Groups acting freely on

Calabi-Yau threefolds embedded in a product of del Pezzo surfaces

Gilberto Bini ${ }^{1}$ and Filippo F. Favale ${ }^{2}$
${ }^{1}$ Università degli Studi di Milano - Dipartimento di Matematica "F. Enriques" - Via C. Saldini, $50-20133$ Milano, Italy gilberto.bini@unimi.it
${ }^{2}$ Università degli Studi di Pavia (Italy) - Dipartimento di Matematica "F. Casorati" - Via Ferrata, 1 - 27100 Pavia filippo.favale@unipv.it

Abstract

In this paper, we investigate quotients of Calabi-Yau manifolds Y embedded in Fano varieties X, which are products of two del Pezzo surfaces - with respect to groups G that act freely on Y. In particular, we revisit some known examples and we obtain some new Calabi-Yau varieties with small Hodge numbers. The groups G are subgroups of the automorphism groups of X, which is described in terms of the automorphism group of the two del Pezzo surfaces.

[^0]
Contents

1 Introduction 889
2 Preliminaries 892
3 Necessary conditions 894
4 Known examples 897
$4.1 \quad d P_{6} \times d P_{6}$ with maximal order 12 898
$4.2 d P_{3} \times d P_{3}$ with maximal order 3 900
5 New examples 902
$5.1 \quad\left(\mathbb{P}^{\mathbf{1}} \times \mathbb{P}^{\mathbf{1}}\right) \times\left(\mathbb{P}^{\mathbf{1}} \times \mathbb{P}^{\mathbf{1}}\right)$ with maximal order 16 903
$5.2 d P_{4} \times d P_{4}$ with maximal order 8 906
$5.3 \mathbb{P}^{2} \times \mathbb{P}^{2}$ with maximal order 9 909
$5.4 d P_{5} \times d P_{5}$ with maximal order 5 910
5.5 $\mathbb{P}^{\mathbf{1}} \times \mathbb{P}^{\mathbf{1}} \times d P_{4}$ with maximal order 4 913
5.6 Other similar examples 914
6 Results of non-existence 915
6.1 $d P_{8} \times S$, with $S \in\left\{\mathbb{P}^{1} \times \mathbb{P}^{1}, d P_{8}, d P_{6}, d P_{4}, d P_{2}\right\}$ 915
6.2 $d P_{7} \times d P_{7}$ with estimated maximal order 7 917
$6.3 d P_{6} \times d P_{3}$ with estimated maximal order 9 918
7 On the relation between $\operatorname{Aut}\left(S_{1}\right) \times \operatorname{Aut}\left(S_{2}\right)$ and $\operatorname{Aut}\left(S_{1} \times S_{2}\right)$ 923
8 List of the threefolds obtained 931
Acknowledgments 932
References 933

1 Introduction

In $[13,14]$ Tian and Yau discover a new Calabi-Yau manifold with Euler characteristic equal to -6 . Let us briefly explain their seminal example. To begin with, they consider the product X of two cubic Fermat surfaces in $\mathbb{P}_{\mathbb{C}}^{3}$. Next, they pick a smooth hyperplane section Y in X, which is invariant with respect to a group G isomorphic to the cyclic group of order 3. By adjunction and by Lefschetz's Hyperplane Theorem, Y turns out to be a smooth Calabi-Yau threefold, i.e., a smooth compact Kähler threefold with trivial canonical bundle and no holomorphic p-forms for $p=1,2$. The Euler characteristic of Y is -18 and the two significant Hodge numbers $h^{1,1}(Y)$ and $h^{1,2}(Y)$ are 14 and 23 , respectively. To reduce to Euler characteristic and the Hodge numbers, Tian and Yau take the quotient of Y with respect to G that turns out to act freely on it. The quotient manifold Y / G is a Calabi-Yau variety with Hodge numbers $h^{1,1}=6$ and $h^{1,2}=9$.

In recent years, physicists have focused on Calabi-Yau manifolds with small Hodge numbers; see, for instance, $[2-4,6,9]$. In fact, imagine to plot the distribution of Calabi-Yau varieties on a diagram with variables the Euler characteristic $\chi(Y)$ (on the horizontal axis) and the height $h(Y):=$ $h^{11}(Y)+h^{12}(Y)$ (on the vertical axis). Fix a pair $\left(\chi_{0}, h_{0}\right)$ of positive integers such that χ_{0} is even and $-2 h_{0} \leq \chi_{0} \leq 2 h_{0}$. For $h_{0} \leq 30$, it turns out that there are still a lot of missing examples of Calabi-Yau varieties with Euler characteristic χ_{0} and height h_{0}. The example in $[13]$ is even more significant because the Euler characteristic is -6 . In general, special attention is given to those Calabi-Yau manifolds that have Euler characteristic 6 in absolute value since they correspond to three-generation families (see, for instance, [3]).

Remarkably, the example in [13] can be generalized in the following way. The two cubic Fermat surfaces are examples of degree 3 del Pezzo surfaces, i.e., smooth surfaces with ample anticanonical divisor which can be obtained as the blow-up of $\mathbb{P}_{\mathbb{C}}^{2}$ at six points in general position. A first generalization in this direction was given by Braun, Candelas and Davies in [3]. In that paper, they discover a new Calabi-Yau manifold with Euler characteristic -6 and small Hodge numbers. They replace the two Fermat surfaces in $\mathbb{P}_{\mathbb{C}}^{3}$ by two del Pezzo surfaces of degree 6 and come up with a group of order 12 that acts freely on a suitable hyperplane section of the product.

In this paper, we generalize the examples mentioned above even further and we put them in a more general context. Indeed, let us consider two suitable smooth del Pezzo surfaces S_{1} and S_{2}. The product X is a smooth Fano four-fold, i.e., $-K_{X}$ is ample. In X, we pick a smooth threefold Y, which
is in $\left|-K_{X}\right|$. As pointed out by the example in the Introduction in [11] this requires some work: in fact, for some choice of the two del Pezzo surfaces it is not even possible. Moreover, we pick a finite group G in $\operatorname{Aut}\left(S_{1} \times S_{2}\right)$ that acts freely on Y so that the quotient variety is a Calabi-Yau manifold. Since the Euler characteristic $\chi(Y)$ is negative, it is easy to verify that the height of Y / G is less than the height of Y for any non-trivial group G. Within this setup, we obtain the two examples mentioned above; further, we find new Calabi-Yau manifolds with small Hodge numbers. The smoothness and the free action of G on a suitable Y are proved as follows. We pick a group G that has only finitely many fixed points on X. We decompose the representation of G on $H^{0}\left(X,-K_{X}\right)$ as a direct sum $\oplus V_{i}$ of irreducible subrepresentation. We consider a subspace W such that for every $g \in G$ and every $s \in W, g^{*}(s)=\lambda_{g} s$ for some $\lambda_{g} \in \mathbb{C}^{*}$, i.e., for every $g \in G, W$ is an eigenspace for g^{*}. We pick a section $s \in W$, if there are some, so that the corresponding zero locus does not intersect the fixed locus of G. Next, we look at the base points of the subsystem $W \leq H^{0}\left(X,-K_{X}\right)$. In case there are some, we take a generic section and prove that the base points are smooth. This is done by direct computation with MAPLE. A Bertini-type argument yields the existence of a smooth threefold Y in X on which G acts freely.

In Section 5, we present the examples we obtain case by case. Except for the last subsection of that section, all the examples have height less than 20. Unfortunately, we do not obtain any new three-generation manifolds, i.e., a manifold with $|\chi(Y)|=6$. Moreover, in Section 8, you may find all the examples of quotients of Calabi-Yau threefolds Y embedded in $S_{1} \times S_{2}$ by groups, which are of maximal order. In other words, we take the quotient by a group $H \leq \operatorname{Aut}\left(S_{1} \times S_{2}\right)$ such that the restriction to Y yields a free action and H can not have order greater than the groups used. Finally, we investigate the height of the quotient variety. In several cases, we are able to say that the height for the quotient threefold is the least possible within this framework.

The following picture represents the tip of the distribution of the CalabiYau manifold with respect to the Hodge numbers. The diagonal axis are $h^{1,1}(Y)$ and $h^{1,2}(Y)$, whereas the horizontal and the vertical axis are $\chi(Y)$ and $h(Y)$, respectively. We plot only the known manifolds with height less or equal than 31. The solid dots correspond to quotients found in this paper. The blue rings represent the ones known until now (with respect to the data collected in $[2-4,6]$). The black rings are quotients by groups whose order is maximal. From the picture below, we can summarize our results as follows. The dots $(3,5),(2,7)$ and $(5,13)$ represent NEW CalabiYau threefolds. There exists a Calabi-Yau manifold corresponding to the pair $(1,5)$ with non-abelian fundamental group; see [4]. Our example in Section 5.1, has abelian fundamental group isomorphic to the product of

Figure 1: The tip of the distribution of Calabi-Yau threefold.
the cyclic group of order two and that of order eight. Moreover, we come up with a Calabi-Yau manifold with Hodge numbers $(2,11)$ (cf. (5.3)), which are the same as those described in [4]. Finally, we construct other varieties with greater height (see Section 5.6) but they correspond to existing dots in the picture below. In all the cases where other Calabi-Yau manifolds already exist, it would be interesting to know whether our examples are isomorphic to those or not.

In some cases, it is not possible to consider non-trivial quotients with our method. In fact, we prove, for instance, that there does not exist a Calabi-Yau variety, which is the quotient by a group of order seven of a smooth anticanonical section Y in a product of two del Pezzo surfaces of degree 2. This type of results is collected in Section 6. To prove them, we use the following theorem that is proved in Section 7. For this purpose, we first use some Mori theorem of Fano four-folds, which are products of
two Fano varieties. Second, we also recall that for low degree del Pezzo surfaces are toric varieties. Thus, we apply a theorem due to Demazure (later generalized by D. Cox in [5]) on the structure of the automorphism group of toric varieties. More specifically, the following holds (see Section 7).

Theorem. Let S_{1} and S_{2} be two del Pezzo surfaces. Then

- If $S_{1} \neq S_{2}, \operatorname{Aut}\left(S_{1} \times S_{2}\right)=\operatorname{Aut}\left(S_{1}\right) \times \operatorname{Aut}\left(S_{2}\right)$;
- If $S_{1}=S_{2} \neq \mathbb{P}^{1} \times \mathbb{P}^{1}, \operatorname{Aut}\left(S^{\times 2}\right)=\operatorname{Aut}(S)^{\times 2} \ltimes \mathbb{Z}_{2}$;
- If $S_{1}=S_{2}=\mathbb{P}^{1} \times \mathbb{P}^{1}, \operatorname{Aut}\left(\left(\mathbb{P}^{1}\right)^{\times 4}\right)=\operatorname{Aut}\left(\mathbb{P}^{1}\right)^{\times 4} \ltimes S_{4}$, where S_{4} is the symmetric group with 24 elements.

2 Preliminaries

We say that a complex surface S is a del Pezzo surface if it is projective, smooth, simply connected and the anticanonical divisor $-K_{S}$ is ample. Examples of del Pezzo surfaces are blow-ups of the projective plane in a finite set Δ of $0 \leq n<9$ points in general position and $\mathbb{P}^{1} \times \mathbb{P}^{1}$. As proved in [7], this list is exhaustive. We often write $d P_{d}$ to mean a del Pezzo surface that is obtained by blowing up $9-d$ points of \mathbb{P}^{2} that are in general position. Let $S=\mathrm{Bl}_{\Delta} \mathbb{P}^{2}$. We can identify $H^{0}\left(S,-K_{S}\right)$ with the vector space of the homogeneous polynomials of degree 3 with variables $\left\{x_{0}, x_{1}, x_{2}\right\}$ such that $f(P)=0$ for all $P \in \Delta$. It is easy to show that $h^{0}\left(S,-K_{S}\right)=d+1$ if $S=d P_{d}$. Moreover, if $k=9-d$ then

$$
-K_{S}=3 \pi^{*} H-\sum_{i=1}^{k} E_{i},
$$

where H is the hyperplane divisor on the projective plane and the E_{i} 's are the exceptional divisors. Thus, $K_{S}^{2}=9-k=d$. For $d \geq 3$, we have that $-K_{S}$ is very ample. For $d=2$ the anticanonical system $\left|-K_{S}\right|$ gives a 2:1 map of S in \mathbb{P}^{2} branched along a smooth quartic. For $d=1$, the anticanonical model of S is a finite cover of degree 2 of a quadratic cone Q ramified over a curve B in the linear system $\left|\mathcal{O}_{Q}(3)\right|$.

Suppose that Y is a Calabi-Yau threefold and that G is a group that acts freely on Y. Then it is well known that the quotient Y / G has a canonical complex structure such that the projection on the quotient is holomorphic. Furthermore, the quotient map is a local isomorphism.

Theorem 2.1. If the action of G is free then Y / G is also a Calabi-Yau threefold. Moreover, the quotient is projective.

Proof. Take $g \in G \backslash\{$ Id $\}$. The manifold Y is a Calabi-Yau threefold, so

$$
h^{1,0}(Y)=h^{2,0}(Y)=0, \quad h^{3,0}(Y)=1 .
$$

There exists $\omega \in H^{3,0}(Y)$ such that $\omega_{P} \not \equiv 0$ for all $P \in Y$ (this is equivalent to $\left.K_{Y} \equiv 0\right)$. We want to show that $g^{*} \omega=\omega$. The maps

$$
g^{*}: H^{p, 0}(Y) \longrightarrow H^{p, 0}(Y)
$$

are zero for $p=1,2$, whereas for $p=0, g^{*}$ is the identity. We apply the Holomorphic Lefschetz Fixed Point formula, which in this case reads as follows:

$$
0=1-0+0-\operatorname{Tr}\left(g^{*}: H^{3,0}(Y) \longrightarrow H^{3,0}(Y)\right) .
$$

Since $h^{3,0}(Y)=1\left(Y\right.$ is a Calabi-Yau manifold), we get $g^{*}=\operatorname{Id}$ for $p=3$ and for all $g \in G$. Thus, the action of G on $H^{3,0}(Y)$ is trivial. We have the following isomorphism [1, p. 198]:

$$
H^{p, q}(Y / G) \simeq H^{p, q}(Y)^{G}
$$

hence $H^{3,0}(Y / G) \simeq H^{3,0}(Y)^{G}=H^{3,0}(Y)$ and there exists a holomorphic 3form $\tilde{\omega}$ on Y / G such that $\pi^{*} \tilde{\omega}=\omega$ and, as π is a local isomorphism, $\tilde{\omega}_{P} \neq 0$ for all $P \in Y / G$. This is equivalent to $K_{Y / G} \equiv 0$. Finally, using $h^{p, 0}(Y / G)=$ $h^{p, 0}(Y)^{G}$ one has $h^{1,0}(Y / G)=h^{2,0}(Y / G)=0$ and this concludes the proof. As for the projectivity of Y / G; see, for example, [10], p. 127.

We will adopt the following framework. We will take two del Pezzo surfaces S_{1} and S_{2}, their product $X=S_{1} \times S_{2}$, which is a Fano fourfold, and a smooth element Y of $\left|-K_{X}\right|$.

First of all, we will define a number $M\left(S_{1}, S_{2}\right)$ that bounds the maximum order of a finite group acting freely on Y and that only depends on the degree of S_{1} and S_{2}.

Definition 2.2. Let $M\left(S_{1}, S_{2}\right)$ to be the positive greatest common divisor of $\chi(Y) / 2$ and $\chi\left(-\iota^{*} K_{X}\right)$), where $\iota: Y \rightarrow X$ is the embedding of Y in X.

Note that if $Y \subset S_{1} \times S_{2}$ is a Calabi-Yau threefold and G is a finite group that acts freely on Y, then $|G|$ divides $M\left(S_{1}, S_{2}\right)$.

With the definition of $M\left(S_{1}, S_{2}\right)$ in mind, we will search for a group G with the following properties:
(a) G is a subgroup of $\operatorname{Aut}\left(S_{1} \times S_{2}\right)$;
(b) $|G|=M\left(S_{1}, S_{2}\right)$.

Note that if $\operatorname{Fix}(G) \subset X$ contains a curve L, by the Nakai-Moishezon criterion of ampleness, $-K_{X} \cdot L>0$, and since $Y=-K_{X}$, we will have some fixed points on Y. Hence it is necessary to choose groups whose action on X has at most a finite number of fixed points.

Finally, Let $m\left(S_{1}, S_{2}, Y\right)$ be
$\max \{|G| \quad \mid \quad g(Y)=Y \forall g \in G$ and satisfies $(a),(b)$ and $\operatorname{dim} \operatorname{Fix}(G)=0\}$.
We anticipate that there are cases in which $M\left(S_{1}, S_{2}\right)>1$, but the only group with these requests is the trivial group (that is $m\left(S_{1}, S_{2}, Y\right)=1$ for all Y).

3 Necessary conditions

Assume that S_{1} and S_{2} are smooth projective surfaces and Y is a Calabi-Yau threefold embedded in $X=S_{1} \times S_{2}$. Then the following result holds:

Theorem 3.1. The Euler characteristic of Y is

$$
-2 K_{S_{1}}^{2} K_{S_{2}}^{2}
$$

Proof. By the exact sequence of vector bundles

$$
0 \rightarrow T_{Y} \rightarrow T_{X} \rightarrow N_{Y / X} \rightarrow 0
$$

and, as Y is a Calabi-Yau manifold (which implies $c_{1}(Y)=0$), we have:

$$
\begin{aligned}
& \left(1+c_{2}(Y)+c_{3}(Y)\right) \cdot\left(1+c_{1}\left(N_{Y / X}\right)\right) \\
& \quad=\iota^{*}\left(1+c_{1}(X)+c_{2}(X)+c_{3}(X)+c_{4}(X)\right)
\end{aligned}
$$

and, in particular,

$$
\begin{aligned}
c_{1}\left(N_{Y / X}\right) & =\iota^{*} c_{1}(X), \quad c_{2}(Y)=\iota^{*} c_{2}(X) \quad \text { and } \\
c_{3}(Y) & =\iota^{*} c_{3}(X)-c_{2}(Y) c_{1}\left(N_{Y / X}\right)
\end{aligned}
$$

Using the fact that X is a product of surfaces we have

$$
c_{1}(X)=c_{1}\left(S_{1}\right)+c_{1}\left(S_{2}\right), \quad c_{2}(X)=c_{2}\left(S_{1}\right)+c_{2}\left(S_{2}\right)+c_{1}\left(S_{1}\right) c_{1}\left(S_{2}\right)
$$

and

$$
c_{3}(X)=c_{2}\left(S_{1}\right) c_{1}\left(S_{2}\right)+c_{2}\left(S_{2}\right) c_{1}\left(S_{1}\right)
$$

Hence, by the identification $H^{6}(Y, \mathbb{Z}) \simeq \mathbb{Z}$, we have

$$
\begin{aligned}
c_{3}(Y)= & \iota^{*}\left(c_{3}(X)-c_{2}(X) c_{1}(X)\right)=c_{3}(X) c_{1}(X)-c_{2}(X) c_{1}(X)^{2} \\
= & c_{2}\left(S_{1}\right) c_{1}\left(S_{2}\right)^{2}+c_{2}\left(S_{2}\right) c_{1}\left(S_{1}\right)^{2}-c_{2}\left(S_{1}\right) c_{1}^{2}\left(S_{2}\right)-c_{2}\left(S_{2}\right) c_{1}\left(S_{1}\right)^{2} \\
& -2 c_{1}\left(S_{1}\right)^{2} c_{1}\left(S_{2}\right)^{2} \\
= & -2 c_{1}\left(S_{1}\right)^{2} c_{1}\left(S_{2}\right)^{2}=-2 K_{S_{1}}^{2} K_{S_{2}}^{2}
\end{aligned}
$$

Now, assume Y is a smooth ample divisor in X. Thus, the following isomorphisms hold:

$$
H^{2}(Y, \mathbb{Z}) \simeq H^{2}(X, \mathbb{Z}) \simeq H^{2}\left(S_{1}, \mathbb{Z}\right) \oplus H^{2}\left(S_{2}, \mathbb{Z}\right)
$$

For any divisor class, $D \in H^{2}(Y / G, \mathbb{Z})$ denote by D_{1} and D_{2} divisors classes such that $\pi^{*}(D)=D_{1}+D_{2}$, where π is the projection of Y onto the quotient. Finally, we denote by K_{i} the divisor classes such that $K_{X}=$ $K_{1}+K_{2}$. Then the following holds.

