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Abstract

What are called secondary characteristic classes in Chern–Weil the-
ory are a refinement of ordinary characteristic classes of principal bundles
from cohomology to differential cohomology. We consider the problem of
refining the construction of secondary characteristic classes from coho-
mology sets to cocycle spaces; and from Lie groups to higher connected
covers of Lie groups by smooth ∞-groups, i.e., by smooth groupal A∞-
spaces. Namely, we realize differential characteristic classes as morphisms
from ∞-groupoids of smooth principal ∞-bundles with connections to
∞-groupoids of higher U(1)-gerbes with connections. This allows us to
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study the homotopy fibres of the differential characteristic maps thus
obtained and to show how these describe differential obstruction prob-
lems. This applies in particular to the higher twisted differential spin
structures called twisted differential string structures and twisted differ-
ential fivebrane structures.

Summary

What are called secondary characteristic classes in Chern–Weil theory
are a refinement of ordinary characteristic classes of principal bundles from
cohomology to differential cohomology. We consider the problem of refining
the construction of secondary characteristic classes from cohomology sets
to cocycle spaces; and from Lie groups to higher connected covers of Lie
groups by smooth ∞-groups, i.e., by smooth groupal A∞-spaces. Namely,
we realize differential characteristic classes as morphisms from∞-groupoids
of smooth principal ∞-bundles with connections to ∞-groupoids of higher
U(1)-gerbes with connections. This allows us to study the homotopy fibres
of the differential characteristic maps thus obtained and to show how these
describe differential obstruction problems. This applies in particular to the
higher twisted differential spin structures called twisted differential string
structures and twisted differential fivebrane structures.

To that end we define for every L∞-algebra g a smooth ∞-group G inte-
grating it, and define smooth G-principal ∞-bundles with connection. For
every L∞-algebra cocycle of suitable degree, we give a refined ∞-Chern–
Weil homomorphism that sends these ∞-bundles to classes in differential
cohomology that lift the corresponding curvature characteristic classes.

When applied to the canonical 3-cocycle of the Lie algebra of a simple
and simply connected Lie group G this construction gives a refinement of the
secondary first fractional Pontryagin class of G-principal bundles to cocycle
space. Its homotopy fibre is the 2-groupoid of smooth String(G)-principal 2-
bundles with 2-connection, where String(G) is a smooth 2-group refinement
of the topological string group. Its homotopy fibres over non-trivial classes
we identify with the 2-groupoid of twisted differential string structures that
appears in the Green–Schwarz anomaly cancellation mechanism of heterotic
string theory.

Finally, when our construction is applied to the canonical 7-cocycle on the
Lie 2-algebra of the String-2-group, it produces a secondary characteristic
map for String-principal 2-bundles which refines the second fractional Pon-
tryagin class. Its homotopy fibre is the 6-groupoid of principal 6-bundles
with 6-connection over the Fivebrane 6-group. Its homotopy fibres over
non-trivial classes are accordingly twisted differential fivebrane structures
that have been argued to control the anomaly cancellation mechanism in
magnetic dual heterotic string theory.
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1 Introduction

Classical Chern–Weil theory (see for instance [21,28,38]) provides a toolset
for refining characteristic classes of smooth principal bundles from ordinary
integral cohomology to differential cohomology.

This can be described as follows. For G a topological group and P → X
a G-principal bundle, to any characteristic class [c] ∈ Hn+1(BG, Z), there
is associated a characteristic class of the bundle, [c(P )] ∈ Hn+1(X, Z). This
can be seen as the homotopy class of the composition

X
P−→ BG

c−→ K(Z, n + 1)

of the classifying map X
P−→ BG of the bundle with the characteristic map

BG
c−→ K(Z, n + 1). If G is a compact connected Lie group, and with real

coefficients, there is a graded commutative algebra isomorphism between
H•(BG, R) and the algebra inv(g) of adG-invariant polynomials on the Lie
algebra g of G. In particular, any characteristic class c will correspond to
such an invariant polynomial 〈−〉. The Chern–Weil homomorphism asso-
ciates to a choice of connection ∇ on a G-principal bundle P the closed
differential form 〈F∇〉 on X, where F∇ is the curvature of ∇. The de
Rham cocycle 〈F∇〉 is a representative for the characteristic class [c(P )]
in H•(X, R). This construction can be carried out at a local level: instead
of considering a globally defined connection ∇, one can consider an open
cover U of X and local connections ∇i on P |Ui → Ui; then the local dif-
ferential forms 〈F∇i〉 define a cocycle in the Čech–de Rham complex, still
representing the cohomology class of c(P ).

