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Abstract

It is known that given a stable holomorphic pair (E, φ), where E is a
holomorphic vector bundle on a compact Kähler manifold X and φ is a
holomorphic section of E, the vector bundle E admits a Hermitian metric
solving the vortex equation. We generalize this to pairs (E , φ), where E
is a reflexive sheaf on X.

1 Introduction

The Hitchin–Kobayashi correspondence states that a holomorphic vector
bundle E on a compact Kähler manifold (X, ω) admits a Hermitian–Einstein
metric if and only if it is polystable in the sense of Mumford–Takemoto.
In [5, 6, 9, 10], Bradlow and Garćıa–Prada established a generalization of
this correspondence to the context of holomorphic pairs, consisting of a
holomorphic vector bundle E and a global holomorphic section φ which is
not identically equal to zero. Instead of Hermitian–Einstein metrics, they
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considered Hermitian metrics on E satisfying the so-called τ -vortex equa-
tion, which additionally depends on the section φ and a real parameter τ .
This equation can be seen as a dimensional reduction of the Hermitian–
Einstein equation for an SU(2)-equivariant vector bundle on X × P

1, where
SU(2) acts trivially on X and in the standard way on P

1 [11]. The notion
of a stable vector bundle on X extends to the notion of τ -stable holomor-
phic pairs. Using the dimensional reduction procedure it was shown that a
τ -stable holomorphic pair admits a Hermitian metric satisfying the τ -vortex
equation.

In [3], Bando and Siu generalized the notion of Hermitian–Einstein metrics
to reflexive sheaves E by considering a special class of Hermitian metrics on
the locally free part of E called admissible metrics. They proved that every
stable reflexive sheaf on a compact Kähler manifold admits an admissible
Hermitian–Einstein metric. This work of Bando and Siu has turned out to
be extremely useful testified by its numerous applications.

Our aim here is to unify these two generalizations to obtain an analogous
existence theorem for pairs consisting of a reflexive sheaf and a global sec-
tion. This answers a question of Tian and Yang (see Remark 1 in [12] after
[12, Theorem 4.6]).

We prove the following (see Theorem 13 and Corollary 17):

Theorem 1. Let (E , φ) be a reflexive sheaf pair on a compact Kähler man-
ifold (X, ω), and let τ be a real number. Let S ⊂ X be the singular set for
E, and

τ̂ =
τ vol(X)

4π
.

Then (E , φ) is τ̂ -polystable if and only if there exists an admissible Hermitian
metric on E|X\S satisfying the τ -vortex equation.

In [4] a corresponding result for Higgs sheaves was established.

2 Preparations and statement of the theorem

Let (X, ω) be a compact connected Kähler manifold of complex dimension
n, and let E be a torsion-free coherent analytic sheaf on X. We recall a few
standard definitions.
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Definition 2.

(1) The degree of E (with respect to ω) is defined in terms of cohomology
classes as follows:

deg(E) :=
1

(n − 1)!
(c1(E) ∪ [ω]n−1) ∩ [X] ∈ R,

where c1(E) = c1(det E) is the first Chern class of E , defined using the
determinant line bundle det E of E , and [ω] ∈ H2(X, R) is the coho-
mology class of ω.

(2) The singular set for E is the closed analytic subset of X outside which
E is locally free.

(3) If rank(E) > 0, the slope of E is defined to be the ratio

μ(E) :=
deg(E)
rank(E)

.

Here, rank(E) denotes the rank of E outside its singular set.

Definition 3.

(1) E is said to be stable (with respect to ω) if

μ(E ′) < μ(E)

holds for every coherent analytic subsheaf E ′ of E with 0 < rank(E ′) <
rank(E).

(2) E is said to be polystable if E is a direct sum

E = E1 ⊕ · · · ⊕ Em

of stable subsheaves with the same slope μ(Ei) = μ(E) for all i.

For later use, we also explain how this relates to group actions. Let G
be a compact Lie group acting holomorphically on X and preserving the
Kähler form ω. Then there is a G-invariant version of the above definition.
Namely, let E be G-equivariant, meaning E is equipped with a lift of the
action of G on X to E .

Definition 4. E is said to be G-invariantly stable (with respect to ω) if

μ(E ′) < μ(E)

holds for every G-invariant coherent analytic subsheaf E ′ of E with 0 <
rank(E ′) < rank(E).
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Now let E be a holomorphic vector bundle on X.

Definition 5. A Hermitian metric h on E is called a Hermitian–Einstein
metric (with respect to ω) if

√−1ΛωFh = λ idE for some λ ∈ R,

where Λω is the adjoint of forming the wedge product with ω, Fh is the cur-
vature of the Chern connection for h and idE is the identity automorphism
of E.