Theorem 3.2. Let G be a group that acts freely on Y. Then for any $D \in$ $H^{2}(Y / G, \mathbb{Z})$ and D_{1}, D_{2} as above, we have

$$
\chi(D)=-\frac{D_{1} D_{2}\left(D_{1} K_{2}+D_{2} K_{1}\right)}{2|G|}-\frac{\chi\left(\mathcal{O}_{S_{1}}\right) K_{2} D_{2}+\chi\left(\mathcal{O}_{S_{2}}\right) K_{1} D_{1}}{|G|}
$$

Proof. We recall that the Riemann-Roch formula for the Calabi-Yau threefold Y / G is

$$
\chi(D)=\frac{D^{3}}{6}+\frac{c_{2}(Y / G) D}{12}
$$

The action of G is free, hence

$$
|G| D^{3}=\pi^{*}(D)^{3} \quad \text { and } \quad|G| c_{2}(Y / G) D=c_{2}(Y) \pi^{*}(D) .
$$

This yields

$$
\begin{aligned}
\pi^{*}(D)^{3} & =\left(D_{1}+D_{2}\right)^{3}\left(c_{1}\left(S_{1}\right)+c_{1}\left(S_{2}\right)\right) \\
& =3 D_{1}^{2} D_{2} c_{1}\left(S_{2}\right)+3 D_{1} D_{2}^{2} c_{1}\left(S_{1}\right)=-3 D_{1} D_{2}\left(D_{1} K_{2}+D_{2} K_{1}\right) .
\end{aligned}
$$

In a similar way, we obtain

$$
c_{2}(Y) \pi^{*}(D)=-\left(\chi\left(S_{1}\right)+K_{1}^{2}\right) K_{2} D_{2}-\left(\chi\left(S_{2}\right)+K_{2}^{2}\right) K_{1} D_{1} .
$$

Merging these results and using the Nöther formula, ${ }^{1}$ we complete the proof.

We focus our attention on a particular divisor on the quotient: a divisor D such that $\pi^{*} D=-\iota^{*} K_{X}$. Such a divisor always exists because the canonical divisor is G-invariant for any group of automorphisms G. We can specialize the previous formula for $n D$ obtaining

$$
\chi(n D)=n^{3} \frac{K_{1}^{2} K_{2}^{2}}{|G|}+n \frac{\chi\left(\mathcal{O}_{S_{1}}\right) K_{2}^{2}+\chi\left(\mathcal{O}_{S_{2}}\right) K_{1}^{2}}{|G|}=\frac{\chi\left(-n \iota^{*} K_{X}\right)}{|G|} .
$$

Hence, $|G|$ has to divide $\chi\left(-n \iota^{*} K_{X}\right)$ for all ${ }^{2} n$. We can obtain a similar condition using Theorem 3.1: the Euler characteristic of the quotient Y / G of Y by a finite group G that acts freely is the Euler characteristic of Y divided by the order of the group. Moreover, it is known that a Calabi-Yau threefold has even Euler number so we obtain that $|G|$ must divide $\chi(Y) / 2$. This gives a motivation to Definition 2.2.

The following table gives the values of $M\left(S_{1}, S_{2}\right)$ for every distinct values of degrees of S_{1} and S_{2}, with S_{1} and S_{2} del Pezzo surfaces - distinguishing

[^1]$$
|G| \text { divides } \chi\left(-n \iota^{*} K_{X}\right) \quad \forall n \in \mathbb{Z} \Longleftrightarrow|G| \text { divides } \chi\left(-\iota^{*} K_{X}\right) .
$$
the case $d P_{8}$ and $\mathbb{P}^{1} \times \mathbb{P}^{1}$.

$M\left(S_{1}, S_{2}\right)$	\mathbb{P}^{2}	$\mathbb{P}^{1} \times \mathbb{P}^{1}$	$d P_{8}$	$d P_{7}$	$d P_{6}$	$d P_{5}$	$d P_{4}$	$d P_{3}$	$d P_{2}$	$d P_{1}$
\mathbb{P}^{2}	9	1	1	1	3	1	1	3	1	1
$\mathbb{P}^{1} \times \mathbb{P}^{1}$	1	16	16	1	2	1	4	1	2	1
$d P_{8}$	1	16	16	1	2	1	4	1	2	1
$d P_{7}$	1	1	1	7	1	1	1	1	1	1
$d P_{6}$	3	2	2	1	12	1	2	9	4	1
$d P_{5}$	1	1	1	1	1	5	1	1	1	1
$d P_{4}$	1	4	4	1	2	1	8	1	2	1
$d P_{3}$	3	1	1	1	9	1	1	3	1	1
$d P_{2}$	1	2	2	1	4	1	2	1	4	1
$d P_{1}$	1	1	1	1	1	1	1	1	1	1

For example, if $X=d P_{2} \times d P_{5}\left(M\left(d P_{2}, d P_{5}\right)=1\right)$ it is not possible to find a pair (Y, G) with Y embedded in X and $\operatorname{Id} \neq G \leq \operatorname{Aut}(Y)$ that acts freely on Y. If we choose $X=d P_{5} \times d P_{5}\left(M\left(d P_{5}, d P_{5}\right)=5\right)$ a pair $\left(Y, \mathbb{Z}_{5}\right)$ with \mathbb{Z}_{5} without fixed points might exist.

The self-intersection of $-K_{S}$, where S is a del Pezzo surface, is positive and is equal to its degree and this, using Theorem 3.1, means that $\chi(Y)<$ 0 regardless of the choice of which surfaces we are using. Therefore, by recalling that the action of G is free, we have that the height $h:=h^{1,1}+h^{1,2}$ of Y and that of Y / G satisfy the following inequality:

$$
\begin{aligned}
h(Y / G) & =h^{1,1}(Y / G)+h^{1,2}(Y / G)=2 h^{1,1}(Y / G)-\frac{\chi(Y)}{2|G|} \\
& =2 h^{1,1}(Y)^{G}+\frac{|\chi(Y)|}{2|G|} \\
& <2 h^{1,1}(Y)+\frac{|\chi(Y)|}{2}=h(Y)
\end{aligned}
$$

By finding a group whose order is maximal - and such that the dimension $h^{1,1}(Y)^{G}$ of the invariant part of $H^{1,1}(Y)$ is the smallest possible - we obtain the least possible height for the quotient.

In the following sections, we give some examples (both known and new) and some results of non-existence.

4 Known examples

With the following examples, we revisit some known examples in the framework presented. The first one is due to Braun, Candelas and Davies and
can be found in [3]. The second one is due to Tian and Yau and is presented in $[13,14]$.

$4.1 \quad d P_{6} \times d P_{6}$ with maximal order 12

There is a unique del Pezzo surface of degree 6 and this surface can be obtained as the complete intersection of two global sections of $\mathcal{O}_{\mathbb{P}^{2} \times \mathbb{P}^{2}}(1,1)$. Explicitly, we can take S to be the surface in $\mathbb{P}^{2} \times \mathbb{P}^{2}$ given by the equations:

$$
f=x_{10} x_{20}-x_{11} x_{21} \quad \text { and } \quad g=x_{10} x_{20}-x_{12} x_{22}
$$

where $x_{i j}$ is the j th coordinate on the i th copy of \mathbb{P}^{2}. In this way, S is the surface obtained by blowing up the points $P_{0}=(1: 0: 0), P_{1}=(0: 1: 0)$ and $P_{2}=(0: 0: 1)$ of \mathbb{P}^{2} and the exceptional divisors E_{i} are given by

$$
E_{0}:=V\left(x_{11}, x_{12}, x_{20}\right), E_{1}:=V\left(x_{10}, x_{12}, x_{21}\right) \text { and } E_{2}:=V\left(x_{10}, x_{11}, x_{22}\right)
$$

We define $S_{1}=S_{2}=S$ and embed $X=S \times S$ in $\left(\mathbb{P}^{2}\right)^{4}$ using $x_{i 0}, x_{i 1}$ and $x_{i 2}$ as projective coordinates of the i th \mathbb{P}^{2} for $i=1,2,3,4$. Let P be the point

$$
P:=\left(\left(x_{10}, x_{11}, x_{12}\right),\left(x_{20}, x_{21}, x_{22}\right),\left(x_{30}, x_{31}, x_{32}\right),\left(x_{40}, x_{41}, x_{42}\right)\right) .
$$

Consider the automorphism of X defined by

$$
\begin{gathered}
g_{3}(P)=\left(\left(x_{12}: x_{10}: x_{11}\right),\left(x_{22}: x_{20}: x_{21}\right),\left(x_{31}: x_{32}: x_{30}\right),\left(x_{41}: x_{42}: x_{40}\right)\right) \\
g_{4}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(x_{4}, x_{3}, x_{1}, x_{2}\right) .
\end{gathered}
$$

It is easy to check that $g_{3}^{3}=g_{4}^{4}=\mathrm{Id}$ and $g_{4} g_{3}=g_{3} g_{4}^{2}$; hence

$$
G=\left\langle g_{3}, g_{4}\right\rangle \simeq \mathbb{Z}_{4} \ltimes \mathbb{Z}_{3}:=: \mathrm{Dic}_{3},
$$

which is called the dicyclic group of order 12. The set of the fixed points Fix of G is given by the union of

$$
\operatorname{Fix}\left(g_{3}\right)=\left\{\left(Q_{1}, Q_{2}\right) \quad \mid \quad Q_{1}, Q_{2} \in\left\{\left(1: a: a^{2}\right) \times\left(1: a^{2}: a\right) \quad \mid a^{3}=1\right\}\right\}
$$

and

$$
\operatorname{Fix}\left(g_{4}^{2}\right)=\{(T \times T \times Q \times Q \quad \mid \quad T, Q \in\{(1: \pm 1: \pm 1)\}\},
$$

we have a finite number of fixed points.

We are looking for a global section s of $\mathcal{O}_{X}\left(-K_{X}\right)$ that is G-invariant and whose zero-locus $V(s)$ is smooth and does not intersect Fix. We have an exact sequence

$$
0 \rightarrow\langle f, g\rangle \hookrightarrow H^{0}\left(\mathbb{P}^{2} \times \mathbb{P}^{2}, \mathcal{O}(1,1)\right) \rightarrow H^{0}\left(X,-K_{X}\right) \rightarrow 0
$$

with the surjection given by the inclusion $\iota: X \rightarrow \mathbb{P}^{2} \times \mathbb{P}^{2}$. Hence, we have a surjection

$$
H^{0}\left(\left(\mathbb{P}^{2}\right)^{4}, \mathcal{O}(1,1,1,1)\right) \rightarrow H^{0}\left(X,-K_{X}\right)
$$

with kernel given by

$$
\left\langle f_{1}, g_{1}\right\rangle \cdot H^{0}\left(\left(\mathbb{P}^{2}\right)^{4}, \mathcal{O}(0,0,1,1)\right)+\left\langle f_{2}, g_{2}\right\rangle \cdot H^{0}\left(\left(\mathbb{P}^{2}\right)^{4}, \mathcal{O}(1,1,0,0)\right) .
$$

The representation of Dic_{3} in $H^{0}\left(X,-K_{X}\right) \simeq \mathbb{C}^{49}$ has an invariant space $H^{0}\left(X,-K_{X}\right)^{G}$ of dimension 5. By direct inspection, we have checked that the generic invariant section s does not intersect Fix and is smooth. Then $Y=V(s)$ is a Calabi-Yau threefold with a free action of Dic_{3}.

If we call R the representation of Dic_{3} in $H^{2}(Y, \mathbb{C}) \simeq H^{2}(X, \mathbb{C})$ given by $g_{i} \mapsto g_{i}^{*} \in \operatorname{GL}\left(H^{2}(X, \mathbb{C})\right) \simeq \operatorname{GL}\left(H^{2}(S, \mathbb{C}) \oplus H^{2}(S, \mathbb{C})\right) \simeq \mathrm{GL}\left(\mathbb{C}^{8}\right)$, we have

$$
R\left(g_{3}\right) \text { (n } A A_{3}:=\left[\begin{array}{llll|llll}
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

and

$$
R\left(g_{4}\right) \text { un } A_{4}:=\left[\begin{array}{cccc|cccc}
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
\hline 0 & -1 & -1 & -1 & 0 & 0 & 0 & 0 \\
-1 & 0 & -1 & -1 & 0 & 0 & 0 & 0 \\
-1 & -1 & 0 & -1 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 2 & 0 & 0 & 0 & 0
\end{array}\right],
$$

where we used the base

$$
\left\{H_{1}, E_{10}, E_{11}, E_{12}, H_{2}, E_{20}, E_{21}, E_{22}\right\},
$$

where $\pi_{i}^{*}\left(E_{j}\right)=E_{i j}$ and $\pi_{i}^{*}\left(\pi^{*} H\right)=H_{i}$. Hence, $\operatorname{dim} H^{2}(Y, \mathbb{C})^{G}=1$, so we have $h^{1,1}(Y / G)=1$. By Theorem 3.1, we know that $\chi(Y)=-72$ and then $\chi(Y / G)=-6$ because the action is free. In conclusion, you find below the Hodge diamond of Y / G

1

			0		0		
	0		1		0		
1		4		4		1,	
	0		1		0		

$0 \quad 0$
1
where $h(Y / G)=5$. Note that, because $h^{1,1}(Y / G)=1$, this example achieves the minimum of the height for the quotient Y / G, where G is isomorphic to the Dic3 and Y is as above. It is interesting to note that taking
$g_{3}^{\prime}(P)=\left(\left(x_{12}: x_{10}: x_{11}\right),\left(x_{22}: x_{20}: x_{21}\right),\left(x_{32}: x_{30}: x_{31}\right),\left(x_{42}: x_{40}: x_{41}\right)\right)$
the group G^{\prime} spanned by g_{4} and g_{3}^{\prime} is cyclic of order 12 and a generator is $g_{3}^{\prime} g_{4}:=g_{12}$. Following the same argument as the previous case, it can be shown that exist a Calabi-Yau Y such that G^{\prime} acts on Y freely. The quotient Y / G^{\prime} is hence again a Calabi-Yau and has the same Hodge diamond as Y / G. However, these two manifolds are not even diffeomorphic because $\Pi_{1}(Y / G) \simeq G \simeq \operatorname{Dic}_{3} \nsucceq \mathbb{Z}_{12} \simeq G^{\prime} \simeq \Pi_{1}\left(Y / G^{\prime}\right)$.

$4.2 d P_{3} \times d P_{3}$ with maximal order 3

Suppose S_{1} and S_{2} del Pezzo surfaces of degree 3. Then $-K_{S_{i}}$ is very ample and gives an embedding in \mathbb{P}^{3}. The surface obtained is a cubic (is called anticanonical model of S_{i}) and all smooth cubic surfaces in \mathbb{P}^{3} can be obtained in this way.

Set $f_{1}:=x_{0}^{3}+x_{1}^{3}+x_{2}^{3}+x_{3}^{3}$ and $f_{2}:=y_{0}^{3}+y_{1}^{3}+y_{2}^{3}+y_{3}^{3}$ and consider the Fermat surfaces $S_{i}:=V\left(f_{i}\right)$. Denote, as usual, $X=S_{1} \times S_{2} \subset \mathbb{P}^{3} \times \mathbb{P}^{3}$ and consider the automorphism given by

$$
\varphi(x, y)=\left(\left(x_{1}: x_{2}: x_{0}: \omega x_{3}\right),\left(y_{1}: y_{2}: y_{0}: \omega^{2} y_{3}\right)\right),
$$

where $\omega \neq 1$ is a fixed root of $z^{3}-1$. The group $G=\langle\varphi\rangle$ is cyclic of order 3 ; hence we have

$$
\operatorname{Fix}(\varphi)=\operatorname{Fix}(G)=\left\{\left(\left(1: \omega^{2}: \omega: c\right),\left(1: \omega: \omega^{2}: d\right)\right) \mid d^{3}=c^{3}=-3\right\} .
$$

There is an isomorphism

$$
H^{0}\left(\mathbb{P}^{3} \times \mathbb{P}^{3}, \mathcal{O}(1,1)\right) \simeq H^{0}\left(X,-K_{X}\right)
$$

so we have to study the polynomial of bidegree $(1,1)$. The action of \mathbb{Z}_{3} on X gives a representation of \mathbb{Z}_{3} in $H^{0}\left(X,-K_{X}\right)$ and a basis for the invariant space is $\left\{G_{0}, G_{1}, G_{2}, G_{3}, G_{4}, G_{5}\right\}$, where

$$
\begin{aligned}
& G_{0}=\omega x_{3} y_{0}+\omega^{2} x_{3} y_{1}+x_{3} y_{2}, \quad G_{1}=\omega^{2} x_{0} y_{3}+\omega x_{1} y_{3}+x_{2} y_{3}, \\
& G_{2}=x_{0} y_{1}+x_{1} y_{2}+x_{2} y_{0}, \quad G_{3}=x_{0} y_{2}+x_{1} y_{0}+x_{2} y_{1}, \\
& G_{4}=x_{0} y_{0}+x_{1} y_{1}+x_{2} y_{2} \quad \text { and } \quad G_{5}=x_{3} y_{3} .
\end{aligned}
$$

By direct computation, one can check that the generic section s does not intersect $\operatorname{Fix}\left(\mathbb{Z}_{3}\right)$; hence the action of G restricted to $V(s)$ is free. For example, taking s to be $G_{4}+G_{5}=x_{0} y_{0}+x_{1} y_{1}+x_{2} y_{2}+x_{3} y_{3}$ gives a section whose zero locus Y is smooth and $Y \cap \operatorname{Fix}\left(\mathbb{Z}_{3}\right)$ is empty.