There is a refinement of this construction to what is sometimes called
secondary characteristic classes: the differential form 〈F∇〉 may itself be
understood as the higher curvature form of a higher circle-bundle-like struc-
ture ĉ(∇) whose higher Chern-class is c(P ). In this refinement, both the
original characteristic class c(P ) as well as its curvature differential form
〈F∇〉 are unified in one single object. This single object has originally
been formalized as a Cheeger–Simons differential character. It may also
be conceived of as a cocycle in the Čech–Deligne complex, a refinement of
the Čech–de Rham complex [28]. Equivalently, as we discuss here, these
objects may naturally be described in terms of what we want to call cir-
cle n-bundles with connection: smooth bundles whose structure group is a
smooth refinement — which we write BnU(1) — of the topological group
BnU(1) 	 K(Z, n + 1), endowed with a smooth connection of higher order.
For low n, such BnU(1)-principal bundles are known (more or less explicitly)
as (n− 1)-bundle gerbes.
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The fact that we may think of ĉ(∇) as being a smooth principal higher
bundle with connection suggests that it makes sense to ask if there is a
general definition of smooth G-principal ∞-bundles, for smooth ∞-groups
G, and whether the Chern–Weil homomorphism extends on those to an
∞-Chern–Weil homomorphism. Moreover, since G-principal bundles natu-
rally form a parameterized groupoid — a stack — and circle n-bundles nat-
urally form a parameterized n-groupoid — an (n− 1)-stack, an n-truncated
∞-stack, it is natural to ask whether we can refine the construction of differ-
ential characteristic classes to these ∞-stacks. Motivations for considering
this are threefold:

(1) The ordinary Chern–Weil homomorphism only knows about character-
istic classes of classifying spaces BG for G a Lie group. Already before
considering the refinement to differential cohomology, this misses use-
ful cohomological information about connected covering groups
of G.

For instance, for G = Spin, the Spin group, there is the second Pon-
tryagin class represented by a map p2 : BSpin→ B8

Z. But on some
Spin-principal bundles P → X classified by a map g : X → BSpin, this
class may be further divisible: there is a topological group String,
called the String group, such that we have a commuting diagram

BString
1
6
p2 ��

��

B8
Z

·6
��

X
g ��

g̃
���

�
�

�
�

BSpin
p2 �� B8

Z

of topological spaces, where the morphism on the right is given on Z

by multiplication with 6 [42]. This means that if P happens to admit
a String structure exhibited by a lift g̃ of its classifying map g as indi-
cated, then its second Pontryagin class [p2(P )] ∈ H8(X, Z) is divisible
by 6. But this refined information is invisible to the ordinary Chern–
Weil homomorphism: while Spin canonically has the structure of a
Lie group, String cannot have a finite-dimensional Lie group structure
(because it is a BU(1)-extension, hence has cohomology in arbitrary
high degree) and therefore the ordinary Chern–Weil homomorphism
cannot model this fractional characteristic class.

But it turns out that String does have a natural smooth structure
when regarded as a higher group — a 2-group in this case [8, 25]. We
write BString for the corresponding smooth refinement of the classi-
fying space. As we shall show, there is an ∞-Chern–Weil homomor-
phism that does apply and produces for every smooth String-principal
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2-bundle g̃ : X → BString a smooth circle 7-bundle with connection,
which we write 1

6 p̂2(g̃). Its curvature 8-form is a representative in de
Rham cohomology of the fractional second Pontryagin class.

