Y ′) = Q + X ′ + Y ′ + X ′Y ′. Regularizing this resulting curve by
introducing framing we get

H̃ ′
−f (X ′, Y ′) = Q + Y ′ + X ′Y ′f + X ′Y ′f+1, (3.35)

and the two corresponding ramification points read now

Ỹ ′
∗,± =

1 − f − Q − fQ ±√−4f2Q + (−1 + f + Q + fQ)2

2f
. (3.36)

In the small Q limit, the curve H̃ ′
−f (X, Y ) reduces to H ′

−f (X, Y ) in (3.30),
while the ramification points have the expansion

Ỹ ′
∗,+ =

fQ

1 − f
+

fQ2

(1 − f)3
+ O(Q2), Ỹ ′

∗,− =
1 − f

f
+

Q

(f − 1)f
+ O(Q2),

(3.37)

and now it is Ỹ ′∗,− which reduces to Y ′∗ in (3.31), while Ỹ ′∗,+ runs away. Cor-
respondingly, the surviving, highlighted part of the conifold toric diagram
in the right side of figure 3 reduces to the C

3 patch in the right panel in
figure 2. In this representation, after the decoupling limit has been taken,
the remaining contribution to the free energy will also be that of FC3

g for
the remaining ramification point Ỹ ′∗,−.

We therefore showed that in appropriate decoupling limits the conifold
curve reduces to some version of the C

3 curve, and correspondingly each of
its two ramification points contributes one factor of FC3

g . Therefore such
contributions must be present simultaneously if the decoupling limits is not
taken, and the constant contributions of the conifold mirror curve must be
equal to 2F C3

g , in agreement with (3.29). For the conifold we prove that this
is indeed the case in the next section.

It is also clear that the above mechanism can be generalized to arbitrary
toric manifolds. For example, the local P

1 × P
1 geometry is encoded in the

mirror curve

Ĥ−f (X, Y ) = 1 + Y + XY f +
Q1

XY f
+

Q2

Y
, (3.38)

with Q1 and Q2 representing Kähler parameters of the two independent
two-cycles. There are 4 ramification points, and the corresponding Newton
polygon and toric diagram, shown (for f = 0) in figure 4, consist respectively
of four triangles and four trivalent vertices. By appropriate rescaling of X
and Y and subsequently taking the limit Q1, Q2 → 0, one can focus on any
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Figure 4: Toric diagram for local P
1 × P

1 geometry, which reduces to the C
3

(corresponding to the gray triangle patch) in the limit of vanishing Kähler
parameters.

of the four patches of C
3. In particular, taking Q1, Q2 → 0 directly in (3.38),

the curve (3.38) reduces to Hf (X, Y ) in (3.30). At the same time we focus
on the patch highlighted in gray in figure 4, which is nothing but the patch
in the left panel in figure 2, and the surviving ramification point reduces
to Y∗ in (3.31). This ramification point contributes one factor of FC3

g to
the partition function. Considering various decoupling limits, analogously
as in the conifold case, we can focus on the neighborhood of each of the four
ramification points of Ĥf , and in consequence the total constant part of the
free energy will be given by 4F C3

g .

For a general toric geometry, whose toric diagram consists of n vertices
and the corresponding mirror curve has (for generic framing) n ramification
points, the total constant part of the free energy would be equal to nFC3

g ,
in agreement with (3.29).

3.3.2 Proof for the resolved conifold

Let us now prove Conjecture 3 when X is the resolved conifold.

Lemma 3. Let X = OP1(−1) ⊕ OP1(−1) be the resolved conifold, and Σf

its framed mirror curve. Then

lim
r→0

FX
g = 2F C3

g . (3.39)
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Proof. The framed curve mirror Σf to the conifold is

Hf (X, Y ) := 1 + XY −f + Y + rXY −f−1 = 0. (3.40)

It can be parameterized by

Y = t, X = − tf+1(1 + t)
r + t

. (3.41)

This is a genus 0 curve with four punctures. It has two ramification points
a0, a1 ∈ Σf at

a0 =
−2r − f(r + 1) +

√
r − 1

√
(r − 1)f2 + 4rf + 4r

2(f + 1)
, (3.42)

a1 = −2r + f(r + 1) +
√

r − 1
√

(r − 1)f2 + 4rf + 4r

2(f + 1)
. (3.43)

We want to compute the Fg by

Fg =
(−1)g

2 − 2g

1∑

λ=0

Res
t=aλ

Φ(t)W g
1 (t), (3.44)

and take the r → 0 limit.