Assume $\varphi \in \operatorname{Aut}\left(S_{1}\right) \times \operatorname{Aut}\left(S_{2}\right)$ with $o(\varphi)=3$. By the Lefschetz fixedpoint theorem, one can show that

$$
h^{1,1}(Y)^{G}=2+\frac{2}{3}\left(\chi\left(\operatorname{Fix}\left(\pi_{1} \circ \varphi\right)\right)+\chi\left(\operatorname{Fix}\left(\pi_{2} \circ \varphi\right)\right)\right),
$$

where $\pi_{i}: X \rightarrow S_{i}$ is the projection onto the i th factor of the product X. In fact, by Lefschet's Hyperplane Theorem, the group $H^{1,1}(Y)$ is isomorphic to $H^{2}(X)$. The dimension of the space of invariants with respect to G is equal to the traces of the homomorphisms induced on the second cohomology group of $X=S_{1} \times S_{2}$ by the elements of G. By linear algebra and the Künneth formula, the traces on the cohomology groups of the product X is the sum of the traces on the cohomology on the factors $H^{2}\left(S_{i}\right)$ for $i=1,2$. These traces can be computed via the Lefschetz fixed-point Theorem. In this case, we obtain $h^{1,1}(Y / G)=6$. The same number could be obtained by
studying the invariant space of $H^{2}(X, \mathbb{C})$ with respect to the representation of \mathbb{Z}_{3} given by

$$
\varphi \mapsto \varphi^{*} \leadsto\left[\begin{array}{cc}
A_{1} & 0 \\
0 & A_{2}
\end{array}\right]
$$

where A_{1} and A_{2} are respectively

$$
\left[\begin{array}{ccccccc}
0 & 0 & 0 & 1 & 0 & 0 & 0 \\
-1 & -1 & -1 & 0 & -1 & -1 & -2 \\
0 & 0 & 0 & 0 & -1 & -1 & -1 \\
0 & -1 & 0 & 0 & 0 & -1 & -1 \\
0 & 0 & -1 & 0 & 0 & -1 & -1 \\
-1 & 0 & 0 & 0 & 0 & -1 & -1 \\
1 & 1 & 1 & 0 & 1 & 2 & 3
\end{array}\right] \text { and }\left[\begin{array}{ccccccc}
0 & 0 & 0 & -1 & -1 & 0 & -1 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 \\
-1 & -1 & -1 & -1 & -1 & 0 & -2 \\
-1 & 0 & 0 & 0 & -1 & 0 & -1 \\
0 & -1 & 0 & 0 & -1 & 0 & -1 \\
0 & 0 & -1 & 0 & -1 & 0 & -1 \\
1 & 1 & 1 & 1 & 2 & 0 & 3
\end{array}\right] .
$$

By Theorem 3.1, we have $\chi\left(Y / \mathbb{Z}_{3}\right)=-18 / 3=-6$; so the Hodge diamond of the quotient is the following one:
1
$0 \quad 0$
$0 \quad 6 \quad 0$

1		9		9		1
	0		6		0	
		0		0		

1

In particular, the height is $h\left(Y / \mathbb{Z}_{3}\right)=15$.
As shown in [7], up to isomorphism of \mathbb{P}^{3}, there are three possible pairs (f, G) where f is a homogeneous polinomial of degree 3 and G is a group fixing f of order 3 . One can show that $\operatorname{Fix}(f)$ is either one of the following: three points or six points, or one line. Thus, the least value that can be assumed by $\chi(\operatorname{Fix}(G))$ is 3 if we exclude the case with one line of fixed points. Hence, the example presented here achieves the minimum for $h(Y / G)$.

5 New examples

We present some new examples.

$5.1\left(\mathbb{P}^{1} \times \mathbb{P}^{1}\right) \times\left(\mathbb{P}^{1} \times \mathbb{P}^{1}\right)$ with maximal order 16

Take $S_{1}=S_{2}=\mathbb{P}^{1} \times \mathbb{P}^{1}$ and define X to be $S_{1} \times S_{2}$. We begin to search for a group $H \leq\left(\operatorname{Aut}\left(\mathbb{P}^{1}\right)\right)^{4} \ltimes S_{4}=\operatorname{Aut}(X)$ such that $|H|=8$ and $|\operatorname{Fix}(H)|<$ ∞. Moreover, we want a section s that is an eigenvector for the action of H on $H^{0}\left(X,-K_{X}\right)$ and does not intersect $\operatorname{Fix}(H)$. After that, we try to extend H to a group of order 16 with the same properties.

Let $g \in\left(\operatorname{Aut}\left(\mathbb{P}^{1}\right)\right)^{4} \ltimes S_{4}$ be an element of finite order. Without loss of generality, we can take g of the form

$$
\tilde{g} \circ \sigma:=\left(\left(\begin{array}{ll}
1 & 0 \\
0 & a_{1}
\end{array}\right),\left(\begin{array}{ll}
1 & 0 \\
0 & a_{2}
\end{array}\right),\left(\begin{array}{cc}
1 & 0 \\
0 & a_{3}
\end{array}\right),\left(\begin{array}{ll}
1 & 0 \\
0 & a_{4}
\end{array}\right)\right) \circ \sigma,
$$

where $\sigma \in S_{4}$ and $a_{i} \in \mathbb{C}^{*}$ for $i=1,2,3,4$.
If the order $o(g)$ of g is 2 , we can choose $\sigma \in\{\mathrm{Id},(12),(12)(34)\}$. An easy check shows that

$$
\left((x: y),\left(x: a_{2} y\right),(1: 0),(1: 0)\right)
$$

is a line of fixed points if $\sigma=(12)$ or $\sigma=(12)(34)$; so we must take $\sigma=\mathrm{Id}$. The only possible case is $a_{j}=-1$, for which

$$
g=g_{2}:=\left(\left(\begin{array}{ll}
1 & 0 \\
0 & -1
\end{array}\right),\left(\begin{array}{ll}
1 & 0 \\
0 & -1
\end{array}\right),\left(\begin{array}{ll}
1 & 0 \\
0 & -1
\end{array}\right),\left(\begin{array}{ll}
1 & 0 \\
0 & -1
\end{array}\right)\right)
$$

and

$$
\operatorname{Fix}\left(g_{2}\right)=\left\{\left(P_{1}, P_{2}, P_{3}, P_{4}\right) \quad \mid \quad P_{i} \in\{(1: 0),(0: 1)\}\right\} .
$$

If $o(g)=4$, we can take $\sigma \in\{\operatorname{Id},(12),(12)(34),(1234)\}$. The automorphism σ cannot be a permutation of order 4. In fact, in this case g^{2} would have a fixed line, as previously showed. Then, we have $\operatorname{Fix}(g) \subset$ $\operatorname{Fix}\left(g^{2}\right)=\operatorname{Fix}\left(g_{2}\right)$. Suppose $\sigma=\operatorname{Id}$ or $\sigma=(12)$ and consider an eigenvector $s \in H^{0}\left(X,-K_{X}\right)=\mathcal{O}_{X}(2,2,2,2)(X)$. The condition $o(g)=4$ is then equivalent to $a_{j}^{4}=1$ for $\sigma=\operatorname{Id}$ and $a_{1}^{2} a_{2}^{2}=a_{3}^{4}=a_{4}^{4}=1$ for $\sigma=(12)$. Necessarily g satisfies $g^{2}=g_{2}$ and this implies respectively $a_{j}^{2}=-1$ and $a_{1} a_{2}=a_{3}^{2}=$ $a_{4}^{2}=-1$. One can see that for all $P \in \operatorname{Fix}\left(g_{2}\right)$ there exists a unique element e_{i} of the usual basis of $\mathcal{O}_{X}(2,2,2,2)(X)$ such that $e_{i}(P) \neq 0$. For example,
we have

$$
\left.x_{1}^{2} x_{2}^{2} x_{3}^{2} x_{4}^{2}\right|_{(1: 0)^{4}}=1 \quad \text { and }\left.\quad x_{1}^{2} x_{2}^{2} x_{3}^{2} y_{4}^{2}\right|_{\left((1: 0)^{3},(0: 1)\right)}=1 .
$$

Then s has to be an element of the eigenspace of both $x_{1}^{2} x_{2}^{2} x_{3}^{2} x_{4}^{2}$ and $x_{1}^{2} x_{2}^{2}$ $x_{3}^{2} y_{4}^{2}$, but these have different eigenvalues (1 and $a_{4}^{2}=-1$ respectively) so $s=0$. Suppose that $\sigma=(12)(34)$. The conditions $o(g)=4$ and $g^{2}=g_{2}$ show that g has to be of the form

$$
\left(\left(\begin{array}{ll}
1 & 0 \tag{12}\\
0 & a_{1}
\end{array}\right),\left(\begin{array}{ll}
1 & 0 \\
0 & -a_{1}^{-1}
\end{array}\right),\left(\begin{array}{ll}
1 & 0 \\
0 & -a_{3}
\end{array}\right),\left(\begin{array}{ll}
1 & 0 \\
0 & -a_{3}^{-1}
\end{array}\right)\right) \circ
$$

for some $a_{3}, a_{4} \in \mathbb{C}^{*}$.
Finally, take g to be an automorphism of order 8. Then σ has to be a permutation of order ${ }^{3}$ 4. For example, pick $\sigma=(1324)$ (that gives the following conditions on the a_{i} 's: $a_{1} a_{2} a_{3} a_{4}=-1$) and let $a_{1}=a_{2}=a_{3}=$ $-a_{4}=1$. A basis for $H^{0}\left(X,-K_{X}\right)$ is given by $\left\{e_{1}, \ldots, e_{11}\right\}$, where

$$
\begin{aligned}
e_{1} & =x_{1}^{2} x_{2} y_{2} y_{3}^{2} x_{4} y_{4}+x_{1} y_{1} x_{2}^{2} x_{3} y_{3} y_{4}^{2}-x_{1} y_{1} y_{2}^{2} x_{3}^{2} x_{4} y_{4}+y_{1}^{2} x_{2} y_{2} x_{3} y_{3} x_{4}^{2}, \\
e_{2} & =x_{1}^{2} x_{2} y_{2} x_{3} y_{3} y_{4}^{2}-x_{1} y_{1} x_{2}^{2} y_{3}^{2} x_{4} y_{4}+x_{1} y_{1} y_{2}^{2} x_{3} y_{3} x_{4}^{2}+y_{1}^{2} x_{2} y_{2} x_{3}^{2} x_{4} y_{4}, \\
e_{3} & =x_{1}^{2} y_{2}^{2} x_{3}^{2} y_{4}^{2}+x_{1}^{2} y_{2}^{2} y_{3}^{2} x_{4}^{2}+y_{1}^{2} x_{2}^{2} x_{3}^{2} y_{4}^{2}+y_{1}^{2} x_{2}^{2} y_{3}^{2} x_{4}^{2}, \\
e_{4} & =-x_{1}^{2} y_{2}^{2} x_{3} y_{3} x_{4} y_{4}+x_{1} y_{1} x_{2} y_{2} x_{3}^{2} y_{4}^{2}-x_{1} y_{1} x_{2} y_{2} y_{3}^{2} x_{4}^{2}+y_{1}^{2} x_{2}^{2} x_{3} y_{3} x_{4} y_{4}, \\
e_{5} & =x_{1}^{2} x_{2}^{2} x_{3}^{2} y_{4}^{2}+x_{1}^{2} x_{2}^{2} y_{3}^{2} x_{4}^{2}+x_{1}^{2} y_{2}^{2} x_{3}^{2} x_{4}^{2}+y_{1}^{2} x_{2}^{2} x_{3}^{2} x_{4}^{2}, \\
e_{6} & =x_{1}^{2} x_{2} y_{2} x_{3}^{2} x_{4} y_{4}+x_{1}^{2} x_{2} y_{2} x_{3} y_{3} x_{4}^{2}-x_{1} y_{1} x_{2}^{2} x_{3}^{2} x_{4} y_{4}+x_{1} y_{1} x_{2}^{2} x_{3} y_{3} x_{4}^{2}, \\
e_{7} & =x_{1}^{2} x_{2}^{2} x_{3}^{2} x_{4}^{2}, \\
e_{8} & =y_{1}^{2} y_{2}^{2} y_{3}^{2} y_{4}^{2}, \\
e_{9} & =x_{1}^{2} y_{2}^{2} y_{3}^{2} y_{4}^{2}+y_{1}^{2} x_{2}^{2} y_{3}^{2} y_{4}^{2}+y_{1}^{2} y_{2}^{2} x_{3}^{2} y_{4}^{2}+y_{1}^{2} y_{2}^{2} y_{3}^{2} x_{4}^{2}, \\
e_{10} & =x_{1}^{2} x_{2}^{2} y_{3}^{2} y_{4}^{2}+y_{1}^{2} y_{2}^{2} x_{3}^{2} x_{4}^{2}, \\
e_{11} & =x_{1} y_{1} y_{2}^{2} x_{3} y_{3} y_{4}^{2}-x_{1} y_{1} y_{2}^{2} y_{3}^{2} x_{4} y_{4}+y_{1}^{2} x_{2} y_{2} x_{3} y_{3} y_{4}^{2}+y_{1}^{2} x_{2} y_{2} y_{3}^{2} x_{4} y_{4} .
\end{aligned}
$$

Now, we try to extend the group H. Define h to be the involution of $\left(\mathbb{P}^{1}\right)^{4}$ such that

$$
\left(x_{i}: y_{i}\right) \longmapsto\left(y_{i}: x_{i}\right) .
$$

[^2]An easy check shows that $g h=h g$ and that the following hold:

$$
\operatorname{Fix}(h)=\{((1: \pm 1),(1: \pm 1),(1: \pm 1),(1: \pm 1))\}
$$

and

$$
\operatorname{Fix}\left(g^{4} h\right)=\{((1: \pm i),(1: \pm i),(1: \pm i),(1: \pm i))\}
$$

For every $k \neq 0,4$ we have $\left(g^{k} h\right)^{2}=g^{2 k} h^{2}=g^{2 k}$ so $\operatorname{Fix}\left(g^{k} h\right) \subset \operatorname{Fix}\left(g^{4}\right)=$ $\operatorname{Fix}\left(g_{2}\right)$. This means that, defining G to be the group generated by g and h, $\operatorname{Fix}(G)$ is a finite set composed of 48 points and $G \simeq \mathbb{Z}_{8} \times \mathbb{Z}_{2}$.

If we take

$$
s=\sum_{i=1}^{11} C_{i} e_{i}
$$

and impose both $s(P)=1$, for all $P \in \operatorname{Fix}(g)$ and $h^{*}(s)=s$, we have the following conditions on the C_{i} 's:

$$
C_{3}=C_{5}=C_{7}=C_{8}=C_{9}=C_{10}=1, \quad C_{1}=C_{2}, \quad C_{11}=C_{6}, \quad C_{4}=0 .
$$

By evaluating at the other fixed points, we obtain four different nonidentically zero linear combinations of the C_{i} 's; so the generic invariant section does not intersect $\operatorname{Fix}(G)$. For example, the section obtained by taking $C_{1}=1$ and $C_{6}=2$ fulfils all our requests. Moreover, it is smooth, so there exists a group of order $16=M\left(\mathbb{P}^{1} \times \mathbb{P}^{1}, \mathbb{P}^{1} \times \mathbb{P}^{1}\right)$ that acts freely on a Calabi-Yau threefold embedded in $\left(\mathbb{P}^{1}\right)^{4}$.

The representation of G on $H^{2}(Y, \mathbb{C})$ is given by

$$
g \mapsto g^{*} \text { «ぃ } \rightarrow\left[\begin{array}{cccc}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right] \quad \text { and } \quad h \mapsto h^{*} \nprec \rightsquigarrow\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right],
$$

so both h and g^{4} are trivial on $H^{2}(Y, \mathbb{C})=H^{2}\left(\mathbb{P}^{1}, \mathbb{C}\right)^{\oplus 4}$.
This action has then a unique fixed class in $H^{2}(Y, \mathbb{C})$ (the sum of the four \mathbb{P}^{1} 's). By Theorem 3.1, we have $\chi(Y / G)=-128 / 16=-8$, so the Hodge
diamond of the quotient Y / G is the following one:

			1			
		0		0		
	0		1		0	
	1		5			
					1	
	0		1		0	
			0		0	

In particular, the height is 6 and it is the least possible for a quotient of a Calabi-Yau in $\left(\mathbb{P}^{1}\right)^{4}$ because $h^{1,1}(Y / G)=1$ and $|G|$ is maximal.

$5.2 d P_{4} \times d P_{4}$ with maximal order 8

As proved, for instance, in [7], every del Pezzo surface of degree 4 can be obtained as a complete intersection of two quadrics of \mathbb{P}^{4}. Moreover, one can choose the equations to be of the form

$$
f=x_{0}^{2}+x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2} \quad \text { and } \quad g=a_{0} x_{0}^{2}+a_{1} x_{1}^{2}+a_{2} x_{2}^{2}+a_{3} x_{3}^{2}+a_{4} x_{4}^{2},
$$

where $a_{i} \neq a_{j} \in \mathbb{C}$ for $i \neq j$. We choose

$$
g=x_{0}^{2}-\mathrm{i} x_{1}^{2}-x_{2}^{2}+\mathrm{i} x_{3}^{2}
$$

and $S_{1} \simeq S_{2} \simeq S=V(f, g) \subset \mathbb{P}^{4}$. Let r be the automorphism, which sends (x, y) to the point

$$
\left(\left(x_{0}: x_{1}:-x_{2}: x_{3}:-x_{4}\right),\left(y_{0}: y_{1}:-y_{2}: y_{3}:-y_{4}\right)\right) .
$$

Denote by t the automorphism, which sends (x, y) to

$$
\left(\left(y_{0}: y_{1}:-y_{2}:-y_{3}: y_{4}\right),\left(x_{0}: x_{1}: x_{2}: x_{3}: x_{4}\right)\right) .
$$

Consider the groups $H=\left\langle r, t^{2}\right\rangle \simeq \mathbb{Z}_{2} \times \mathbb{Z}_{2}$ and $G=\langle r, t\rangle \simeq \mathbb{Z}_{4} \times \mathbb{Z}_{2}$.