Here and in the following:
• boldface denotes a refinement from continuous (bundles) to smooth

(higher bundles);
• the hat denotes further differential refinement (equipping higher

bundles with smooth connections).
In this manner, the ∞-Chern–Weil homomorphism gives cohomo-

logical information beyond that of the ordinary Chern–Weil homomor-
phism. And this is only the beginning of a pattern: the sequence of
smooth objects that we considered continues further as

· · · → BFivebrane→ BString→ BSpin→ BSO → BO

to a smooth refinement of the Whitehead tower of BO. One way
to think of ∞-Chern–Weil theory is as a lift of ordinary Chern–Weil
theory along such smooth Whitehead towers.

(2) Traditionally the construction of secondary characteristic classes is
exhibited on single cocycles and then shown to be independent of
the representatives of the corresponding cohomology class. But this
indicates that one is looking only at the connected components of a
more refined construction that explicitly sends cocycles to cocycles,
and sends coboundaries to coboundaries such that their composition
is respected up to higher degree coboundaries, which in turn satisfy
their own coherence condition, and so forth. In other words: a map
between the full cocycle ∞-groupoids.

The additional information encoded in such a refined secondary dif-
ferential characteristic map is equivalently found in the collection of
the homotopy fibres of the map, over the cocycles in the codomain.
These homotopy fibres answer the question: which bundles with con-
nection have differential characteristic class equivalent to some fixed
class, which of their gauge transformations respect the choices of equiv-
alences, which of the higher gauge of gauge transformations respect the
chosen gauge transformations, and so on. This yields refined cohomo-
logical information whose knowledge is required in several applications
of differential cohomology, indicated in the next item.

(3) Much of the motivation for studies of differential cohomology origi-
nates in the applications this theory has to the description of higher
gauge fields in physics. Notably the seminal article [28] that laid the
basis of generalized differential cohomology grew out of the observa-
tion that this is the right machinery that describes subtle phenomena of
quantum anomaly cancellation in string theory, discussed by Edward
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Witten and others in the 1990s, further spelled out in [18]. In this
context, the need for refined fractional characteristic classes and their
homotopy fibres appears.

In higher analogy to how the quantum mechanics of a spinning par-
ticle requires its target space to be equipped with a Spin-structure that
is differentially refined to a Spin-principal bundle with connection, the
quantum dynamics of the (heterotic) superstring requires target space
to be equipped with a differential refinement of a String structure.
Or rather, since the heterotic string contains besides the gravitational
Spin-bundle also a U(n)-gauge bundle, of a twisted String structure
for a specified twist. We had argued in [44] that these differentially
refined string backgrounds are to be thought of as twisted differential
structures in the above sense. With the results of the present work
this argument is lifted from a discussion of local∞-connection data to
the full differential cocycles. We shall show that by standard homo-
topy theoretic arguments this allows a simple derivation of the prop-
erties of untwisted differential string structures that have been found
in [48], and generalize these to the twisted case and all the higher
analogs.

Namely, moving up along the Whitehead tower of O(n), one can next
ask for the next higher characteristic class on String-2-bundles and
its differential refinement to a secondary characteristic class. In [42],
it was argued that this controls, in direct analogy to the previous
case, the quantum super-fivebrane that is expected to appear in the
magnetic dual description of the heterotic target space theory. With
the tools constructed here the resulting twisted differential fivebrane
structures can be analyzed in analogy to the case of string
structures.

Our results allow an analogous description of twisted differential
structures of ever higher covering degree, but beyond the fivebrane
it is currently unclear whether this still has applications in physics.
However, there are further variants in low degree that do:

for instance for every n there is a canonical 4-class on pairs of
n-torus bundles and dual n-torus bundles. This has a differential
refinement and thus we can apply our results to this situation to pro-
duce parameterized 2-groupoids of the corresponding higher twisted
differential torus-bundle extensions. We find that the connected com-
ponents of these 2-groupoids are precisely the differential T-duality
pairs that arise in the description of differential T-duality of strings
in [30].