Note that in the r → 0 limit, we obtain that a1 → 0 and a0 → − f
f+1 ,

the latter being the ramification point of the curve mirror to C
3. It is also

clear that in the limit r → 0, the curve becomes just the curve mirror to C
3

(compare with (3.13)). Thus, it is clear that

lim
r→0

(
(−1)g

2 − 2g
Res
t=a0

Φ(t)W g
1 (t)

)
= F C3

g . (3.45)

The question is what happens for the residue at the other ramification point
a1, since at r → 0 we have that a1 → 0, which is a puncture of the Riemann
surface (hence Φ(t) is not well defined there because of logarithms).

However, it turns out that the curve Σf has a nice symmetry which comes
to the rescue. Consider reparameterizing the curve by

w =
a0a1

t
=

r

t
, (3.46)

where we used the fact that a0a1 = r. This reparameterization clearly
exchanges the two ramification points, i.e., t = a1 corresponds to w = a0
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and vice-versa. Using this reparameterization, we can write

(−1)g

2 − 2g
Res
t=a1

Φ(t)W g
1 (t) =

(−1)g

2 − 2g
Res
w=a0

Φ
(a0a1

w

)
W g

1

(a0a1

w

)
. (3.47)

However, it turns out that the curve behaves very nicely under this repa-
rameterization. Indeed, we have that

Y (t) =Y
(a0a1

w

)
= rY −1(w), (3.48)

X(t) =X
(a0a1

w

)
= rfX−1(w). (3.49)

However, this is just a transformation that preserves the symplectic form

dX

X
∧ dY

Y
. (3.50)

Moreover, it preserves the ramification points of X, hence the deck transfor-
mation, etc. So the recursion kernel is the same in both t and w coordinates,
thus, the correlation functions should be the same. What this means is that
we have, for the one-point correlation functions,

W g
1 (t) = W g

1

(a0a1

w

)
= W g

1 (w). (3.51)

It is easy to check computationally that this is indeed satisfied.

Moreover, we know that the one-form ω transforms as:

ω(t) = log Y (t)
dX(t)
X(t)

(3.52)

= log Y
(a0a1

w

) dX
(

a0a1
w

)

X
(

a0a1
w

) (3.53)

= − (log(r) − log Y (w))
dX(w)
X(w)

(3.54)

= ω(w) − log(r)
dX(w)
X(w)

. (3.55)

Thus, we obtain that

Φ(t) = Φ
(a0a1

w

)
(3.56)

=
∫ a0a1/w

0
ω(z) (3.57)
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=
∫ w

∞
ω
(a0a1

u

)
(3.58)

=
∫ w

∞

(
ω(u) − log(r)

dX(u)
X(u)

)
(3.59)

= Φ(w) + cst − log(r) log X(w). (3.60)

Putting all this together, we obtain

(−1)g

2 − 2g
Res
t=a1

Φ(t)W g
1 (t) =

(−1)g

2 − 2g
Res
w=a0

Φ
(a0a1

w

)
W g

1

(a0a1

w

)
(3.61)

=
(−1)g

2 − 2g
Res
w=a0

(Φ(w) + cst − log(r) log X(w)) W g
1 (w).

(3.62)

W g
1 (w) has no residue at a0, hence the residue of the term (cst)W g

1 (w)
vanishes. It is also easy to prove (see for instance [15,17,33]) that

Res
w=a0

(log X(w)) W g
1 (w) = 0. (3.63)

Therefore, we get that

(−1)g

2 − 2g
Res
t=a1

Φ(t)W g
1 (t) =

(−1)g

2 − 2g
Res
w=a0

Φ(w)W g
1 (w). (3.64)

This means that the two residues in the calculation of Fg contribute exactly
the same term to Fg, that is,

Fg = 2
(−1)g

2 − 2g
Res
t=a0

Φ(t)W g
1 (t). (3.65)

Hence, from (3.45) we conclude that

lim
r→0

Fg = 2F C3

g . (3.66)

�
Remark. Note that what we proved for the conifold is much stronger than
Lemma 3. We proved that for every Fg, the two pairs of pants in the decom-
position of the curve Σf (i.e., the two ramification points) give precisely the
same contribution to the full Fg, not just for constant terms. Hence, there
really is a pair of pant decomposition here, at the level of the full free energy.
However, this is probably an artefact of the nice symmetry of the curve Σf ;
we expect this decomposition to hold only for constant terms for a general
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toric Calabi–Yau threefold. Note also that this lemma completes the proof
of the full remodeling conjecture for the conifold, since the reduced part was
proved in [10].