By adjunction $-K_{S_{1} \times S_{2}}:=-K_{X} \simeq \mathcal{O}_{X}(5,5) \otimes \mathcal{O}_{X}(-4,-4)=\mathcal{O}_{X}(1,1)$. The morphism $\iota: S \times S \longrightarrow \mathbb{P}^{4} \times \mathbb{P}^{4}$ induces an isomorphism

$$
\iota^{*}: H^{0}\left(\mathbb{P}^{4} \times \mathbb{P}^{4}, \mathcal{O}(1,1)\right) \longrightarrow H^{0}\left(S \times S, \mathcal{O}_{X}(1,1)\right) ;
$$

so we can use

$$
\left\{x_{i} y_{j}\right\}_{0 \leq i, j \leq 4}
$$

as a basis of the space of sections of the anticanonical bundle. It is easy to see that the vector space V spanned by

$$
\left\{x_{0} y_{0}, x_{1} y_{0}, x_{0} y_{1}, x_{1} y_{1}, x_{2} y_{2}, x_{3} y_{3}, x_{4} y_{4}\right\}
$$

is such that for all $h \in H$ and for all $s \in V, h^{*}(s)=\lambda s$ for some $\lambda \in \mathbb{C}^{*}$. By taking the generic section $s \in V$ and imposing $r^{*} s=t^{*} s=s$ (so that for every automorphism g of G, V is an eigenspace with respect to g^{*}), we obtain

$$
s=A_{1} x_{0} y_{0}+A_{3} y_{0} x_{1}+A_{3} x_{0} y_{1}+A_{4} x_{1} y_{1}+A_{7} x_{4} y_{4}
$$

where $A_{i} \in \mathbb{C}$. Let a and b be fixed roots of $2 z^{2}+1+i$ and $2 z^{2}+1-i$, respectively. Then

$$
\begin{aligned}
\operatorname{Fix}(r) & =\{(P, Q) \mid P, Q \in\{(1: \pm a: 0: \pm b: 0)\}\} \\
\operatorname{Fix}\left(t^{2}\right) & =\{(P, Q) \mid P, Q \in\{(\pm a: \pm b: 0: 0: 1)\}\}
\end{aligned}
$$

and

$$
\operatorname{Fix}\left(r t^{2}\right)=\{(P, Q) \mid P, Q \in\{(\pm b: 1: \pm a: 0: 0)\}\}
$$

To look for the fixed points of G it suffices to know the fixed points of r, t^{2} and $r t^{2}$. In fact, the following holds:

$$
\operatorname{Fix}\left(t^{3}\right)=\operatorname{Fix}(t) \subseteq \operatorname{Fix}\left(t^{2}\right)=\operatorname{Fix}\left((r t)^{2}\right) \supseteq \operatorname{Fix}(r t)=\operatorname{Fix}\left(r t^{3}\right) .
$$

An easy check shows that for generic values of A_{1}, A_{3}, A_{4} and A_{7}, the section s does not intersect Fix (G).

We can check directly that the section corresponding to $A_{1}=1, A_{3}=$ $-2, A_{4}=3$ and $A_{7}=1$ is smooth and doesn't intersect $\operatorname{Fix}(G)$; so there exists a Calabi-Yau threefold Y embedded in $S_{1} \times S_{2}$ with $\mathbb{Z}_{4} \times \mathbb{Z}_{2}$ acting freely on Y.

We do not have an explicit description of a basis for $\operatorname{Pic}(Y)=\operatorname{Pic}\left(S_{1}\right) \oplus$ $\operatorname{Pic}\left(S_{2}\right) \simeq \mathbb{Z}^{12}$, but we can use the Lefschetz Fixed Point formula to get the traces we need to compute $h^{1,1}(Y)^{G}$. For example, note that $r=r_{1} \times r_{2}$ with $r_{i} \in \operatorname{Aut}\left(S_{i}\right)$; so the trace of $r^{*}: H^{2}\left(S_{1} \times S_{2}, \mathbb{C}\right) \rightarrow H^{2}\left(S_{1} \times S_{2}, \mathbb{C}\right)$ is equal to the sum of the traces of

$$
r_{i}^{*}: H^{2}\left(S_{i}, \mathbb{C}\right) \rightarrow H^{2}\left(S_{i}, \mathbb{C}\right)
$$

By recalling that

$$
16=\chi(\operatorname{Fix}(r))=\chi\left(\operatorname{Fix}\left(r_{1} \times r_{2}\right)\right)=\chi\left(\operatorname{Fix}\left(r_{i}\right)\right)^{2}
$$

and by Lefschetz Fixed Point formula, we have

$$
\operatorname{Tr}\left(r^{*}\right)=\operatorname{Tr}\left(r_{1}^{*}\right)+\operatorname{Tr}\left(r_{2}^{*}\right)=\chi\left(\operatorname{Fix}\left(r_{1}^{*}\right)\right)-2+\chi\left(\operatorname{Fix}\left(r_{2}^{*}\right)\right)-2=2(4-2)=4
$$

With the same method we obtain $\operatorname{Tr}\left(\left(t^{*}\right)^{2}\right)=\operatorname{Tr}\left(r^{*}\left(t^{*}\right)^{2}\right)=4$. We can write t as $\left(t_{1} \times t_{2}\right) \circ \sigma$, where σ is the the permutation of the two copies of S. Hence, t^{*} will swap $H^{2}\left(S_{1}\right)$ and $H^{2}\left(S_{2}\right)$ in the sum $H^{2}\left(S_{1}\right) \oplus H^{2}\left(S_{2}\right)$ and this means that its trace is zero. In the same way, we obtain $\operatorname{Tr}\left(\left(t^{*}\right)^{3}\right)=$ $\operatorname{Tr}\left(r^{*} t^{*}\right)=\operatorname{Tr}\left(r^{*}\left(t^{*}\right)^{3}\right)=0$. Merging these results and recalling that $\chi(Y)=$ -32 , we obtain

$$
h^{1,1}(Y / G)=\frac{12+4+4+4+0+0+0+0}{8}=3 \quad \text { and } \quad h^{1,2}(Y / G)=5
$$

so the quotient has the following Hodge diamond:

In particular, the height is 8 .

$5.3 \quad \mathbb{P}^{2} \times \mathbb{P}^{2}$ with maximal order 9

Let ($x_{0}: x_{1}: x_{2}$) and ($y_{0}: y_{1}: y_{2}$) be the projective coordinates on the two copies of \mathbb{P}^{2} and set $a=\mathrm{e}^{2 \pi \mathrm{i} / 3}$. Consider the automorphism of $\mathbb{P}^{2} \times \mathbb{P}^{2}:=X$ defined by

$$
g:=\left(x_{0}: a x_{1}: a^{2} x_{2}\right) \times\left(y_{0}: a y_{1}: a^{2} y_{2}\right):=g_{1} \times g_{2}
$$

and

$$
h:=\left(x_{1}: x_{2}: x_{0}\right) \times\left(y_{1}: y_{2}: y_{0}\right):=h_{1} \times h_{2} .
$$

It is easy to show that the group G generated by g and h is isomorphic to $\mathbb{Z}_{3} \times \mathbb{Z}_{3}$.

Moreover, it is easy to see that

$$
\begin{aligned}
\operatorname{Fix}(G)= & \left(\operatorname{Fix}\left(g_{1}\right) \times \operatorname{Fix}\left(g_{2}\right)\right) \cup\left(\operatorname{Fix}\left(h_{1}\right) \times \operatorname{Fix}\left(h_{2}\right)\right) \\
& \cup\left(\operatorname{Fix}\left(g_{1} h_{1}\right) \times \operatorname{Fix}\left(g_{2} h_{2}\right)\right) \cup\left(\operatorname{Fix}\left(g_{1}^{2} h_{1}\right) \times \operatorname{Fix}\left(g_{2}^{2} h_{2}\right)\right),
\end{aligned}
$$

where

$$
\begin{aligned}
\operatorname{Fix}\left(g_{i}\right) & =\{(1: 0: 0),(0: 1: 0),(0: 0: 1)\}, \\
\operatorname{Fix}\left(h_{i}\right) & =\left\{(1: 1: 1),\left(1: a: a^{2}\right),\left(1: a^{2}: a\right)\right\}, \\
\operatorname{Fix}\left(g_{i} h_{i}\right) & =\left\{\left(1: 1: a^{2}\right),\left(1: a^{2}: 1\right),\left(a^{2}: 1: 1\right)\right\}, \\
\operatorname{Fix}\left(g_{i}^{2} h_{i}\right) & =\{(1: 1: a),(1: a: 1),(a: 1: 1)\} .
\end{aligned}
$$

Consider the following global sections of $\mathcal{O}_{\mathbb{P}^{2}}(3)=-K_{\mathbb{P}^{2}}$:

$$
\begin{aligned}
& e_{i, 0}=x_{0}^{3}+a^{2 i} x_{1}^{3}+a^{i} x_{2}^{3}, \quad e_{i, 1}=x_{0}^{2} x_{1}+a^{2 i} x_{1}^{2} x_{2}+a^{i} x_{0} x_{2}^{2}, \\
& e_{i, 2}=x_{0} x_{1}^{2}+a^{2 i} x_{1} x_{2}^{2}+a^{i} x_{0}^{2} x_{2}, \quad e_{0}=x_{0} x_{1} x_{2} .
\end{aligned}
$$

Then $g^{*}\left(e_{i, j}\right)=a^{j} e_{i, j}, h^{*}\left(e_{i, j}\right)=a^{i} e_{i, j}, g^{*}\left(e_{0}\right)=h^{*}\left(e_{0}\right)=e_{0}$; hence

$$
\left\{e_{0}, e_{i, j}\right\}_{0 \leq i, j \leq 2}
$$

is a basis of $H^{0}\left(\mathbb{P}^{2}, \mathcal{O}_{\mathbb{P}^{2}}(3)\right)$ composed of eigenvectors of both g^{*} and h^{*}. Since

$$
H^{0}\left(X,-K_{X}\right) \simeq H^{0}\left(\mathbb{P}^{2},-K_{\mathbb{P}^{2}}\right) \otimes H^{0}\left(\mathbb{P}^{2},-K_{\mathbb{P}^{2}}\right),
$$

a basis for the space of invariant sections is given by

$$
\left\{e_{i_{1}, j_{1}} \otimes e_{i_{2}, j_{2}}\right\}_{i_{1}+i_{2} \equiv 30, j_{1}+j_{2}{ }_{30}} \cup\left\{e_{0} \otimes e_{0,0}, e_{0,0} \otimes e_{0}, e_{0} \otimes e_{0}\right\} .
$$

By the direct computation, we can show that the generic invariant section does not intersect $\operatorname{Fix}(G)$. Moreover, the system $\left|H^{0}\left(X,-K_{X}\right)^{G}\right|$ is basepoint free. By Bertini's Theorem, the generic section is smooth. Hence, there exists a Calabi-Yau threefold Y embedded in $\mathbb{P}^{2} \times \mathbb{P}^{2}$ equipped with a free action of G.

The space $H^{2}(X, \mathbb{Z})$ is free of rank two and is generated by $\pi_{1}^{*} H$ and $\pi_{2}^{*} H$ where $\langle H\rangle=H^{2}\left(\mathbb{P}^{2}, \mathbb{Z}\right)$. Every automorphism of \mathbb{P}^{2} fixes H, so $H^{2}(X, \mathbb{C})^{G}=$ $H^{2}(X, \mathbb{C})$. This implies that the following is the Hodge diamond of Y / G :

1.

Its height is 13 . An element $g \in \operatorname{Aut}\left(\mathbb{P}^{2} \times \mathbb{P}^{2}\right)=\left(\operatorname{Aut}\left(\mathbb{P}^{2}\right) \times \operatorname{Aut}\left(\mathbb{P}^{2}\right)\right) \ltimes \mathbb{Z}_{2}$ of order 3 has to be of the form $g=g_{1} \times g_{2}$ with $g_{i} \in \operatorname{Aut}\left(\mathbb{P}^{2}\right)$. This means that $H^{2}(X, Z)^{\langle g\rangle}=H^{2}(X, \mathbb{Z})$ and thus the minimum for $h(Y / G)$ is achieved by this example.

$5.4 \quad d P_{5} \times d P_{5}$ with maximal order 5

Fix $P_{1}=(1: 0: 0), P_{2}:=(0: 1: 0), P_{3}:=(0: 0: 1)$ and $P_{4}:=(1: 1: 1)$ in \mathbb{P}^{2}. Let S be the unique del Pezzo surface of degree 5 . It is well known that the automorphism group of S is isomorphic to the symmetric group of order 120. The sections of $\mathcal{O}_{S}\left(-K_{S}\right)$ are the cubics through the points P_{i} for $i=1,2,3,4$. Hence, a basis of $H^{0}\left(d P_{5},-K_{d P_{5}}\right)$ can be taken to be

$$
\begin{array}{ll}
y_{1}:=x_{0}^{2} x_{1}-x_{0} x_{1} x_{2} & y_{2}:=x_{0}^{2} x_{2}-x_{0} x_{1} x_{2}, \\
y_{3}:=x_{1}^{2} x_{0}-x_{0} x_{1} x_{2} & y_{4}:=x_{1}^{2} x_{2}-x_{0} x_{1} x_{2}, \\
y_{5}:=x_{2}^{2} x_{0}-x_{0} x_{1} x_{2} & y_{6}:=x_{2}^{2} x_{1}-x_{0} x_{1} x_{2},
\end{array}
$$

where x_{0}, x_{1}, x_{2} is a system of homogeneous coordinates on \mathbb{P}^{2}. Consider the following transformation T on the projective plane, namely:

$$
\left(x_{0}: x_{1}: x_{2}\right) \mapsto\left(x_{0}\left(x_{0}-x_{2}\right): x_{0}\left(x_{0}-x_{1}\right):\left(x_{0}-x_{1}\right)\left(x_{0}-x_{2}\right)\right) .
$$

It is easy to check that T acts as automorphism of S and its action on $H^{0}\left(S,-K_{S}\right)$ is determined by

$$
\begin{array}{cc}
y_{1} \mapsto y_{1}, & y_{2} \mapsto y_{1}+y_{5}-y_{2}, \\
y_{3} \mapsto y_{2}, & y_{4} \mapsto y_{2}+y_{3}-y_{1}, \\
y_{5} \mapsto-y_{6}+y_{5}-y_{2}, & y_{6} \mapsto-y_{4}-y_{1}+y_{3} .
\end{array}
$$

It is easy to see that the order of T is five thus $G:=\langle T\rangle$ is isomorphic to \mathbb{Z}_{5}. Let us now consider the action of G diagonally on $X=S \times S$. We will use x_{0}, x_{1}, x_{2} and z_{0}, z_{1}, z_{2} as projective coordinates on the two \mathbb{P}^{2},s we blow up to obtain the two copies of S. There is an action of G on $H^{0}\left(X,-K_{X}\right)$. Let ω be a primitive fifth root of unity. The space of invariants under this action is generated by the following polynomials, namely:

$$
\begin{aligned}
& f_{1} g_{1}=x_{0} x_{1}\left(x_{0}-x_{2}\right) z_{0} z_{1}\left(z_{0}-z_{2}\right), \\
& f_{1} g_{2}=x_{0} x_{1}\left(x_{0}-x_{2}\right) z_{2}\left(z_{1}-z_{2}\right)\left(z_{0}-z_{1}\right), \\
& f_{2} g_{1}=x_{2}\left(x_{1}-x_{2}\right)\left(x_{0}-x_{1}\right) z_{0} z_{1}\left(z_{0}-z_{2}\right), \\
& f_{2} g_{2}=x_{2}\left(x_{1}-x_{2}\right)\left(x_{0}-x_{1}\right) z_{2}\left(z_{1}-z_{2}\right)\left(z_{0}-z_{1}\right), \\
& h_{1} k_{4}, \quad h_{2} k_{3}, \quad h_{3} k_{2}, \quad h_{4} k_{1},
\end{aligned}
$$

where we set:

$$
\begin{aligned}
h_{1}= & \left(1+\omega^{2}\right) y_{1}+\left(\omega^{3}-\omega^{2}\right) y_{2}+\left(-2-\omega-\omega^{2}-\omega^{3}\right) y_{3} \\
& +y_{4}+\omega^{2} y_{5}-\omega y_{6}, \\
h_{2}= & -\left(\omega+\omega^{2}+\omega^{3}\right) y_{1}+\left(1+2 \omega+\omega^{2}+\omega^{3}\right) y_{2} \\
& +\left(\omega^{3}-1\right) y_{3}+y_{4}-\left(1+\omega+\omega^{2}+\omega^{3}\right) y_{5}-\omega^{2} y_{6}, \\
h_{3}= & (1+\omega) y_{1}+\left(-2 \omega-1-\omega^{2}-\omega^{3}\right) y_{2}+\left(\omega^{2}-1\right) y_{3}+y_{4} \\
& +\omega y_{5}-\omega^{3} y_{6}, \\
h_{4}= & y_{1}+\left(\omega^{2}-1\right) y_{2}+\left(\omega^{3}-1\right) y_{3}+\left(1+\omega^{2}+\omega\right) y_{4}-\left(\omega+\omega^{2}\right) y_{5} \\
& -\left(\omega^{2}+\omega^{3}\right) y_{6}
\end{aligned}
$$

and $k_{i}=h_{i}\left(z_{0}, z_{1}, z_{2}\right)$. It is easy to check that h_{i} are eigenvectors with eigenvalue ω^{i} with respect to the action of T on $H^{0}\left(S,-K_{S}\right)$.

Let

$$
\begin{align*}
s:= & A_{1} f_{1} g_{1}+A_{2} f_{1} g_{2}+A_{3} f_{2} g_{1}+A_{4} f_{2} g_{2}+A 5 h_{1} k_{4}+A_{6} h_{2} k_{3} \\
& +A_{7} h_{3} k_{2}+A_{8} h_{4} k_{1}, \tag{5.1}
\end{align*}
$$

where A_{i} are complex numbers not all of which are zero. For any choice of the A_{i} 's, we get a section in $H^{0}\left(X,-K_{X}\right)$ that is invariant with respect to G.

The transformation T acts with fixed points on X. They are given by

$$
(1: 1 /(1+\rho): 1-\rho),
$$

where ρ satisfies the degree 2 equation $\rho^{2}+\rho-1=0$ and thus there are four fixed points on X. Note that, by the Lefschetz formula this is the least number of fixed points one could obtain. By a suitable choice of the A_{i} 's, we restrict to the locus Σ such that the sections s in (5.1) do not pass through the fixed points above. It is easy to see that Σ is not empty. For $s \in \Sigma$ the set of zeroes $Y=V(s)$ is thus invariant with respect to the free action of G on it.