This suggests that there are more applications of refined higher dif-
ferential characteristic maps in string theory, but here we shall be
content with looking into these three examples.
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In this paper, we shall define connections on principal ∞-bundles and
the action of the ∞-Chern–Weil homomorphism in a natural but maybe
still somewhat ad hoc way, which here we justify mainly by the two main
theorems about two examples that we prove, which we survey in a moment.
The construction uses essentially standard tools of differential geometry.
The construction can be derived from first principles as a model (in the
precise sense of model category theory) for a general abstract construction
that exists in ∞-topos theory. This abstract theory is discussed in detail
elsewhere [41].

Note that our approach goes beyond that of [28] in two ways: the ∞-
stacks we consider remember smooth gauge transformation and thus encode
smooth structure of principal ∞-bundles already on cocycles and not just
in cohomology; secondly, we describe non-abelian phenomena, such as con-
nections on principal bundles for non-abelian structure groups, and more
in general ∞-connections for non-abelian structure smooth ∞-groups, such
as the String-2-group and the Fivebrane-6-group. This is the very essence
of (higher) Chern–Weil theory: to characterize non-abelian cohomology by
abelian characteristic classes. Since [28] work with spectra, nothing non-
abelian is directly available there. On the other hand, the construction
we describe does not as easily allow differential refinements of cohomology
theories represented by non-connective spectra.

We now briefly indicate the means by which we will approach these issues
in the following.

The construction that we discuss is the result of applying a refinement
of the machine of ∞-Lie integration [20, 25] to the L∞-algebraic structures
discussed in [43,44]:

For g an L∞-algebra, its Lie integration to a Lie∞-group G with smooth
classifying object BG turns out to be encoded in the simplicial presheaf given
by the assignment to each smooth test manifold U of the simplicial set

expΔ(g) : (U, [k]) 
→ HomdgAlg(CE(g), Ω•(U ×Δk)vert),

where CE(g) is the Chevalley–Eilenberg algebra of g and ‘vert’ denotes
forms which see only vector fields along Δk. This has a canonical projection
expΔ(g)→ BG, hence the name expΔ(g). One can think of this as saying
that a U -parameterized smooth family of k-simplices in G is given by the
parallel transport over the k-simplex of a flat g-valued vertical differential
form on the trivial simplex bundle U ×Δk → U . This we discuss in detail
in Section 4.2.
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The central step of our construction is a differential refinement BGdiff of
BG, where the above is enhanced to

expΔ(g)diff : (U, [k]) 
→

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Ω•(U ×Δk)vert CE(g)��

Ω•(U ×Δk)

��

W(g)��

��

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

,

with W(g) the Weil algebra of g. We also consider a simplicial sub-presheaf
expΔ(g)conn ↪→ expΔ(g)diff defined by a certain horizontality constraint.
This may be thought of as assigning non-flat g-valued forms on the total
space of the trivial simplex bundle U ×Δk. The horizontality constraint
generalizes one of the conditions of an Ehresmann connection [16] on an
ordinary G-principal bundle. This we discuss in detail in Section 4.3.

We observe that an L∞-algebra cocycle μ ∈ CE(g) in degree n, when we
equivalently regard it as a morphism of L∞-algebras μ : g→ bn−1

R to the
Eilenberg–MacLane object bn−1

R, tautologically integrates to a morphism

expΔ(μ) : expΔ(g)→ expΔ(bn−1
R)

of the above structures. What we identify as the ∞-Chern–Weil homomor-
phism is obtained by first extending this to the differential refinement

expΔ(μ)diff : expΔ(g)diff → expΔ(bn−1
R)diff

in a canonical way — this we shall see introduces Chern–Simons elements —
and then descending the construction along the projection exp(g)diff → BGdiff .
This quotients out a lattice Γ ⊂ R and makes the resulting higher bundles
with connection be circle n-bundles with connection, which represent classes
in differential cohomology. This we discuss in Section 5.

Finally, in the last part of Section 5 we discuss two classes of applications
and obtain the following statements.

Theorem 1.0.1. Let X be a paracompact smooth manifold and choose a
good open cover U .