There is a correspondence between stability and Hermitian–Einstein met-
rics known as the Hitchin–Kobayashi correspondence, which was proved by
Donaldson [7, 8] and Uhlenbeck and Yau [13,14]. We recall it:

Theorem 6. A holomorphic vector bundle E on X admits a Hermitian–
Einstein metric if and only if E is polystable.

In [3], Bando and Siu established a Hitchin–Kobayashi correspondence
for the more general situation of reflexive sheaves.

Let E be a torsion-free coherent analytic sheaf on X. Let S ⊂ X be the
singular set for E . So S is a closed complex analytic subset of X of codi-
mension at least 2. We recall the definition of Hermitian–Einstein metrics
for sheaves.

Definition 7. A Hermitian metric h on the holomorphic vector bundle
E|X\S is called admissible if the following conditions are satisfied:

(A1) The Chern curvature Fh of h is square-integrable.
(A2) The contracted Chern curvature ΛωFh is bounded.

Using a heat equation approach, Bando and Siu proved the following
version of the Hitchin–Kobayashi correspondence.

Theorem 8 ([3], Theorem 3). A reflexive sheaf E on a compact Kähler
manifold admits an admissible Hermitian–Einstein metric if and only if E
is polystable.

In what follows, we will be concerned with what we call sheaf pairs.

Definition 9. A sheaf pair on X is a pair (E , φ), where

• E is a coherent analytic sheaf on X, and
• φ ∈ H0(X, E) \ {0} is a global section of E (so φ is not identically zero).
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A sheaf pair (E , φ) is called torsion-free (respectively, reflexive) if E is a
torsion-free (respectively, reflexive) sheaf on X. If E is locally free, then
(E , φ) is called a holomorphic pair.

In [6], Bradlow introduced a notion of stability for holomorphic pairs (see
also [11]) depending on a real parameter τ ; the definition extends to the
set-up of torsion-free sheaf pairs.

Definition 10. Let τ be a real number. A torsion-free sheaf pair (E , φ) is
called τ -stable (with respect to ω) if the following conditions are satisfied.

• μ(E ′) < τ for every coherent analytic subsheaf E ′ of E with rank(E ′) >
0.

• μ(E/E ′) > τ for every coherent analytic subsheaf E ′ of E with 0 <
rank(E ′) < rank(E) and φ ∈ H0(X, E ′).

A torsion-free sheaf pair (E , φ) is called τ -polystable if it is either τ -stable
or E decomposes as a direct sum

E = E ′ ⊕ E ′′

of coherent analytic subsheaves such that φ ∈ H0(X, E ′), the sheaf pair
(E ′, φ) is τ -stable and the sheaf E ′′ is polystable with slope μ(E ′′) = τ .

In the case of holomorphic pairs, the appropriate replacement for a
Hermitian–Einstein metric is a metric satisfying the so-called vortex equa-
tion, which also depends on a real parameter τ and has been studied by
Bradlow [5,6] and Garćıa–Prada [9, 10].

Definition 11. Let τ be a real number. Given a holomorphic pair (E, φ),
a Hermitian metric h on E is said to satisfy the τ -vortex equation if

ΛωFh −
√−1

2
φ ◦ φ∗ +

√−1
2

τ idE = 0,

where φ is regarded as a homomorphism from the trivial holomorphic
Hermitian line bundle on X to E and φ∗ denotes the adjoint of φ with
respect to h.

The following theorem is proved in [11] (see [11, Theorem 4.33]).



718 INDRANIL BISWAS AND MATTHIAS STEMMLER

Theorem 12. Let (E, φ) be a holomorphic pair on a compact Kähler
manifold (X, ω), and let τ be a real number. If (E, φ) is τ̂ -stable, where

τ̂ =
τ vol(X)

4π
,

then there exists a Hermitian metric on E satisfying the τ -vortex equation.
Here, vol(X) denotes the volume of X with respect to ω.

We will prove the following theorem.

Theorem 13. Let (E , φ) be a reflexive sheaf pair on a compact Kähler man-
ifold (X, ω), and let τ be a real number. Let S ⊂ X be the singular set for
E, and define

τ̂ =
τ vol(X)

4π
.

If (E , φ) is τ̂ -stable, then there exists an admissible Hermitian metric on
E|X\S satisfying the τ -vortex equation.