Now, we look for base points of the system above. First, we look for solutions on $\mathbb{P}^{2} \times \mathbb{P}^{2}$ of the equations

$$
f_{1} g_{1}=f_{1} g_{2}=f_{2} g_{1}=f_{2} g_{2}=h_{1} k_{4}=h_{2} k_{3}=h_{3} k_{2}=h_{4} k_{1}=0
$$

Next, we recall that S is obtained from \mathbb{P}^{2} by blowing up the points P_{i}. After some computation, we show that there are 20 base points.

For each of the base points, we checked if they are smooth or not for the generic section. This is true if we restrict to an dense open set Ω of \mathbb{P}^{7}, where $\left\{A_{i}\right\}_{i=1 . .8}$ are interpreted as a homogeneous system of coordinates. For example, let us take the point

$$
\left(((1: 1: 1),(1: 1)),\left(1+\omega^{2}+\omega^{3}: 1: \omega^{2}+\omega^{3}\right)\right)
$$

that is the point whose projection on S_{1} is the point $(1: 1)$ on the exceptional divisor associated to $(1: 1: 1)$ and whose projection on S_{2} is $\left(1+\omega^{2}+\omega^{3}\right.$: $\left.1: \omega^{2}+\omega^{3}\right)$. We first make the substitution $x_{0}=w_{0}+w_{1}, x_{1}=w_{1}, x_{2}=$ $w_{1}+w_{2}$, so the point $(1: 1: 1)$ is mapped to the point $(0: 1: 0)$. Next, we work in the local chart where the second coordinate is non-zero. Let $((u, v),(l: m))$ be the coordinate on blow-up. Since $m \neq 1$, we can consider affine coordinates v, l and, by the equation of the blow-up, $u=v l$. Thus, we evaluate all the polynomials $f_{1} g_{1}, f_{1} g_{2}, f_{2} g_{1}, f_{2} g_{2}, h_{1} k_{4}, h_{2} k_{3}, h_{3} k_{2}, h_{1} k_{4}$ at
$w_{0}=v l, w_{1}=1, w_{2}=v$. We divide by v and then take the derivatives with respect to $v, l, z_{0}, z_{1}, z_{2}$. These must be evaluated at $l=1, v=0$ and $z_{0}=$ $1+\omega^{2}+\omega^{3}, z_{1}=1, z_{2}=\omega^{2}+\omega^{3}$. Doing so yields conditions on the A_{i} 's. These conditions define the equations of a closed set, the complement of which is the non-empty open set Ω. The intersection of Ω and Σ yield an open set which contains sections s which are invariant with respect to G, do not pass through fixed points and such that $(s=0)$ is smooth at the base points. By Bertini's Theorem a generic element of $\Omega \cap \Sigma$ is smooth. This yields a Calabi-Yau manifold Y / G with Euler characteristic -10. As in Section 5.1 we compute $h^{1,1}(Y / G)$ using the Lefschetz formula and we obtain $h^{1,1}(Y / G)=2$. Then $h^{2,1}(Y / G)=7$ and the Hodge diamond is the following one:

1

1

Note that Y / G realize the minimum for the height.

$5.5 \quad \mathbb{P}^{1} \times \mathbb{P}^{1} \times d P_{4}$ with maximal order 4

Let us consider again the del Pezzo surface S_{2} of degree 4 embedded in \mathbb{P}^{4} used in Section 5.2. If we denote with g_{1} and h_{1} the automorphism of $S_{1}=\mathbb{P}^{1} \times \mathbb{P}^{1}$ such that

$$
g_{1}\left(\left(x_{10}: x_{11}\right),\left(x_{20}: x_{21}\right)\right)=\left(\left(x_{10}:-x_{11}\right),\left(x_{20}:-x_{21}\right)\right)
$$

and

$$
h_{1}\left(\left(x_{10}: x_{11}\right),\left(x_{20}: x_{21}\right)\right)=\left(\left(x_{11}: x_{10}\right),\left(x_{21}: x_{20}\right)\right)
$$

we obtain the relation $g_{1}^{2}=h_{1}^{2}=g_{1} h_{1} g_{1}^{-1} h_{1}^{-1}=\mathrm{Id}$ that is $\left\langle g_{1}, h_{1}\right\rangle \simeq \mathbb{Z}_{2} \oplus \mathbb{Z}_{2}$. The same holds for the automorphism g_{2} and h_{2} of S_{2} such that

$$
g_{2}\left(\left(y_{0}: y_{1}: y_{2}: y_{3}: y_{4}\right)\right)=\left(y_{0}: y_{1}:-y_{2}: y_{3}:-y_{4}\right)
$$

and

$$
h_{2}\left(\left(y_{0}: y_{1}: y_{2}: y_{3}: y_{4}\right)\right)=\left(y_{0}: y_{1}:-y_{2}:-y_{3}: y_{4}\right) .
$$

Denote by $g=g_{1} \times g_{2}$ and $h=h_{1} \times h_{2}$; hence we have $G:=\langle g, h\rangle \simeq$ $\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}$.

We recall (see Section 5.2) that if a and b are fixed roots of $2 z^{2}+1+i$ and $2 z^{2}+1-i$ then

$$
\begin{aligned}
& \operatorname{Fix}\left(g_{2}\right)=\{(1: \pm a: 0: \pm b: 0)\}, \\
& \operatorname{Fix}\left(h_{2}\right)=\{(\pm a: \pm b: 0: 0: 1)\}
\end{aligned}
$$

and

$$
\operatorname{Fix}\left(g_{2} h_{2}\right)=\{(\pm b: 1: \pm a: 0: 0)\} .
$$

It is easy to see that $|\operatorname{Fix}(\alpha)|=4$ for each $\alpha \in\left\langle g_{1}, h_{1}\right\rangle \backslash\{\operatorname{Id}\}$ and, consequently, that $|\operatorname{Fix}(G)|=48$.

Analogously to the previous cases, we can conclude that there exists a smooth Calabi-Yau threefold $Y \subset X$ and a group $G \simeq \mathbb{Z}_{2} \oplus \mathbb{Z}_{2}$ acting freely on it. The quotient has the following Hodge diamond:

1.

Hence, the height of the quotient is 18 .

5.6 Other similar examples

For brevity we don't treat explicitly some examples. These are some threefolds in $\mathbb{P}^{2} \times d P_{6}, \mathbb{P}^{2} \times d P_{3},\left(\mathbb{P}^{1} \times \mathbb{P}^{1}\right) \times d P_{6}$ and $d P_{6} \times d P_{4}$. The threefolds
in $\mathbb{P}^{2} \times d P_{6}$ and in $\mathbb{P}^{2} \times d P_{3}$ admit a free action of \mathbb{Z}_{3} (in both cases $M\left(S_{1}\right.$, $\left.S_{2}\right)=3$). The quotients have Hodge diamonds respectively:

These are threefolds with minimal height. The threefolds in $\left(\mathbb{P}^{1} \times \mathbb{P}^{1}\right) \times d P_{6}$ and in $d P_{4} \times d P_{6}$ admit a free action of \mathbb{Z}_{2} (again this hits the maximum because $M\left(S_{1}, S_{2}\right)=2$ for these two cases). The Hodge diamonds are

6 Results of non-existence

In this section, we present some results of non-existence. In particular, we show that there are cases for which $M\left(S_{1}, S_{2}\right)>1$ but a group G that fulfils our requests doesn't exist.

6.1 $d P_{8} \times S$, with $S \in\left\{\mathbb{P}^{1} \times \mathbb{P}^{1}, d P_{8}, d P_{6}, d P_{4}, d P_{2}\right\}$

We will show that in these cases $m\left(S_{1}, S_{2}, Y\right)=1$ for all Y. The key points are Corollary 6.2 and some structural results on $\operatorname{Aut}\left(d P_{8}\right)$.

Lemma 6.1. If S is a del Pezzo surface and $g \in \operatorname{Aut}(S)$ is such that $o(g)=$ p is prime, then g has a fixed point.

Proof. Every del Pezzo surface S is a rational surface. Suppose that the fixed locus of g is empty. Recall that p is prime. Let $G:=\langle g\rangle$ be the group generated by g. Then $\operatorname{Fix}(G)$ is empty. In fact, for every $n \not \equiv p 0$ there exists m such that $n m \equiv_{p} 1$; this implies

$$
\operatorname{Fix}\left(g^{n}\right) \subset \operatorname{Fix}\left(\left(g^{n}\right)^{m}\right)=\operatorname{Fix}(g)
$$

Therefore, $R:=S / G$ is a smooth surface and R is rational. In particular, $\Pi_{1}(R)=\{\mathrm{Id}\}$. However, this is not possible because S is simply connected, so $\Pi_{1}(R) \simeq G \nsim\{\operatorname{Id}\}$. Hence, g must have at least one fixed point.

Corollary 6.2. For every finite subgroup G of $\operatorname{Aut}(S),|\operatorname{Fix}(G)|>0$.

By [7], every automorphism of a del Pezzo surface S of degree 8 comes from an automorphism of \mathbb{P}^{2} that fixes the point R such that $S=\mathrm{Bl}_{\{R\}} \mathbb{P}^{2}$. Suppose $S \neq d P_{8}$. Then, we search for a group $G \leq \operatorname{Aut}\left(d P_{8}\right) \times \operatorname{Aut}(S)$. We are interested in the cases $S \in\left\{\mathbb{P}^{1} \times \mathbb{P}^{1}, d P_{6}, d P_{4}, d P_{2}\right\}$ for which $M\left(d P_{8}, S\right)$ is, respectively, $16,2,4$ and 2 . It is then enough to show that there are not groups of order 2 whose action is free on Y. Let $g=\left(g_{1}, g_{2}\right)$ be an involution. By Corollary 6.2 there exists a fixed point P of g_{2}. The automorphism g_{1} comes from an involution of \mathbb{P}^{2}; hence it has a line L of fixed points, therefore $L \times\{P\}$ is a line of fixed points for g.

If $S=d P_{8}$, then $\operatorname{Aut}\left(d P_{8}^{\times 2}\right)=\operatorname{Aut}\left(d P_{8}\right)^{\times 2} \ltimes \mathbb{Z}_{2}$. Let $G=\langle g\rangle$ where $g=$ $\left(g_{1}, g_{2}\right)$. Using the same result as above, we will have a surface of fixed points. Then, it suffices to analyze the case $g=\left(g_{1}, g_{2}\right) \circ \tau$, where τ is the involution that switches the two copies of $d P_{8}$. Then, by changing projective coordinates, we can assume that

$$
\left(g_{1}, g_{2}\right)=\left(\left[\begin{array}{lll}
a & 0 & 0 \\
0 & b & 0 \\
0 & 0 & 1
\end{array}\right],\left[\begin{array}{ccc}
a^{-1} & 0 & 0 \\
0 & b^{-1} & 0 \\
0 & 0 & 1
\end{array}\right]\right)
$$

for some $a, b \in \mathbb{C}^{*}$. It is easy to see that $((a x: b y: 0),(x: y: 0))$ is a line of fixed points.

In conclusion, we have shown that $m\left(d P_{8}, S, Y\right)=1$ for a del Pezzo surface S (here we have checked all the cases for which $\left.M\left(d P_{8}, S\right) \neq 1\right)$ and for all Y Calabi-Yau embedded in $d P_{8} \times S$.

$6.2 d P_{7} \times d P_{7}$ with estimated maximal order 7

There is only one del Pezzo surface S of degree 7. It is given as the blow-up of \mathbb{P}^{2} in $P_{0}=(1: 0: 0)$ and $P_{1}=(0: 1: 0)$. We will show that there does not exist a section s of $-K_{S \times S}$ such that $g^{*} s=c s$ for some $c \in \mathbb{C}^{*}$ and $g \in \operatorname{Aut}(S \times S)$ of order 7 , which does not intersect the fixed locus of $\langle g\rangle$.

By [7], every automorphism of a del Pezzo surface of degree 7 comes from an element of $P G L(3)$ fixing the set $\left\{P_{0}, P_{1}\right\}$. Thus, we have

$$
\operatorname{Aut}(S) \simeq\left\langle\left[\begin{array}{lll}
1 & 0 & b \\
0 & a & c \\
0 & 0 & d
\end{array}\right],\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]\right\rangle
$$

Recall that $\operatorname{Aut}(S \times S)=\operatorname{Aut}(S)^{\times 2} \ltimes \mathbb{Z}_{2}$. Since we need g of order 7 , we have to choose an element of the form $g=\left(g_{1}, g_{2}\right)$, where $g_{i} \in \operatorname{Aut}(S)$ and

$$
g_{i}=\left[\begin{array}{ccc}
1 & 0 & b_{i} \\
0 & a_{i} & c_{i} \\
0 & 0 & d_{i}
\end{array}\right]
$$

After a change of projective coordinates that fixes the points P_{0} and P_{1}, we may assume $b_{i}=c_{i}=0$ so that g_{i} is in diagonal form. The condition $o(g)=7$ gives $a_{i}^{7}=d_{i}^{7}=1$. Since we need a finite number of fixed points, we must impose $a_{i} \neq 1 \neq d_{i}$ and $a_{i} \neq d_{i}$.

In conclusion, we can take g of the form

$$
\left(\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \lambda^{m_{1}} & 0 \\
0 & 0 & \lambda^{n_{1}}
\end{array}\right] \times\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \lambda^{m_{2}} & 0 \\
0 & 0 & \lambda^{n_{2}}
\end{array}\right]\right)
$$

where $\lambda=\mathrm{e}^{2 \pi \mathrm{i} / 7}$ and $0 \neq n_{i}, m_{i}$ and $n_{i} \neq m_{i}$.
The fixed points of g_{i} as an automorphism of \mathbb{P}^{2} are P_{0}, P_{1} and P_{2}, whereas the fixed points of g_{i} as an automorphism of S are

$$
\left\{\left(P_{0}, Q\right),\left(P_{1}, Q\right), P_{2} \mid Q \in\{(1: 0),(0: 1)\}\right\}
$$

Here, for example, with $((0: 1: 0),(1: 0))$ we mean the point $(1: 0)$ on the exceptional divisor $E_{1}=\pi^{-1}\left(P_{1}\right)$, where we use the standard local description of S in a neighbourhood of E_{1} as the surface of $\mathbb{C}^{2} \times \mathbb{P}^{1}$ such that $u m=v l$ with $\{((0,0),(l: m))\}=E_{1}$. Hence, in total, $G:=\langle g\rangle$ has 25 fixed points.

We blow up \mathbb{P}^{2} in P_{0} and P_{1}. Then, the following isomorphism holds:

$$
H^{0}\left(S,-K_{2}\right) \simeq\left\langle x_{2}^{3}, x_{0}^{2} x_{1}, x_{0}^{2} x_{2}, x_{0} x_{1}^{2}, x_{0} x_{2}^{2}, x_{1}^{2} x_{2}, x_{1} x_{2}^{2}, x_{0} x_{1} x_{2}\right\rangle .
$$

The correspondence is given by taking the strict transform of a polynomial see as a global section of $\mathcal{O}_{\mathbb{P}^{2} \times \mathbb{P}^{2}}(3,3)$. We call e_{i} the elements of the base on the first del Pezzo surface and f_{i} the elements of the base on the second one so that, by the Künneth formula, we obtain

$$
H^{0}\left(S \times S,-K_{S \times S}\right) \simeq\left\langle e_{i} \otimes f_{j}\right\rangle .
$$

Suppose that s is an eigenvector of $H^{0}\left(S \times S,-K_{S \times S}\right)$ and that $s(P) \neq 0$ for all P fixed points of G. Then, for example,

$$
s(((1: 0: 0),(1: 0)),((1: 0: 0),(1: 0))) \neq 0
$$

if and only if s belongs to the eigenspace of $x_{0}^{2} x_{1} y_{0}^{2} y_{1}$ and

$$
s(((1: 0: 0),(1: 0)),((1: 0: 0),(0: 1))) \neq 0
$$

if and only if s is in the eigenspace of $x_{0}^{2} x_{1} y_{0}^{2} y_{2}$. However, these two eigenvectors have corresponding eigenvalues $\lambda^{m_{1}+m_{2}}$ and $\lambda^{m_{1}+n_{2}}$ and these numbers are different if and only if $m_{2} \neq n_{2}$, which it is true by hypothesis. This means that s must be zero and we have a contradiction.

Albeit $M\left(d P_{7}, d P_{7}\right)=7$, this shows that an automorphism of $S \times S$ with finite order cannot act freely on a smooth section of $-K_{S \times S}$.

$6.3 d P_{6} \times d P_{3}$ with estimated maximal order 9

In this case, recall that $M\left(d P_{3}, d P_{6}\right)=9$. Nonetheless, the maximum order of G to have a free action on a Calabi-Yau threefold Y embedded in X is 3. We will also give an example for which $m\left(d P_{6}, d P_{3}, Y\right)=3$.

Suppose that $G \leq \operatorname{Aut}\left(d P_{6}\right) \times \operatorname{Aut}\left(d P_{3}\right)$ has order 9 . Then either $G \simeq \mathbb{Z}_{9}$ or $G \simeq \mathbb{Z}_{3} \times \mathbb{Z}_{3}$. First, we will show that if $G \simeq \mathbb{Z}_{9}$ then G must have a fixed curve and so it cannot satisfy our assumption on G. Next, we will deal with the case $G \simeq \mathbb{Z}_{3} \times \mathbb{Z}_{3}$. We will first find all the groups whose fixed locus is finite. Essentially, this will be done by projecting G on $\operatorname{Aut}\left(d P_{6}\right)$ and $\operatorname{Aut}\left(d P_{3}\right)$, so that the projections G_{1} and G_{2} satisfy $G_{1} \simeq G_{2} \simeq G \simeq$ $\mathbb{Z}_{3} \times \mathbb{Z}_{3}$. There is only one useful choice for $G_{2}=\left\langle g_{2}, h_{2}\right\rangle$, whereas there are infinitely many possibilities for G_{1}, which are parameterized by $\left(\mathbb{C}^{*}\right)^{2}$. Once we fix $G_{1}:=\langle u, v\rangle$, we will consider all the possible G^{\prime} s such that the
projection of G on $\operatorname{Aut}\left(d P_{3}\right)$ and $\operatorname{Aut}\left(d P_{6}\right)$ are G_{1} and G_{2}, respectively. This will be done by choosing all the possible pairs (g_{1}, h_{1}), not necessarily equal to (u, v), that generate G_{1}. We thus consider the group $G:=\langle g, h\rangle$, where $g=g_{1} \times g_{2}$ and $h=h_{1} \times h_{2}$. For every case, we have checked that all the sections of $H^{0}\left(X,-K_{X}\right)$ that are eigenvectors of both g^{*} and h^{*} are zero on a fixed point of the group G (we will show an explicit calculation for one of the cases).