Let g be a semisimple Lie algebra with normalized binary Killing form 〈−,−〉
in transgression with the 3-cocycle μ3 = 1

2〈−, [−,−]〉. Let G be the corre-
sponding simply connected Lie group.
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• 1. Applied to this μ3, the ∞-Chern–Weil homomorphism

exp(μ)conn : Č(U ,BGconn)→ Č
(U ,B3U(1)conn

)

from Čech cocycles with coefficients in the complex that classifies
G-principal bundles with connection to Čech–Deligne cohomology in
degree 4 is a fractional multiple of the Brylinski–McLaughlin construc-
tion [5] of Čech–Deligne cocycles representing the differential refinement
of the characteristic class corresponding to 〈−,−〉.

In particular, in cohomology it represents the refined Chern–Weil
homomorphims

1
2
p̂1 : H1(X, G)conn → Ĥ4(X, Z)

induced by the Killing form and with coefficients in degree 4 differential
cohomology. For g = so(n), this is the differential refinement of the
first fractional Pontryagin class.

Next let μ7 ∈ CE(g) be a 7-cocycle on the semisimple Lie algebra g (this is
unique up to a scalar factor). Let gμ3 → g be the L∞-algebra-extension of g
classified by μ3 (the string Lie 2-algebra. Then μ7 can be seen as a 7-cocycle
also on gμ3.

• 2. Applied to μ7 regarded as a cocycle on gμ, the∞-Chern–Weil homo-
morphism produces a map

Č(U ,BString(G)conn)→ Č
(U ,B7U(1)conn

)

from Čech cocycles with coefficients in the complex that classifies
String(G)-2-bundles with connection to degree 8 Čech–Deligne coho-
mology. For g = so(n) this gives a fractional refinement of the ordinary
refined Chern–Weil homomorphism

1
6
p̂2 : H1(X, String)conn → Ĥ8(X, Z)

that represents the differential refinement of the second fractional Pon-
tryagin class on Spin bundles with String structure.

These are only the first two instances of a more general statement. But
this will be discussed elsewhere.
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2 A review of ordinary Chern–Weil theory

We briefly review standard aspects of ordinary Chern–Weil theory whose
generalization we consider later on. In this section we assume the reader is
familiar with basic properties of Chevalley–Eilenberg and of Weil algebras;
the unfamiliar reader can find a concise account at the beginning of Section 4.

2.1 The Chern–Weil homomorphism

For G a Lie group and X a smooth manifold, the idea of a connection
on a smooth G-principal bundle P → X can be expressed in a variety of
equivalent ways: as a distribution of horizontal spaces on the tangent bun-
dle total space TP , as the corresponding family of projection operators in
terms of local connection 1-forms on X or, more generally, as defined by
Ehresmann [16], and, ultimately, purely algebraically, by Cartan [10,11].

Here, following this last approach, we review how the Weil algebra can
be used to give an algebraic description of connections on principal bundles,
and of the Chern–Weil homomorphism.

We begin by recalling the classical definition of connection on a
G-principal bundle P → X as a g-valued 1-form A on P which is
G-equivariant and induces the Maurer–Cartan form of G on the fibres (these
are known as the Cartan–Ehresmann conditions). The key insight is then the
identification of A ∈ Ω1(P, g) with a differential graded algebra morphism;
this is where the Weil algebra W(g) comes in. We will introduce Weil alge-
bras in a precise and intrinsic way in the wider context of Lie ∞-algebroids
in Section 4.1; so we will here content ourselves with thinking of the Weil
algebra of g as a perturbation of the Chevalley–Eilenberg cochain complex
CE(g) for g with coefficients in the polynomial algebra generated by the
dual g∗. More precisely, the Weil algebra W(g) is a commutative dg-algebra
freely generated by two copies of g∗, one in degree 1 and one in degree 2;
the differential dW is the sum of the Chevalley–Eilenberg differential plus σ,
the shift isomorphism from g∗ in degree 1 to g∗ in degree 2, extended as a
derivation.