3.4 Beyond constant maps — remodeling conjecture for the total
free energy

At this point it is clear that a proper understanding of the remodeling con-
jecture (given in Section 2.4.2) should involve both constant contributions,
as well as non-constant contributions. In other words, our results strongly
support the claim, that the partition function computed by the topologi-
cal recursion reproduces the full Gromov–Witten partition function given in
(2.12). This claim follows by combining tests for non-constant contributions
already present in the literature, which we mentioned in the introduction,
with our results for constant contributions. It is instructive to illustrate this
claim in at least one example. Let us therefore consider the total term F2

for the resolved conifold.

Regarding constant contributions to F2, our results, in particular the
proof in Section 3.3.2, assert that they are given by twice the contribution
(2.14) (with g = 2). On the other hand, it is known that the non-constant
part of the free energies for the conifold, for g ≥ 2, are given by polyloga-
rithms:

F β �=0
g = (−1)g+1 B2g

2g(2g − 2)!
Li3−2g(Q). (3.67)

Therefore the total genus two Gromov–Witten free energy for the conifold
reads

FGW
2 =

1
2880

+
1

240
Li−1(Q). (3.68)

On the other hand, an explicit application of the topological recursion for
the conifold mirror curve results in

F2 =
1 + 10Q + Q2

2880(1 − Q)2
. (3.69)

Both these results indeed agree

FGW
2 = F2. (3.70)
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4 Discussion

In this paper, we studied the free energies constructed from the Eynard–
Orantin recursion for mirror curves. We showed that there is a pair of pants
decomposition built in the recursion, through the residue calculation at the
ramification points. We argued that the constant terms computed from the
recursion agree with the constant terms obtained in Gromov–Witten theory.
This follows from the pair of pant decomposition of the mirror curves. In
consequence, we extended the scope of the remodeling conjecture to the full
free energies.

This work however opens up a certain number of questions. Here are a
few:

4.1 Limit theorem

In [15, Section 8], limits of families of curves are also studied. Roughly
speaking, what they obtain is that the recursive construction of the Fg

commutes with the limit on the curve. Their setup is however different from
ours; they consider a limit where a branch point becomes singular.

In the case studied in this paper, what we obtained is that the limit
ri → 0 does not commute with the recursion. Indeed, if ΣX is the curve
mirror to X,

lim
ri→0

Fg[ΣX ] 
= Fg

[
lim
ri→0

ΣX

]
, (4.1)

by which we mean that the ri → 0 limit of the Fg of a given mirror curve
ΣX are not the same as the Fg of the curve with ri = 0. More precisely, it is
easy to see from the definition that for any mirror curve, after setting ri = 0
the curve ΣX reduces to the curve ΣC3

mirror to C
3. So Fg [limri→0 Σ] =

Fg[ΣC3
]. However, what we argued in the previous section is that

lim
ri→0

Fg[ΣX ] = nFg[ΣC3
], (4.2)

that is, there is an all important multiplicative factor of n, which is the
number of pair of pants in ΣX .

So in our context, the recursive construction does not commute with the
limit ri → 0. It would be interesting to compare more precisely with the
limit theorem of [15], even though the setups are different. It would also
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be interesting to see whether the kind of limit statement that we obtained
is a property of mirror curves, or whether it holds for general curves in C

∗,
using the relation with pair of pants decompositions.

4.2 Symplectic invariance

In [15–17] it is stated that the free energies Fg constructed from the recursion
are invariant under the group of transformations of the maps x and y that
preserve the symplectic form dx ∧ dy (in the C∗ context, the symplectic form
is dx

x ∧ dy
y ).

From the form of the recursion, invariance is clear for any transformation
which does not modify the ramification points of the x-map. The tricky
part of the statement is for transformations that do modify the ramification
points, in particular transformations that change the number of ramification
points. Invariance under these transformations was apparently shown in [16].