Remark 14. If φ = 0, then the τ -vortex equation imposes the constraint
that τ̂ = μ(E). However, given a stable reflexive sheaf E , the pair (E , 0) is
τ ′-stable for all τ ′ = μ(E) + ε with ε > 0 sufficiently small, implying that
the above constraint is violated. This accounts for the condition φ 
= 0 in
the definition of sheaf pairs.

The rest of this note will be concerned with the proof of Theorem 13.
We first apply the technique of dimensional reduction to obtain an SU(2)-
invariantly stable reflexive sheaf on X × P

1. Then we show that the admis-
sible Hermitian–Einstein metric obtained by Theorem 8 yields an admissible
Hermitian metric satisfying the vortex equation.

3 Proof of Theorem 13

Suppose we are in the situation of Theorem 13. First we apply the technique
of dimensional reduction for sheaf pairs, which was developed in [11].

Consider the compact complex manifold X × P
1, where P

1 is the complex
projective line. Let

p : X × P
1 −→ X and q : X × P

1 −→ P
1
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be the natural projections. Let SU(2) act on X × P
1 by acting trivially

on X and in the standard way on P
1, by regarding P

1 as (C2 \ {0})/C
∗ =

SU(2)/ U(1).

According to [11] (see [11, Proof of Theorem 4.9]), the sheaf pair (E , φ)
defines an SU(2)-equivariant coherent analytic sheaf F on X × P

1 given as
an extension

0 −→ p∗E −→ F −→ q∗O(2) −→ 0, (3.1)

where O(2) = TP
1 is the line bundle of degree 2 on P

1 (see also [1, Theorem
1.1]). To see how the section φ is involved, note that extensions of the form
(3.1) are parametrized by

Ext1X×P1(q∗O(2), p∗E).

Since q∗O(2) is locally free, this group is isomorphic to H1(X × P
1, p∗E ⊗

q∗O(−2)), which is isomorphic to H0(X, E) (cf. [11, Proof of Theorem 4.9]).

Since E is in particular a torsion-free sheaf on X, the complex analytic
subset S in Theorem 13 is of codimension at least 2. Being an extension
of p∗E by the locally free sheaf q∗O(2), the sheaf F is locally isomorphic to
the direct sum p∗E ⊕ q∗O(2). Therefore, F is locally free on p−1(X \ S) =
(X \ S) × P

1. Also, since the projection p is a flat morphism, F is a reflexive
sheaf on X × P

1.

Denote by E and F the holomorphic vector bundles corresponding to the
locally free sheaves E|X\S and F|(X\S)×P1 , respectively. Note that in the C∞
category, we have an isomorphism

F 
 p∗E ⊕ q∗O(2).

There is a relation between the τ -stability of the pair (E , φ) and the
stability of F with respect to a special Kähler metric on X × P

1 encoding
the parameter τ . More precisely, for every positive real number σ consider
the Kähler form

Ωσ := p∗ω ⊕ σq∗ωP1

on X × P
1, where ωP1 is the normalized Fubini–Study Kähler form on P

1,
such that

∫

P1 ωP1 = 1. Then we have the following theorem [2, Theorem 4.21]
(see also [11, Theorem 4.9]):



720 INDRANIL BISWAS AND MATTHIAS STEMMLER

Theorem 15. Let (E , φ) be a sheaf pair on a compact Kähler manifold
(X, ω). Let F be the SU(2)-equivariant coherent analytic sheaf on X × P

1

determined by (E , φ) as the extension (3.1), and let the numbers σ and τ be
related by

σ =
2 vol(X)

(rank(E) + 1) τ − deg(E)
. (3.2)

Then (E , φ) is τ -stable if and only if σ > 0 and F is SU(2)-invariantly stable
with respect to Ωσ.

Consequently, in the situation of Theorem 13, we know that F is SU(2)-
invariantly stable with respect to Ωσ, where σ is determined from τ by
(3.2). As in [9, Theorem 6], it follows that F is polystable with respect
to Ωσ. By Theorem 8, there is an admissible Hermitian–Einstein metric
˜h on the holomorphic vector bundle F with respect to Ωσ. By pulling
back ˜h by each element of SU(2) and averaging over the group using the
Haar measure on the compact group SU(2), we can assume that ˜h is an
SU(2)-invariant Hermitian–Einstein metric, cf. [9, proof of Theorem 5]. As
in [11, Proposition 3.2], according to the C∞ decomposition

F 
 p∗E ⊕ q∗O(2) (3.3)

of vector bundles on (X \ S) × P
1, the metric ˜h decomposes as

˜h = p∗h ⊕ q∗h′,

where h is a Hermitian metric on the holomorphic vector bundle E on X \
S, and h′ is an SU(2)-invariant Hermitian metric on the holomorphic line
bundle O(2) on P

1. In order to complete the proof of the theorem, we have
to show that h is admissible and satisfies the τ -vortex equation. The latter
follows as in [11, Proposition 3.11].