Suppose that $G \simeq \mathbb{Z}_{9}$ and consider its projection G_{1} on $\operatorname{Aut}\left(d P_{3}\right)$. Necessarily, $G_{1} \simeq G$. On the contrary, if $G=\left\langle g_{1} \times g_{2}\right\rangle$ with $g_{1}^{3}=\mathrm{Id}, G$ would have infinitely many fixed points. Hence, G_{1} has to be a group isomorphic to \mathbb{Z}_{9} in $\operatorname{Aut}\left(d P_{3}\right)$. If S is a smooth cubic surface in \mathbb{P}^{3} and if $g_{1} \in \operatorname{Aut}(S)$ has order 9 then, by [7], there exist a projective automorphism of \mathbb{P}^{3} such that

$$
\left(S, g_{1}\right)=\left(V\left(x_{0}^{3}+x_{2}^{2} x_{0}+x_{1}^{2} x_{2}+x_{0}^{2} x_{1}\right),\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & a^{4} & 0 & 0 \\
0 & 0 & a & 0 \\
0 & 0 & 0 & a^{7}
\end{array}\right]\right)
$$

where a satisfies $a^{3} \neq 1=a^{9}$. On the other hand, we have

$$
g_{1}^{3}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & a^{3} & 0 & 0 \\
0 & 0 & a^{3} & 0 \\
0 & 0 & 0 & a^{3}
\end{array}\right] .
$$

Hence, $\operatorname{Fix}\left(\left\langle g_{1}\right\rangle\right)$ contains a curve C. This means that, by Corollary 6.2, we have a fixed curve in $\operatorname{Fix}(G)$, which contradicts our assumptions.

Suppose, now, that $G \simeq \mathbb{Z}_{3} \times \mathbb{Z}_{3} \leq \operatorname{Aut}\left(d P_{6}\right) \times \operatorname{Aut}\left(d P_{3}\right)$ and consider the projection G_{2} on $\operatorname{Aut}\left(d P_{3}\right)$ so that $G_{2} \simeq G$. Fix two generators g_{2}, h_{2} of G_{2} and consider $d P_{3}=V(f) \subset \mathbb{P}^{3}$. By [7], if $V(f)$ is a smooth cubic and $\tilde{G} \simeq \mathbb{Z}_{3} \times \mathbb{Z}_{3} \leq \operatorname{Aut}(V(f))$, we can change coordinates to obtain $f=\sum y_{i}^{3}$. In this case $\operatorname{Aut}(V(f)) \simeq \mathbb{Z}_{3}^{3} \ltimes S_{4}$, where each \mathbb{Z}_{3} acts as multiplication of a variable by a^{k} (we write the elements in \mathbb{Z}_{3}^{3} as $\left(1, a^{k_{1}}, a^{k_{2}}, a^{k_{3}}\right)$) and $S_{4}=\operatorname{Sym}(0,1,2,3)$ is generated by the permutation of the variables. By requiring $\left|\operatorname{Fix}\left(G_{2}\right)\right|<\infty$ we obtain $G_{2} \leq \mathbb{Z}_{3}^{3}$. There is only one group isomorphic to G_{2} in \mathbb{Z}_{3}^{3} that has a finite number of fixed points on $V(f)$ and it is $\left\langle g_{2}, h_{2}\right\rangle$ where $g_{2}=\left(1,1, a, a^{2}\right)$ and $h_{2}=\left(1, a, a^{2}, a^{2}\right)$. We call $V_{i, j}^{(2)}$ the maximal subspace of $H^{0}\left(d P_{3},-K_{d P_{3}}\right)$ such that $g_{2}^{*}(s)=a^{i} s$ and $h_{2}^{*}(s)=a^{j} s$ for every $s \in V_{i, j}^{(2)}$. This vector space is the intersection of the eigenspaces $\Lambda_{a^{i}}$ of g_{2} and $\Lambda_{a_{j}}^{\prime}$ of h_{2} relative to a^{j}. The following table summarizes the
situation providing generators for these spaces.

$g_{2} \backslash h_{2}$	Λ_{1}^{\prime}	Λ_{a}^{\prime}	$\Lambda_{a^{2}}^{\prime}$
Λ_{1}	x_{0}		
Λ_{a}	x_{1}		
$\Lambda_{a^{2}}$		x_{2}	x_{3}

Now, consider the projection G_{1} of G on $\operatorname{Aut}\left(d P_{6}\right)=\left(S_{3} \times \mathbb{Z}_{2}\right) \ltimes\left(\mathbb{C}^{*}\right)^{2}$. Any element of order 3 can be written in the form $\operatorname{diag}(1, b, c) \circ(123)^{k}$ for some fixed $b, c \in \mathbb{C}^{*}$ and $k=0,1,2$. Easy arguments show that G_{1} cannot satisfy $G_{1} \leq\left(\mathbb{C}^{*}\right)^{2}$ (if it happens, one has $\left.\left|\operatorname{Fix}\left(G_{1}\right)\right|=\infty\right)$ and that G_{1} has exactly two non-trivial elements in $\left(\mathbb{C}^{*}\right)^{2}$. These are $\operatorname{diag}\left(1, a, a^{2}\right)$ and its inverse. Moreover, these two elements commute with every element of the form $(1, b, c) \circ(123)^{k}$, thus every subgroup of $\operatorname{Aut}\left(d P_{6}\right)$ isomorphic to $\mathbb{Z}_{3} \times$ \mathbb{Z}_{3} and with a finite number of fixed points can be written in the form $\langle u, v\rangle$ where

$$
u=\operatorname{diag}\left(1: a: a^{2}\right) \quad \text { and } \quad v=\operatorname{diag}(1: b: c) \circ(123)
$$

for some fixed $b, c \in \mathbb{C}^{*}$. We define d to be a fixed third root of $b c$. Set

$$
\begin{aligned}
& F_{0}=x_{10} x_{20}, \\
& F_{1}=x_{10} x_{21}+\frac{1}{b} x_{11} x_{22}+\frac{1}{c} x_{12} x_{20}, \\
& F_{2}=x_{10} x_{22}+\frac{1}{c} x_{11} x_{20}+\frac{b}{c} x_{12} x_{20}, \\
& F_{3}=x_{10} x_{21}+\frac{a^{2}}{b} x_{11} x_{22}+\frac{a}{c} x_{12} x_{20}, \\
& F_{4}=x_{10} x_{22}+\frac{a^{2}}{c} x_{11} x_{20}+\frac{a b}{c} x_{12} x_{20}, \\
& F_{5}=x_{10} x_{21}+\frac{a}{b} x_{11} x_{22}+\frac{a^{2}}{c} x_{12} x_{20}, \\
& F_{6}=x_{10} x_{22}+\frac{a}{c} x_{11} x_{20}+\frac{a^{2} b}{c} x_{12} x_{20} .
\end{aligned}
$$

Then F_{j} is an eigenvector of both u and v and the corresponding eigenvalues are the ones in the following table:

$u \backslash v$	Λ_{1}	Λ_{a}	$\Lambda_{a^{2}}$
Λ_{1}	F_{0}	F_{2}	F_{1}
Λ_{a}		F_{4}	F_{3}
$\Lambda_{a^{2}}$		F_{6}	F_{5}

This shows that $\left\{F_{j}\right\}$ form a base for $H^{0}\left(d P_{6},-K_{d P_{6}}\right)$. The following are the fixed points of the elements of G_{1} and G_{2} :

Element	Fixed points $(k=0,1,2)$
u, u^{2}	$((1: 0: 0),(0: 1: 0)),((1: 0: 0),(0: 0: 1))$,
	$((0: 1: 0),(1: 0: 0)),((0: 1: 0),(0: 0: 1))$,
v, v^{2}	$((0: 0: 1),(1: 0: 0)),((0: 0: 1),(0: 1: 0))$
$u v, u^{2} v^{2}$	$\left(\left(1: d a^{k}: \frac{\left(d a^{k}\right)^{2}}{b},\left(1: \frac{1}{d a^{k}}: \frac{b}{\left(d a^{k}\right)^{k}}\right)\right.\right.$
$u^{2} v, u v^{2}$	$\left(\left(1 a^{k}\right)^{2}\right.$
$b a$	
	$\left(1: \frac{1}{d a^{k}}: \frac{b a}{\left(d a^{k}\right)^{k}}\right)$
$\frac{\left(d a^{k}\right)^{2}}{b a^{2}},\left(1: \frac{1}{d a^{k}}: \frac{b a^{2}}{\left(d a^{k}\right)^{2}}\right)$	

Element	Fixed points $(k=0,1,2)$
g_{2}, g_{2}^{2}	$\left(1:-a^{k}: 0: 0\right)$
h_{2}, h_{2}^{2}	$\left(0: 0: 1:-a^{k}\right)$
$g_{2} h_{2}, g_{2}^{2} h_{2}^{2}$	$\left(1: 0:-a^{k}: 0\right),\left(0: 1: 0:-a^{k}\right)$
$g_{2} h_{2}^{2}, g_{2}^{2} h_{2}$	$\left(1: 0: 0:-a^{k}\right),\left(0: 1:-a^{k}: 0\right)$

Suppose $g_{1}=u$. Let h_{1} be any element of G_{1} such that $G_{1}=\left\langle g_{1}, h_{1}\right\rangle$ and denote $Q_{1}=((1: 0: 0),(0: 1: 0))$ and $Q_{2}=((1: 0: 0),(0: 0: 1))$. Then

$$
P_{1}:=((1: 0: 0),(0: 1: 0),(1:-1: 0: 0))
$$

and

$$
P_{2}:=((1: 0: 0),(0: 0: 1),(1:-1: 0: 0))
$$

are fixed points of $g=g_{1} \times g_{2}$. Suppose that

$$
s=\sum_{i, j} a_{i, j} F_{i} y_{j}
$$

is a section such that $g^{*}(s)=a^{k_{1}} s$ and that $s\left(P_{j}\right) \neq 0$. Then

$$
s\left(P_{1}\right)=\sum_{i=2,4,6}\left(a_{i, 0}-a_{i, 1}\right) F_{i}\left(Q_{1}\right) \neq 0
$$

and

$$
s\left(P_{2}\right)=\sum_{i=1,3,5}\left(a_{i, 0}-a_{i, 1}\right) F_{i}\left(Q_{2}\right) \neq 0 .
$$

This means that at least one between $x_{i} F_{j}$ with $i=0,1$ and $j=2,4,6$ has a non-zero coefficient and the same is true for $x_{i} F_{j}$ with $i=0,1$ and $j=1,3,5$. But, if $i=0,1, g^{*}\left(x_{i} F_{j}\right)=a^{2} x_{i} F_{j}$ if $j=2,4,6$ and $g^{*}\left(x_{i} F_{j}\right)=$ $a x_{i} F_{j}$ if $j=1,3,5$. Then each eigenvector of g is zero if evaluated in P_{1} or in P_{2}.

The same result is true for every other case: we have checked that, for every $b, c \in\left(\mathbb{C}^{*}\right)$, for every choice of g_{1}, h_{1} generators of $G_{1}=\langle u, v\rangle$, every section of $H^{0}\left(X,-K_{X}\right)$ that is an eigenvector of both g and h where $g=$ $g_{1} \times g_{2}$ and $h=h_{1} \times h_{2}$ is zero on at least one fixed point of $G=\langle g, h\rangle$. In conclusion, the restriction of the action of a group $G \leq \operatorname{Aut}\left(d P_{6}\right) \times \operatorname{Aut}\left(d P_{3}\right)$ of order 9 to a Calabi-Yau threefold $Y \subset d P_{6} \times d P_{3}$ cannot be free. Hence $m\left(d P_{6}, d P_{3}, Y\right)<M\left(S_{1}, S_{2}\right)=9$ for every Y.

We have obtained $m\left(d P_{6}, d P_{3}, Y\right) \leq 3$ for all Y. We now give an example such that $m\left(d P_{6}, d P_{3}, Y\right)=3$. Take $d P_{3}$ to be the Fermat surface in \mathbb{P}^{3}. Call g_{1} the automorphism of $d P_{6}$ such that $x_{i, j} \mapsto x_{i, j+1}$ and g_{2} the authomorphism

$$
\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & \omega & 0 \\
0 & 0 & 0 & \omega^{2}
\end{array}\right]
$$

of $d P_{3}$. Note that the minimum for the number of fixed points for an automorphism of order $3 \operatorname{in} \operatorname{Aut}\left(d P_{6}\right) \times \operatorname{Aut}\left(d P_{3}\right)$ is achieved by $g=g_{1} \times g_{2}$. The dimension of $H^{0}\left(X,-K_{X}\right)^{G}$, where $G=\langle g\rangle$, is 10 . It can be shown that the base locus for $\left|H^{0}\left(X,-K_{X}\right)^{G}\right|$ has only nine points and that these are

$$
\left(\left(1: \omega^{i}: \omega^{2 i}\right),\left(1: \omega^{2 i}: \omega^{i}\right),\left(0: 0:-\omega^{j}: 1\right)\right)
$$

with $0 \leq i, j \leq 2$. By direct inspection, the generic invariant section s is smooth at these points and does not intersect the fixed locus, so, by Bertini's theorem, there exists a Calabi-Yau Y embedded in $d P_{6} \times d P_{3}$ and a group
$G \simeq \mathbb{Z}_{3}$ acting freely on Y. The Hodge diamond for Y / G is

			1			
		0		0		
	0		5		0	
1		11		11		1
	0		5		0	
			0		0	

1
and it is height is 16 , that is the minimum for the height.

7 On the relation between $\operatorname{Aut}\left(S_{1}\right) \times \operatorname{Aut}\left(S_{2}\right)$ and $\operatorname{Aut}\left(S_{1} \times S_{2}\right)$

Let X be a projective complex manifold. We will denote by $\mathrm{NE}(X)$ the cone of effective curves of X. An extremal subcone V of $\mathrm{NE}(X)$ is a closed convex cone such that for every $v, w \in \mathrm{NE}(X)$ if $v+w \in V$ then $v, w \in V$. An extremal ray is an extremal subcone of dimension 1. For every D divisor on X a subcone $V \subset \mathrm{NE}(X)$ is said to be D-negative if for every $v \in V$ one has $v \cdot D<0$. The Contraction Theorem says that for every extremal K_{X}-negative subcone V of $\mathrm{NE}(X)$ the contraction c_{V} of V is well defined, that is to say, a morphism $c_{V}: X \rightarrow W$ with connected fibres such that W is a normal variety. Moreover, a curve in X is contracted if and only if is numerically equivalent to a curve in V and the Picard number $\rho(W)$ is equal to $\rho(X)-\operatorname{dim}(\langle V\rangle)$. For a morphism f we recall that $\mathrm{NE}(f)$ is given by the intersection $\operatorname{NE}(X) \cap \operatorname{ker}\left(f_{*}\right)$, where f_{*} is the map induced by f on the vector space spanned by $\mathrm{NE}(X)$.

If $\phi \in \operatorname{Aut}\left(S_{1} \times S_{2}\right)$ we will write $\phi(x, y)=\left(\phi_{1}(x, y), \phi_{2}(x, y)\right)$ where $\phi_{i}=$ $\pi_{i} \circ \phi$ where π_{i} is the projection of $S_{1} \times S_{2}$ on S_{i}.

Lemma 7.1. Let S_{1} and S_{2} be two del Pezzo surfaces and let $\phi \in \operatorname{Aut}\left(S_{1} \times\right.$ S_{2}) Let π_{i} be the projection from $S_{1} \times S_{2}$ onto the $i t h$ factor S_{i} for $i=1,2$. If $\phi_{*}\left(\mathrm{NE}\left(\pi_{i}\right)\right)=\mathrm{NE}\left(\pi_{i}\right)$, then $\phi(x, y)=\left(\phi_{1}(x), \phi_{2}(y)\right)$ where $\phi_{i} \in \operatorname{Aut}\left(S_{i}\right)$. If ϕ_{*} switches the cones $\mathrm{NE}\left(\pi_{1}\right)$ and $\mathrm{NE}\left(\pi_{2}\right)$, then $S_{1}=S_{2}$ and $\phi(x, y)=$ $\left(\phi_{1}(y), \phi_{2}(x)\right)$ with $\phi_{1} \in \operatorname{Bihol}\left(S_{2}, S_{1}\right)$ and $\phi_{2} \in \operatorname{Bihol}\left(S_{1}, S_{2}\right)$.

Proof. Assume $\phi_{*}\left(\mathrm{NE}\left(\pi_{i}\right)\right)=\mathrm{NE}\left(\pi_{i}\right)$. Fix $x_{1}, x_{2} \in S_{1}$ and take two distinct irreducible curves C_{1} and C_{2} on S_{1} whose intersection is non-empty and such that $x_{i} \in C_{i}$. We have

$$
\phi\left(C_{i} \times y\right)=D_{i} \times y_{i}
$$

because the image of $C_{i} \times y$ is a curve that is numerically equivalent to a curve in $\operatorname{NE}\left(\pi_{2}\right)$. But $C_{1} \times y$ and $C_{2} \times y$ are two curves with non-empty intersection so their images have non-empty intersection. In particular $y_{1}=$ y_{2} and this implies that $\phi_{2}(x, y)=\phi_{2}(y)$. The same argument works with the first component $\left(\phi_{1}(x, y)=\phi_{1}(x)\right)$ and with ϕ^{-1} meaning that ϕ_{i} is an automorphism of S_{i}.

With the same method, if ϕ_{*} switches the two cones, one has

$$
\phi(x, y)=\left(\phi_{1}(y), \phi_{2}(x)\right)
$$

and that ϕ_{i} are biholomorphism thus $S_{1}=S_{2}$.
Lemma 7.2. Let S_{1} and S_{2} be two del Pezzo surfaces such that $\rho\left(S_{1}\right), \rho\left(S_{2}\right)$ ≥ 3. If $\rho\left(S_{1}\right) \neq \rho\left(S_{2}\right)$ then

$$
\operatorname{Aut}\left(S_{1} \times S_{2}\right)=\operatorname{Aut}\left(S_{1}\right) \times \operatorname{Aut}\left(S_{2}\right)
$$

The same holds if $\rho\left(S_{1}\right)=\left(S_{2}\right)$ and $S_{1} \neq S_{2}$. Instead, if $S_{1}=S_{2}$ one has

$$
\operatorname{Aut}\left(S_{1} \times S_{2}\right)=\left(\operatorname{Aut}\left(S_{1}\right) \times \operatorname{Aut}\left(S_{2}\right)\right) \ltimes \mathbb{Z}_{2}
$$

Proof. Call X the product $S_{1} \times S_{2}$. Then X is a Fano fourfold and

$$
\mathrm{NE}(X)=\mathrm{NE}(X) \cap \mathrm{NE}\left(\pi_{1, *}\right)+\mathrm{NE}(X) \cap \mathrm{NE}\left(\pi_{2, *}\right)
$$

In particular, every extremal ray of X is generated by a curve of the type $P_{1} \times E_{2}$ or $E_{1} \times P_{2}$, where E_{i} is a (-1)-curve on S_{i}. Observe that the image V^{\prime} of an extremal subcone V by an automorphism ϕ is again an extremal subcone. In fact, if $v+w \in V^{\prime}$ for some $v, w \in \mathrm{NE}(X)$ then $\phi_{*}^{-1}(v)$ and $\phi_{*}^{-1}(w)$ are effective curves such that $\phi_{*}^{-1}(v)+\phi_{*}^{-1}(w)=\phi_{*}^{-1}(v+w) \in V$. But if V is extremal both $\phi_{*}^{-1}(v)$ and $\phi_{*}^{-1}(w)$ are in V. This implies that v and w are in V^{\prime}, so V^{\prime} also is extremal. This implies that ϕ induces a permutation of the extremal rays of X.