However, as we argued in Section 3.1, from our study of framing it became
clear that the Fg are not strictly invariant under framing transformations,
which is a particular type of symplectic transformations. If we treat f as
a parameter, then one can show that the Fg obtained from the recursion
do not depend on f . However, there exist specific choices of framing for
which the recursion does not produce the same Fg. This is because some
framing transformations change the number of ramification points, hence
accordingly change the constant terms of the Fg. A simple example was
shown in Example 7; for the choices of framing f = 0,−1, the X-map has
simply no ramification points, hence produces Fg that are trivially zero,
while for a generic choice of framing the Fg are surely non-zero.

As a result, we argued that we should treat the framing f as a parameter,
and see it as some sort of regularization procedure. In this sense, “symplectic
invariance” is somewhat restored since the Fg do not depend on f , but
strictly speaking the recursion produces different results for different choices
of framing.

It is then worth asking whether this is a consequence of the fact that
mirror curves are curves in (C∗)2, while the curves initially considered by
Eynard and Orantin were affine curves, and the proof of [16] may only apply
to the latter. Let us study this question further.

4.2.1 A counterexample

It turns out that a similar phenomenon that we encountered with framing
occur for much simpler curves, such as standard affine curves in C

2. Let
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us study a very simple counterexample to the statement that the Fg are
invariant under symplectic transformations.

Consider the affine curve

H(x, y) = y2 − yx + 1 = 0. (4.3)

This curve has been studied for instance in [32] (see also [33, Section 5.1]).
The x-map has two ramification points at (2, 1) and (−2,−1). The Fg can
be computed; they are the orbifold Euler characteristics of the moduli spaces
of genus g curves [32, Theorem 1]:

Fg = χ(Mg). (4.4)

In particular, they are clearly non-zero.

Now consider the symplectic transformation (x, y) �→ (x′, y′) = (y,−x),
which preserves dx ∧ dy = dx′ ∧ dy′. The curve becomes

G(x′, y′) = x′2 + x′y′ + 1 = 0. (4.5)

The x′-map has of course no ramification points, it is a one-to-one map.
Hence if we apply the recursion to this new x′-map, the free energies Fg

vanish identically! Clearly, they are not invariant under this particular sym-
plectic transformation, since they were non-vanishing in the original param-
eterization. The problem is that the transformation changes the number of
ramification points.

4.2.2 SPP geometry

It should be noted that this problem with symplectic transformations does
not appear only when the newly parameterized curve has no ramification
points. It also appears when the number of ramification points changes but
remains non-zero.

For instance, consider the mirror curve to the SPP geometry studied
in [35] in Section 3.2, which is of the form Q1y

2 + xy + x + (1 + Q1Q2)y +
Q2 = 0. The x-map from this mirror curve has two ramification points. We
computed the Fg from this curve, and extracted the constant terms. What
we obtained is that the constant terms Ng,0 are twice the Fg of C

3, consistent
with the fact that there are two ramification points.

However, according to the general formulae in Gromov–Witten theory
(2.16), the constant terms Ng,0 should be three times the Fg of C

3, since the
Euler characteristic of the SPP geometry is χ(X) = 3.
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What happens is that the choice of framing in which the curve is presented
in [35] is one of these pathological choices of framing. It turns out that the
general framed curve has indeed three ramification points, the same number
as χ(X), as expected. Thus, for the framed curve we get the right constant
terms Ng,0, which indeed do not depend on the framing f . However, to
get the right answer one first needs to regularize the curve by introducing
framing; otherwise we do not get the right answer.

Remark. Indeed, for mirror curves, for any choice of parameterization such
that the number of ramification points is not equal to χ(X), we will not get
the right constant terms, from our results of the previous sections. However,
after regularizing the curve by introducing framing, the number of ramifi-
cation points will be equal to χ(X), and the constant terms will match the
expected numbers Ng,0 from Gromov–Witten theory.

4.2.3 Modify the recursion?

Of course, symplectic invariance is one of the most desirable property of the
Fg. However as we saw, there exist some symplectic transformations such
that the newly parameterized curve does not produce the same
invariants than the old curve. The examples that we gave all involve trans-
formations that change the number of ramification points. It would be
important to clarify which subgroup of transformations precisely are
problematic.

However, what would be even nicer is to modify the formulation of the
recursion in order to restore explicit symplectic invariance. That is, rewrite
the recursion such that for any two curves related by a symplectic trans-
formation, the Fg computed by the recursion are equal. Perhaps what one
needs to do is take into account explicitly the ramification points of both
the x and y map simultaneously, or projectivize the curve in P

2 in order to
work in a compact setup.
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