Proposition 16. Let the numbers σ and τ̂ be related by

σ =
2 vol(X)

(rank(E) + 1) τ̂ − deg E
,

where

τ̂ =
τ vol(X)

4π
.
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Then in the situation considered above, the metric h on E satisfies the
τ -vortex equation if and only if ˜h is a Hermitian–Einstein metric on F with
respect to Ωσ.

We repeat some details of the argument so that we can explain how it also
yields the admissibility of h. By [11, Proposition 3.5], the Chern connec-
tion D

˜h
for the Hermitian holomorphic vector bundle (F,˜h) can be written

according to the decomposition (3.3) as

D
˜h

=
(

Dp∗h β
−β∗ Dq∗h′

)

,

where Dp∗h and Dq∗h′ are the Chern connections for p∗h and q∗h′, respec-
tively, β is a 1-form with values in Hom(q∗O(2), p∗E), and β∗ is the adjoint
of β with respect to ˜h. In fact,

β = p∗φ ⊗ q∗α,

where α ∈ Ω0,1(P1,O(−2)) is an SU(2)-invariant form which is unique up to
a multiplicative constant. The curvature of D

˜h
can then be written as

F
˜h

=
(

Fp∗h − β ∧ β∗ ∂β
−∂̄β∗ Fq∗h′ − β∗ ∧ β

)

, (3.4)

where ∂ and ∂̄ denote the components of the induced connection on
Hom(q∗O(2), p∗E). If α is chosen such that α ∧ α∗ =

√−1
2 σωP1 , then we

have

β ∧ β∗ =
√−1

2
σp∗(φ ◦ φ∗) ⊗ q∗ωP1 ,

β∗ ∧ β = −
√−1

2
σp∗(φ∗ ◦ φ) ⊗ q∗ωP1 .

The Hermitian–Einstein equation for ˜h,
√−1ΛΩσF

˜h
= λ idF ,

can then be translated into the equations

ΛωFh −
√−1

2
φ ◦ φ∗ +

√−1
2

τ idE = 0, (3.5)
√−1

2
φ∗ ◦ φ − 4π

√−1
σ

+
√−1

2
τ = 0, (3.6)

and (3.5) is the vortex equation for (E, h).
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We shall check the admissibility of h. Condition (A2) in Definition 7
follows immediately from (3.5) and (3.6). In fact, (3.6) implies that the
function

φ∗ ◦ φ = tr(φ∗ ◦ φ) = tr(φ ◦ φ∗) = |φ|2h
is constant, where tr denotes the trace and φ∗ ◦ φ and φ ◦ φ∗ are regarded
as endomorphisms of OX and E, respectively. Consequently, the norm of
φ ◦ φ∗ is

|φ ◦ φ∗|2h = tr(φ ◦ φ∗ ◦ (φ ◦ φ∗)∗) = |φ|4h
and therefore it is also constant. Now (3.5) implies the boundedness of
|ΛωFh|h.

Condition (A1) follows in the same way from the admissibility of ˜h: Since
F

˜h
is square-integrable, we know by (3.4) that Fp∗h − β ∧ β∗ and Fq∗h′ −

β∗ ∧ β are square-integrable. Since Fq∗h′ has no singularities and the norms
of β ∧ β∗ and β∗ ∧ β coincide, it follows that Fp∗h, and hence Fh, is square-
integrable. This shows the admissibility of h, and completes the proof of
Theorem 13.

It is straight-forward to check that if a reflexive sheaf pair (E , φ) on (X, ω)
has an admissible Hermitian metric satisfying the τ -vortex equation, then
(E , φ) is τ̂ -polystable. Therefore, Theorem 13 has the following corollary.

Corollary 17. Let (E , φ) be a reflexive sheaf pair on a compact Kähler
manifold (X, ω), and let τ be a real number. Let S ⊂ X be the singular set
for E, and

τ̂ =
τ vol(X)

4π
.

Then (E , φ) is τ̂ -polystable if and only if there exists an admissible Hermitian
metric on E|X\S satisfying the τ -vortex equation.
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[1] L. Álvarez-Cónsul and O. Garćıa–Prada, Dimensional reduction,
SL(2, C)-equivariant bundles and stable holomorphic chains, Int.
J. Math. 12 (2001), 159–201.
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