Suppose that there exists an extremal curve $E \times P_{1}$ such that $\phi_{*}\left(E_{1} \times\right.$ $\left.P_{2}\right)=P_{1} \times E_{2}$. Then ϕ_{*} maps the extremal ray $V:=\left[E_{1} \times P_{2}\right]$ to the extremal ray $V^{\prime}:=\left[P_{1} \times E_{2}\right]$. The contractions c_{V} and $c_{V^{\prime}}$ associated to the extremal subcones V and V^{\prime} are respectively $p_{1} \times \mathrm{Id}$ and $\mathrm{Id} \times p_{2}$, where
$p_{i}: S_{i} \rightarrow \hat{S}_{i}$ are the blow up with exceptional divisor E_{i}. Observe that \hat{S}_{i} is smooth and that the fibres of c_{V} and $c_{V^{\prime}}$ have dimension 0 or 1 and are connected. By construction a curve C is contracted by c_{V} if and only $\phi_{*} C$ is contracted by $c_{V^{\prime}}$. These two facts imply that the map $f: \hat{S}_{1} \times S_{2} \rightarrow S_{1} \times \hat{S}_{2}$ such that $f(P)=\left(c_{V^{\prime}} \circ \phi\right)\left(c_{V}^{-1}(P)\right)$ is well defined.

Let us see that the map f is injective. Call Q_{i} the point of \hat{S}_{i} such that $p_{i}^{-1}\left(Q_{i}\right)=E_{i}$. If $f\left(Q_{1} \times R_{1}\right)=f\left(Q_{1} \times R_{2}\right)$ with $R_{1} \neq R_{2}$ then, to calculate the image of $Q_{1} \times R_{i}$ we obtain first two disjoint curves in $S_{1} \times S_{2}$ of the form $E_{1} \times R_{i}$. Then these two are sent to two disjoint curves of the form $T_{i} \times E_{2}$ by ϕ and, at last, contracted to the same point by $c_{V^{\prime}}$. This implies that the fibre of this point with respect to $c_{V^{\prime}}$ contains two disjoint curves and, being connected, has to be at least of dimension 2. However, we have seen that every fibre has dimension at most 1 , so necessarily $R_{1}=R_{2}$. By construction f is also surjective and so it is a bijective map.

The map f is a morphism because it is everywhere well defined and it is holomorphic outside $Q_{1} \times S^{2}$ that has codimension 2 in $\hat{S}_{1} \times S_{2}$. Hence, by Hartogs' theorem, it is holomorphic on $\hat{S}_{1} \times S_{2}$. This is enough to conclude that f is an isomorphism. This implies

$$
\chi\left(\hat{S}_{1} \times S_{2}\right)=\chi\left(S_{1} \times \hat{S}_{2}\right)
$$

but $\chi\left(\hat{S}_{i}\right)=\chi\left(S_{i}\right)-1$ because $b_{1}\left(\hat{S}_{i}\right)=b_{1}\left(S_{1}\right)-1$ and hence, by the multiplicativity of χ, we have

$$
\left(\chi\left(S_{1}\right)-1\right) \chi\left(S_{2}\right)=\chi\left(S_{1}\right)\left(\chi\left(S_{2}\right)-1\right)
$$

and $\chi\left(S_{1}\right)=\chi\left(S_{2}\right)$. However, this contradicts the hypothesis $\rho\left(S_{1}\right) \neq \rho\left(S_{2}\right)$; hence the image of $E \times P_{1}$ by ϕ_{*} has to be of the same type. This implies that $\phi_{*} \mathrm{NE}\left(\pi_{j}\right)=\mathrm{NE}\left(\pi_{j}\right)$ and this is sufficient to conclude that ϕ can be written as a product of two automorphisms by Lemma 7.1.

Suppose, now, that $\rho\left(S_{1}\right)=\rho\left(S_{2}\right) \geq 3$. Fix a blow-up model for S_{i}. Then the (-1)-curves on S_{i} are either $E_{i j}$, and are contracted to points by the model, or are sent to curves (lines, conics $\left(\rho\left(S_{i}\right) \geq 5\right)$ and cubics $\left.\left(\rho\left(S_{i}\right) \geq 7\right)\right)$. If, for all j, the image of $E_{1 j} \times P$ belongs to $[Q \times E]$ for some (-1)-curve E that depends on j, then the same holds true for the other exceptional
curves of the same type: $\phi\left(E_{1} \times P\right) \in[Q \times E]$ for some E depending on E_{1}. Thus, saying that there exist two exceptional curves $E_{i} \times P$ such that $\phi\left(E_{1} \times P\right) \in[Q \times E]$ and $\phi\left(E_{1} \times P\right) \in\left[E^{\prime} \times Q\right]$ is equivalent to requiring that there are two indices (for examples $j=1$ and $j=2$) such that

$$
\phi\left(E_{11} \times P\right) \in\left[Q \times E_{2}\right] \quad \text { and } \quad \phi\left(E_{12} \times P\right) \in\left[E_{1} \times Q\right] .
$$

Suppose, then, that this could happen. Then, as in the previous case, we can construct a commutative diagram

where $c_{V}=r \times \mathrm{Id}$ and $c_{V^{\prime}}=p_{1} \times p_{2}$ where $r: S_{1} \rightarrow \tilde{S}_{1}$ is the contraction of two $E_{11}=r^{-1}\left(R_{1}\right)$ and $E_{12}=r^{-1}\left(R_{2}\right)$, whereas p_{1} and p_{2} are the blowup with exceptional divisor respectively E_{1} and E_{2}. Note that the cone V spanned by $E_{11} \times P$ and $E_{12} \times P$ is an extremal subcone because for $a \gg 0, L:=\mathcal{O}\left(\left(a H-E_{11}-E_{12}\right) \times S_{2}\right)$ is a nef line bundle such that $V=$ $\mathrm{NE}\left(S_{1} \times S_{2}\right) \cap L^{\perp}$. This implies that its image V^{\prime} is extremal. Again, the construction of f make sense because $c_{V^{\prime}}$ contracts a curve if and only if c_{V} contracts its preimage and because all the fibres of c_{V} are connected and have at most dimension one.

Assume $f\left(R_{1} \times Q_{1}\right)=f\left(R_{1} \times Q_{2}\right)$. The fibres $E_{11} \times Q_{i}$ are mapped to two disjoint curves of the form $\tilde{Q}_{i} \times E_{2}$ and then contracted to the same point. Then the fibre S of this point has dimension at least 2 (exactly 2 by construction) and contains $\tilde{Q}_{i} \times E_{2}$. Recall that $-K_{X_{\mid S}}:=D^{\prime}$ is ample so it intersects $\tilde{Q}_{i} \times E_{2}$. D^{\prime} is then an effective curve that is contracted to a point by $c_{V^{\prime}}$ so its preimage D intersects $E_{11} \times Q_{i}$ and is contracted by c_{V}. Hence, $Q_{1}=Q_{2}$. In a similar way we dealt with the other cases and prove that f is injective. By construction, f is also surjective and hence bijective.

Again f is a map that is holomorphic outside two disjoint smooth subvariety of $\tilde{S}_{1} \times S_{2}$ whose codimension is 2 . Thus, by Hartogs' theorem, f is everywhere holomorphic. Then f is an isomorphism but checking the equality of the Euler numbers one obtain

$$
2+\rho\left(S_{2}\right)=2+\rho\left(S_{1}\right)=\chi\left(S_{1}\right)=\chi\left(S_{2}\right)+1=3+\rho\left(S_{2}\right)
$$

and then again a contradiction. Hence, the two types of extremal rays cannot be mixed by ϕ. There are two cases: the first corresponding to the case for
which $\forall \phi \in \operatorname{Aut}(S), \phi_{*} \mathrm{NE}\left(\pi_{i}\right)=\mathrm{NE}\left(\pi_{i}\right)$ and the second where there exists $\phi \in \operatorname{Aut}(X)$ that switches the two cones. By Lemma 7.1, in the first case $\operatorname{Aut}\left(S_{1} \times S_{2}\right)=\operatorname{Aut}\left(S_{1}\right) \times \operatorname{Aut}\left(S_{2}\right)$ and $S_{1} \neq S_{2}$ whereas, in the second, we have $S_{1}=S_{2}$ and $\operatorname{Aut}\left(S_{1} \times S_{2}\right)=\operatorname{Aut}\left(S_{1}\right)^{\times 2} \ltimes \mathbb{Z}_{2}$.

Lemma 7.3. Let S_{1} and S_{2} be two del Pezzo surfaces with $\rho\left(S_{1}\right) \leq 2$ and $\rho\left(S_{2}\right) \geq 3$. Then $\operatorname{Aut}\left(S_{1} \times S_{2}\right)=\operatorname{Aut}\left(S_{1}\right) \times \operatorname{Aut}\left(S_{2}\right)$.

Proof. There are three cases: $\rho\left(S_{1}\right)=1$ with $S_{1}=\mathbb{P}^{2}$ and $\rho\left(S_{1}\right)=2$ with $S_{1}=\mathbb{P}^{1} \times \mathbb{P}^{1}$ or $S_{1}=d P_{8}$.

If $S_{1}=\mathbb{P}^{2}$ and $\phi \in \operatorname{Aut}(X)$, fix a point $s \in S$ and consider the map obtained as composition of the inclusion $\mathbb{P}^{2} \simeq \mathbb{P}^{2} \times\{s\} \subset \mathbb{P}^{2} \times S_{2}, \phi$ and the projection on S. The resulting map β_{s} cannot be a dominant morphism because, in this case, \mathbb{P}^{2} would have divisors with negative self-intersection. ${ }^{4}$
Moreover its image cannot have dimension greater than 0 ; in fact, every surjective map $\mathbb{P}^{2} \rightarrow C$ induces a surjective map $\mathbb{P}^{2} \rightarrow \mathbb{P}^{1}$ but this cannot exist. Hence $\beta_{s}\left(\mathbb{P}^{2}\right)$ is a point, or equivalently, β doesn't depend on P. Hence

$$
\phi(P, s)=(\alpha(P, s), \beta(s))
$$

and the same holds true for ϕ^{-1} so $\beta \in \operatorname{Aut}\left(S_{2}\right)$ and, by a composition with Id $\times \beta^{-1}$, we can restrict to the case $\beta=\mathrm{Id}$. Consider now for a fixed $s \in S_{2}$ the morphism $\alpha_{s}: \mathbb{P}^{2} \rightarrow \mathbb{P}^{2}$. As before, its image cannot have dimension 1. If $\operatorname{dim}\left(\alpha_{s}\left(\mathbb{P}^{2}\right)\right)=0$ then $\phi\left(\mathbb{P}^{2} \times\{s\}\right) \subset P t \times S_{2}$, and because ϕ is an automorphism, we would obtain an isomorphism between \mathbb{P}^{2} and a del Pezzo surface of Picard number strictly greater than 1, which is impossible. Hence α_{s} is a dominant map. Suppose $\alpha_{s}(P)=\alpha_{s}(Q)$. Then

$$
\phi(P, s)=\left(\alpha_{s}(P), s\right)=\left(\alpha_{s}(Q), s\right)=\phi(Q, s)
$$

but ϕ is injective so $P=Q$ and α_{s} is also injective. This shows that α_{s} is an automorphism for every s and in particular we have a map $f: s \in S_{2} \mapsto \alpha_{s} \in$ $P G L(3)=S L(3) / \mathbb{Z}_{3}$. Then f lifts to a map from S_{2} to $S L(3)$ that is affine and then f does not depend on s. So $\operatorname{Aut}\left(\mathbb{P}^{2} \times S_{2}\right)=\operatorname{Aut}\left(\mathbb{P}^{2}\right) \times \operatorname{Aut}\left(S_{2}\right)$.

If $S_{1}=\mathbb{P}^{1} \times \mathbb{P}^{1}$ then the extremal rays of $X=S_{1} \times S_{2}$ are of the form $\left[\left(P_{1} \times P_{2}\right) \times E\right],\left[\left(P_{1} \times \mathbb{P}^{1}\right) \times Q\right]$ or $\left[\left(\mathbb{P}^{1} \times P_{2}\right) \times Q\right]$ where E is a (-1)-curve

[^3]on S_{2}. In particular $\left(\left(P_{1} \times P_{2}\right) \times E\right) \cdot\left(K_{X}\right)=-1$ whereas
$$
\left(\left(P_{1} \times \mathbb{P}^{1}\right) \times Q\right) \cdot K_{X}=\left(\left(\mathbb{P}^{1} \times P_{2}\right) \times Q\right) \cdot K_{X}=-2 .
$$

In particular, because extremal rays are permuted by every automorphism and because the intersection numbers are preserved, we have $\phi_{*}\left(\operatorname{NE}\left(\pi_{i}\right)\right)=$ $\mathrm{NE}\left(\pi_{i}\right)$ and then $\operatorname{Aut}\left(S_{1} \times S_{2}\right)=\operatorname{Aut}\left(S_{1}\right) \times \operatorname{Aut}\left(S_{2}\right)$.

If $S_{1}=d P_{8}$ and $\rho\left(S_{2}\right) \geq 3$ then the extremal rays are of the form $[E \times$ $\left.P_{2}\right],\left[(H-E) \times P_{2}\right]$ and $\left[P_{1} \times E_{2}\right]$ where E is the only (-1)-curve on S_{1} and E_{2} is a (-1)-curve on S_{2}. In particular, $-K_{X} \cdot\left((H-E) \times P_{2}\right)=2$ whereas for all the other extremal curves the intersection with $-K_{X}$ is 1 ; hence ϕ_{*} fixes this extremal ray. Assume that $\phi_{*}\left(\left[E \times P_{2}\right]\right)=\left(\left[P_{1} \times E_{i}\right]\right)$. Then, denoting $V=\mathbb{R}^{+}\left[E \times P_{2}\right]$ and $V^{\prime}=\mathbb{R}^{+}\left[P_{1} \times E_{i}\right]$, we obtain the following commutative diagram:

where f is again an isomorphism. This gives $\chi\left(S_{2}\right)=4$ but $\rho\left(S_{2}\right) \geq 3$ so we have a contradiction $\left(4=\chi\left(S_{2}\right) \geq 5\right)$. Thus $\mathrm{NE}\left(S_{i}\right)=\phi_{*}\left(\mathrm{NE}\left(S_{i}\right)\right)$ and then $\operatorname{Aut}\left(S_{1} \times S_{2}\right)=\operatorname{Aut}\left(S_{1}\right) \times \operatorname{Aut}\left(S_{2}\right)$.
Lemma 7.4. Let S_{1} and S_{2} be two del Pezzo surfaces such that $\rho\left(S_{1}\right), \rho\left(S_{2}\right)$ ≤ 3. Then:

- If $S_{1} \neq S_{2}, \operatorname{Aut}\left(S_{1} \times S_{2}\right)=\operatorname{Aut}\left(S_{1}\right) \times \operatorname{Aut}\left(S_{2}\right)$;
- If $S_{1}=S_{2} \neq \mathbb{P}^{1} \times \mathbb{P}^{1}, \operatorname{Aut}\left(S_{1} \times S_{2}\right)=\left(\operatorname{Aut}\left(S_{1}\right) \times \operatorname{Aut}\left(S_{2}\right)\right) \ltimes \mathbb{Z}_{2}$;
- If $S_{1}=S_{2}=\mathbb{P}^{1} \times \mathbb{P}^{1}, \operatorname{Aut}\left(S_{1} \times S_{2}\right)=\left(\operatorname{Aut}\left(\mathbb{P}^{1}\right)^{\times 4}\right) \ltimes S_{4}$.

Proof. If $\rho\left(S_{i}\right) \leq 3, S_{i}$ is a smooth toric variety. For a complete simplicial toric variety the sequence

$$
1 \rightarrow \operatorname{Aut}^{0}(X) \rightarrow \operatorname{Aut}(X) \rightarrow \frac{\operatorname{Aut}(N, \Delta)}{\Pi S_{\Delta_{i}}} \rightarrow 1
$$

is exact by a result of Cox (see [5]). We will see that this extension is a split extension in all our cases and hence $\operatorname{Aut}(X)$ can be seen as a semidirect product of $\operatorname{Aut}^{0}(X)$ and $\frac{\operatorname{Aut}(N, \Delta)}{\Pi S_{\Delta_{i}}}$. The proof will be completed analysing the structure of these two groups.

We call $\Delta_{S_{i}} \subset \mathbb{Z}^{2}=: N_{i}$ the fan of S_{i} and denote with $\Delta_{S_{i}}(1)=\left\{e_{0}, \ldots, e_{r_{i}}\right\}$ the set of the rays of the fan. The following table summarizes the rays of
the fans we need.

S	e_{1}	e_{2}	e_{3}	e_{4}	e_{5}	e_{6}
\mathbb{P}^{2}	$[1,0]$	$[0,1]$	$[-1,-1]$			
$\mathbb{P}^{1} \times \mathbb{P}^{1}$	$[1,0]$	$[0,1]$	$[-1,0]$	$[0,-1]$		
$d P_{8}$	$[1,0]$	$[0,1]$	$[-1,0]$	$[-1,-1]$		
$d P_{7}$	$[1,0]$	$[0,1]$	$[-1,0]$	$[0,-1]$	$[-1,-1]$	
$d P_{6}$	$[1,0]$	$[0,1]$	$[-1,0]$	$[0,-1]$	$[-1,-1]$	$[1,1]$

If $\Delta \subset \mathbb{Z}^{4}=N$ is the fan of X, then $\Delta(1)=\left(\Delta_{S_{1}} \times\{[0,0]\}\right) \cup(\{[0,0]\} \times$ $\left.\Delta_{S_{2}}\right) . \operatorname{Aut}(N, \Delta)$ will denote the group of the automorphisms of the lattice N that fixes the fan Δ. By direct computation, we show that

- If $S_{1} \neq S_{2}, \operatorname{Aut}(N, \Delta)=\operatorname{Aut}\left(N_{1}, \Delta_{S_{1}}\right) \times \operatorname{Aut}\left(N_{2}, \Delta_{S_{2}}\right)$;
- If $S_{1}=S_{2} \neq \mathbb{P}^{1} \times \mathbb{P}^{1}, \operatorname{Aut}(N, \Delta)=\left(\operatorname{Aut}\left(N_{1}, \Delta_{S_{1}}\right) \times \operatorname{Aut}\left(N_{2}, \Delta_{S_{2}}\right)\right) \ltimes$ \mathbb{Z}_{2};
- If $S_{1}=S_{2}=\mathbb{P}^{1} \times \mathbb{P}^{1}, \operatorname{Aut}(N, \Delta)=S_{4} \ltimes \mathbb{Z}_{2}^{4}$.

It is possible to associate a divisor D_{i} to each $e_{i} \in \Delta(1)$ and we say than $e_{i} \sim e_{j}$ iff D_{i} and D_{j} are linearly equivalent. Call $\left\{\Delta_{i}\right\}$ the partition of $\Delta(1)$ obtained by taking the quotient with respect to \sim. Call $S_{\Delta_{i}}$ the permutation group over Δ_{i}. It is easy to see that this partition does not mix rays coming from different factors of the product so we can write $S_{\Delta_{i}}^{1}$ or $S_{\Delta_{i}}^{2}$ to mean a permutation group that acts on the first or on the second factor. Call H the quotient of $\operatorname{Aut}(N, \Delta)$ with respect to $\Pi S_{\Delta_{i}}=\Pi S_{\Delta_{i}}^{1} \times \Pi S_{\Delta_{i}}^{2}$. Then

- If $S_{1} \neq S_{2}, H=\frac{\operatorname{Aut}\left(N_{1}, \Delta_{S_{1}}\right)}{\Pi S_{\Delta_{i}}^{1}} \times \frac{\operatorname{Aut}\left(N_{2}, \Delta_{S_{2}}\right)}{\Pi S_{\Delta_{i}}^{2}}$;
- If $S_{1}=S_{2} \neq \mathbb{P}^{1} \times \mathbb{P}^{1}, H=\left(\frac{\operatorname{Aut}\left(N_{1}, \Delta_{S_{1}}\right)}{\Pi S_{\Delta_{i}}^{1}} \times \frac{\operatorname{Aut}\left(N_{2}, \Delta_{S_{2}}\right)}{\Pi S_{\Delta_{i}}^{2}}\right) \ltimes \mathbb{Z}_{2}$;
- If $S_{1}=S_{2}=\mathbb{P}^{1} \times \mathbb{P}^{1}, H=\frac{S_{4} \ltimes Z_{2}^{4}}{\mathbb{Z}_{2}^{4}} \simeq S_{4}$.

Here a small summary of these groups.

S	$\operatorname{Aut}\left(N_{S}, \Delta_{S}\right)$	$\prod S_{\Delta_{i}}$	$\operatorname{Aut}\left(N_{S}, \Delta_{S}\right) / \prod S_{\Delta_{i}}$
\mathbb{P}^{2}	$\operatorname{Sym}\left(e_{1}, e_{2}, e_{3}\right)$	$\operatorname{Sym}\left(e_{1}, e_{2}, e_{3}\right)$	Id
$\mathbb{P}^{1} \times \mathbb{P}^{1}$	$\langle(13),(1234)\rangle$	$\langle(13),(24)\rangle$	\mathbb{Z}_{2}
$d P_{8}$	$\langle(24)\rangle$	$\langle(24)\rangle$	Id
$d P_{7}$	$\langle(12)(34)\rangle$	Id	\mathbb{Z}_{2}
$d P_{6}$	$\operatorname{Sym}\left(e_{1}, e_{2}, e_{5}\right) \times\langle-\mathrm{Id}\rangle$	Id	$S_{3} \times \mathbb{Z}_{2}$

To see that the sequence splits, consider, for example, the case $X=d P_{8} \times$ $d P_{7}$ for which $H=\operatorname{Id} \times \mathbb{Z}_{2}=\langle\sigma\rangle$. This group is generated by the automorphism of the fan of $d P_{7}$ that switches the rays associated to the two exceptional divisors of $d P_{7}$, thus a section of $\operatorname{Aut}(X) \rightarrow H$ is given by $\sigma \mapsto A$ where A is an automorphism of \mathbb{P}^{2} that switches the two points that are blown up to obtain $d P_{7}$. All the other cases can be described in a similar way.
$\operatorname{Aut}^{0}(X)$ is the connected component of the identity in $\operatorname{Aut}(X)$ and now we will show that $\operatorname{Aut}^{0}(X)=\operatorname{Aut}^{0}\left(S_{1}\right) \times \operatorname{Aut}^{0}\left(S_{2}\right)$. By a result of Cox (see again [5])

$$
\operatorname{Aut}^{0}(X) \simeq \frac{\operatorname{Aut}_{g}(S)}{\operatorname{Hom}_{\mathbb{Z}}\left(\operatorname{Pic}(X), \mathbb{C}^{*}\right)}
$$

where $\operatorname{Aut}_{g}(S)$ is the group of the automorphisms of the homogeneous coordinate ring S of X, regarded as graded \mathbb{C}-algebra. This group is spanned by $\left(\mathbb{C}^{*}\right)^{|\Delta(1)|}=\left(\mathbb{C}^{*}\right)^{\left|\Delta \Delta_{1}(1)\right|+\left|\Delta_{S_{2}}(1)\right|}$ and by the elements $y_{m}(\lambda)$ where $\lambda \in$ \mathbb{C} and $m \in R(N, \Delta)$ (the elements of $R(N, \Delta)$ are the roots of $\operatorname{Aut}(X))$. We show that each $y_{m}(\lambda)$ can be written in a unique way as the product of $f_{i} \in \operatorname{Aut}_{g}\left(R_{i}\right)$ where R_{i} is the coordinate ring of S_{i}. This shows that $\operatorname{Aut}_{g}(S) \simeq \operatorname{Aut}_{g}\left(R_{1}\right) \times \operatorname{Aut}_{g}\left(R_{2}\right)$. The group $\operatorname{Hom}_{\mathbb{Z}}\left(\operatorname{Pic}(X), \mathbb{C}^{*}\right)$ splits as $\operatorname{Hom}_{\mathbb{Z}}\left(\operatorname{Pic}\left(S_{1}\right), \mathbb{C}^{*}\right) \times \operatorname{Hom}_{\mathbb{Z}}\left(\operatorname{Pic}\left(S_{2}\right), \mathbb{C}^{*}\right) \operatorname{because} \operatorname{Pic}(X)=\operatorname{Pic}\left(S_{1}\right) \oplus \operatorname{Pic}$ $\left(S_{2}\right)$. Then, the quotient can be viewed as a product of the quotient giving

$$
\operatorname{Aut}^{0}(X)=\operatorname{Aut}^{0}\left(S_{1}\right) \times \operatorname{Aut}^{0}\left(S_{2}\right)
$$

The claim follows from the combination of the facts above. For example, consider again the case $X=d P_{8} \times d P_{7}$. Since $\operatorname{Aut}\left(d P_{8}\right)$ is connected, we have $\operatorname{Aut}^{0}(X)=\operatorname{Aut}\left(d P_{8}\right) \times K$, where

$$
K \simeq\left\langle\left[\begin{array}{lll}
1 & 0 & * \\
0 & * & * \\
0 & 0 & *
\end{array}\right]\right\rangle
$$

Since $H=\operatorname{Id} \times \mathbb{Z}_{2}$, we obtain

$$
\begin{aligned}
\operatorname{Aut}(X) & \left.\simeq \operatorname{Aut}\left(d P_{8}\right) \times K\right) \ltimes\left(\operatorname{Id} \times \mathbb{Z}_{2}\right) \\
& =\operatorname{Aut}\left(d P_{8}\right) \times\left(K \ltimes \mathbb{Z}_{2}\right)=\operatorname{Aut}\left(d P_{8}\right) \times \operatorname{Aut}\left(d P_{7}\right) .
\end{aligned}
$$

Combining all these results, we obtain
Theorem 7.5. Let S_{1} and S_{2} be two del Pezzo surfaces. Then

- If $S_{1} \neq S_{2}, \operatorname{Aut}\left(S_{1} \times S_{2}\right)=\operatorname{Aut}\left(S_{1}\right) \times \operatorname{Aut}\left(S_{2}\right) ;$
- If $S_{1}=S_{2} \neq \mathbb{P}^{1} \times \mathbb{P}^{1}, \operatorname{Aut}\left(S^{\times 2}\right)=\operatorname{Aut}(S)^{\times 2} \ltimes \mathbb{Z}_{2}$;
- If $S_{1}=S_{2}=\mathbb{P}^{1} \times \mathbb{P}^{1}, \operatorname{Aut}\left(\left(\mathbb{P}^{1}\right)^{\times 4}\right)=\operatorname{Aut}\left(\mathbb{P}^{1}\right)^{\times 4} \ltimes S_{4}$.

8 List of the threefolds obtained

In the previous sections we constructed examples of quotients of Calabi-Yau threefolds Y embedded in $S_{1} \times S_{2}$ by groups that are of maximal order in the sense that a group $H \leq \operatorname{Aut}\left(S_{1} \times S_{2}\right)$ such that the restriction to Y gives a free action, cannot have greater order than the ones used. If Y is a CalabiYau threefold and G is a group acting freely on Y the same holds true each $H \leq G$. Moreover $Y / H \rightarrow Y / G$ is an étale covering. In the following table we summarize all the quotients analysed and all the étale coverings obtained by taking quotient with respect to subgroups. Also the known examples are shown. The column $m(|G|) / M$ represents the ratio of the maximal order of the existing group action freely on Y and the estimated ($M=M\left(S_{1}, S_{2}\right)$). In the column $\Pi_{1}(Y / G)$ the fundamental group of the quotient is written. When for two isomorphic subgroups H_{1} and H_{2} of G, we obtain $h^{11}\left(Y / H_{1}\right)=$ $h^{11}\left(Y / H_{2}\right)$ and $h^{12}\left(Y / H_{1}\right)=h^{12}\left(Y / H_{2}\right)$ we represent them in the table in one row indicating that multiple subgroups give the same result by their number between round brackets. For example, taking $S_{1}=S_{2}=\mathbb{P}^{2}$ and $G \simeq \mathbb{Z}_{3} \oplus \mathbb{Z}_{3}$ there are 4 subgroups of order 3 and each of them gives a manifold with Hodge numbers $(2,29)$. In the table, this is summarized by writing $\mathbb{Z}_{3}(4)$ in the column of $\Pi_{1}(Y / H)$. In the last column, a " Y " means that the height obtained for the quotient threefold is the least possible, a " N " means the opposite and a "?" means that we do not know if this is the case or not. The pairs (S_{1}, S_{2}) for which $M\left(S_{1}, S_{2}\right)=1$ are omitted.

S_{1}	S_{2}	$\max (\|G\|) / M$	$\|G\|$	$\Pi_{1}(Y / H)$	h^{11}	h^{12}	h	\min ?
\mathbb{P}^{2}	\mathbb{P}^{2}	9/9	9	$\mathbb{Z}_{3} \oplus \mathbb{Z}_{3}$	2	11	13	Y
			3	$\mathbb{Z}_{3}(4)$	2	29	31	N
			1	\{Id\}	2	83	85	N
\mathbb{P}^{2}	$d P_{6}$	3/3	3	\mathbb{Z}_{3}	3	21	24	Y
			1	\{Id\}	5	59	64	N
\mathbb{P}^{2}	$d P_{3}$	3/3	3	\mathbb{Z}_{3}	4	13	17	Y
			1	\{Id\}	8	35	43	N
$\mathbb{P}^{1} \times \mathbb{P}^{1}$	$\mathbb{P}^{1} \times \mathbb{P}^{1}$	16/16	16	$\mathbb{Z}_{8} \oplus \mathbb{Z}_{2}$	1	5	6	Y
			8	$\mathbb{Z}_{4} \oplus \mathbb{Z}_{2}$	2	10	12	N
			8	$\mathbb{Z}_{8}(2)$	1	9	10	N
			4	$\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}$	4	20	24	N
			4	$\mathbb{Z}_{4}(2)$	2	18	20	N
			2	$\mathbb{Z}_{2}(3)$	4	36	40	N
			1	\{Id\}	4	68	72	N

gilberto bini and filippo F. Favale

S_{1}	S_{2}	$\max (\|G\|) / M$	$\|G\|$	$\Pi_{1}(Y / H)$	h^{11}	h^{12}	h	min?
$\mathbb{P}^{1} \times \mathbb{P}^{1}$	$d P_{6}$	2/2	2	\mathbb{Z}_{2}	5	29	34	Y
			1	\{Id\}	6	54	60	N
$d P_{6}$	$d P_{6}$	12/12	12	\mathbb{Z}_{12}	1	4	5	Y
			6	\mathbb{Z}_{6}	2	8	10	N
			4	\mathbb{Z}_{4}	3	12	15	N
			3	\mathbb{Z}_{3}	4	16	20	N
			2	\mathbb{Z}_{2}	6	24	30	N
			1	\{Id\}	8	44	52	N
${ }^{4} P_{6}$	$d P_{6}$	12/12	12	Dic_{3}	1	4	5	Y
			6	\mathbb{Z}_{6}	2	8	10	N
			4	$\mathbb{Z}_{4}(3)$	3	12	15	N
			3	\mathbb{Z}_{3}	4	16	20	N
			2	\mathbb{Z}_{2}	6	24	30	N
			1	\{Id\}	8	44	52	N
$d P_{6}$	$d P_{4}$	2/2	2	\mathbb{Z}_{2}	7	19	26	?
			1	\{Id\}	10	34	44	N
${ }^{\text {d }} P_{6}$	$d P_{3}$	3/9	3	\mathbb{Z}_{3}	5	11	16	Y
			1	\{Id\}	11	29	40	N
$d P_{5}$	$d P_{5}$	5/5	5	\mathbb{Z}_{5}	2	7	9	Y
			1	\{Id\}	10	35	45	N
$d P_{4}$	$d P_{4}$	8/8	8	$\mathbb{Z}_{4} \oplus \mathbb{Z}_{2}$	3	5	8	?
			4	$\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}$	6	10	16	N
			4	$\mathbb{Z}_{4}(2)$	4	8	12	N
			2	$\mathbb{Z}_{2}(3)$	8	16	24	N
			1	\{Id $\}$	12	28	40	N
$d P_{3}$	$d P_{3}$	3/3	3	\mathbb{Z}_{3}	6	9	15	Y
			1	\{Id\}	14	23	37	N
$\mathbb{P}^{1} \times \mathbb{P}^{1}$	$d P_{4}$	4/4	4	$\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}$	5	13	18	?
			2	$\mathbb{Z}_{2}(3)$	6	22	28	N
			1	\{Id\}	8	40	48	N

Acknowledgments

During the preparation of this work, we asked some questions and suggestions to various people we kindly acknowledge: Alberto Alzati, Cinzia Casagrande, Philip Candelas, Igor Dolgachev, Bert van Geemen, Grzegorz Kapustka, Michal Kapustka, Antonio Lanteri and Gian Pietro Pirola. This work was partially supported by MIUR and GNSAGA.

References

[1] F. Bogomolov and Y. Tschinkel, (eds.) Geometric methods in algebra and number theory, Progress in Mathematics, 235. Birkhäuser Boston Inc., Boston, MA, 2005. Including papers from the Winter School held at the University of Miami, Miami, FL, 16-20 December, 2003.
[2] V. Braun, The 24-Cell and Calabi-Yau threefolds with Hodge numbers (1,1), (2011), arXiv:1102.4880v1.
[3] V. Braun, P. Candelas and R. Davies, A three-generation Calabi-Yau manifold with small Hodge numbers, Fortschr. Phys. 58(4-5) (2010), 467-502.
[4] P. Candelas and R. Davies, New Calabi-Yau manifolds with small Hodge numbers, Fortschr. Phys. 58(4-5) (2010), 383-466.
[5] D.A. Cox, The homogeneous coordinate ring of a toric variety, J. Algebraic Geom. 4(1) (1995), 17-50.
[6] R. Davies, The expanding zoo of Calabi-Yau threefolds, (2011), arXiv:1103.3156v1.
[7] I. Dolgachev, Topics in classical algebraic geometry, http://www.math. lsa.umich.edu/idolga/topics.pdf, 2010.
[8] I.V. Dolgachev and V.A. Iskovskikh, Finite subgroups of the plane Cremona group. In Algebra, arithmetic, and geometry: in honor of Yu. I. Manin. Vol. I, Progr. Math. 269, pp. 443-548. Birkhäuser Boston Inc., Boston, MA, 2009.
[9] E. Freitag and R. Salvati Manni, On Siegel threefolds with projective Calabi-Yau model, (2011), arXiv:1103.2040.
[10] J. Harris, Algebraic geometry, Graduate Texts in Mathematics 133. Springer-Verlag, New York, 1995. A first course, Corrected reprint of the 1992 original.
[11] A. Horing and C. Voisin, Anticanonical divisors and curve classes on Fano manifolds, (2010), arXiv:1009.2853v1.
[12] K. Matsuki, Introduction to the Mori program, Universitext. SpringerVerlag, New York, 2002.
[13] G. Tian and S.-T. Yau, Three-dimensional algebraic manifolds with $C_{1}=0$ and $\chi=-6$. Mathematical aspects of string theory (San Diego, Calif., 1986), Adv. Ser. Math. Phys. 1, 543-559. World Sci. Publishing, Singapore, 1987.
[14] G. Tian and S.-T. Yau, Complete Kähler manifolds with zero Ricci curvature. I, J. Amer. Math. Soc. 3(3) (1990), 579-609.
[15] C. Voisin, Hodge theory and complex algebraic geometry. I, Cambridge Studies in Advanced Mathematics 76. Cambridge University Press, Cambridge, english edition, 2007. Translated from the French by Leila Schneps.

[^0]: e-print archive: http://lanl.arXiv.org/abs/1104.0247v1

[^1]: ${ }^{1} \chi\left(\mathcal{O}_{S}\right)=\frac{K_{S}^{2}+\chi(S)}{12}$.
 ${ }^{2}$ One could easily check that

[^2]: ${ }^{3}$ By this result, one can show that an element of order 16 cannot exist in $\left(\operatorname{Aut}\left(\mathbb{P}^{1}\right)\right)^{4} \ltimes$ S_{4} with the request we made. In fact, if such g existed, g^{2} would have order 8 and $g^{2}=\left(A_{1}, A_{2}, A_{3}, A_{4}\right) \circ \sigma^{2}$ with σ^{2} permutation of order 4. This is not possible for an element of \mathfrak{S}_{4}.

[^3]: ${ }^{4}$ The pullback D of a (-1)-line E for example.