A crucial property of the Weil algebra is its freeness: dgca morphisms
out of the Weil algebra are uniquely and freely determined by graded vector
space morphism out of the copy of g∗ in degree 1. This means that a g-valued
1-form A on P can be equivalently seen as a dgca morphism

A : W(g)→ Ω•(P )
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to the de Rham dg-algebra of differential forms on P . Now we can read
the Cartan–Ehresmann conditions on a g-connection as properties of this
dgca morphism. First, the Maurer–Cartan form on G, i.e., the left-invariant
g-valued form θG on G induced by the identity on g seen as a linear morphism
TeG→ g, is an element of Ω1(G, g), and so it defines a dgca morphism
W(g)→ Ω•(G). This morphism actually factors through the Chevalley–
Eilenberg algebra of g; this is the algebraic counterpart of the fact that the
curvature 2-form of θG vanishes. Therefore, the first Cartan–Ehresmann
condition on the behaviour of the connection form A on the fibres of P → X
is encoded in the commutativity of the following diagram of differential
graded commutative algebras:

Ω•(P )vert CE(g)
Avert��

Ω•(P )

��

W(g)A��

��
.

In the upper left corner, Ω•(P )vert is the dgca of vertical differential forms on
P , i.e., the quotient of Ω•(P ) by the differential ideal consisting of differential
forms on P which vanish when evaluated on a vertical multivector field.

Now we turn to the second Cartan–Ehresmann condition. The symmetric
algebra Sym•(g∗[−2]) on g∗ placed in degree 2 is a graded commutative sub-
algebra of the Weil algebra W(g), but it is not a dg-subalgebra. However, the
subalgebra inv(g) of Sym•(g∗[−2]) consisting of adg-invariant polynomials
is a dg-subalgebra of W(g). The composite morphism of dg-algebras

inv(g)→W(g) A−→ Ω•(P )

is the evaluation of invariant polynomials on the curvature 2-form of A,
i.e., on the g-valued 2-form FA = dA + 1

2 [A, A]. Invariant polynomials are
dW-closed as elements in the Weil algebra, therefore, their images in Ω•(P )
are closed differential forms. Assume now G is connected. Then, if 〈−〉
is an adg-invariant polynomial, by the G-equivariance of A it follows that
the closed differential form 〈FA〉 descends to a closed differential form on
the base X of the principal bundle. Thus, the second Cartan–Ehresmann
condition on A implies the commutativity of the diagram

Ω•(P ) W(g)A��

Ω•(X)

��

inv(g)
FA��

��
.
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Since the image of inv(g) in Ω•(X) consists of closed forms, we have an
induced graded commutative algebras morphism

inv(g)→ H•(X, R),

the Chern–Weil homomorphism. This morphism is independent of the par-
ticular connection form chosen and natural in X. Therefore, we can think
of elements of inv(g) as representing universal cohomology classes, hence
as characteristic classes, of G-principal bundles. And indeed, if G is a
compact connected finite-dimensional Lie group, then we have an isomor-
phism of graded commutative algebras inv(g) ∼= H•(BG, R), corresponding
to H•(G, R) being isomorphic to an exterior algebra on odd-dimensional gen-
erators [12], the indecomposable Lie algebra cohomology classes of g. The
isomorphism inv(g) ∼= H•(BG, R) is to be thought as the universal Chern–
Weil homomorphism. Traditionally, this is conceived of in terms of a smooth
manifold version of the universal G-principal bundle on BG. We will here
instead refine BG to a smooth ∞-groupoid BG. This classifies not just
equivalence classes of G-principal bundles but also their automorphisms.
We shall argue that the context of smooth∞-groupoids is the natural place
(and place translates to topos) in which to conceive of the Chern–Weil homo-
morphism.

2.2 Local curvature 1-forms

Next we focus on the description of g-connections in terms of local g-valued
1-forms and gauge transformations. We discuss this in terms of the local
transition function data from which the total space of the bundle may be
reconstructed. It is this local point of view that we will explicitly gen-
eralize in Section 4. More precisely, in Section 4.3 we will present alge-
braic data which encode an ∞-connection on a trivial higher bundle on a
Cartesian space R

n, and will then globalize this local picture by descent/
stackification.

To prepare this general construction, let us show how it works in the case
of ordinary g-connections on G-principal bundles. For that purpose, consider
a Cartesian space U = R

n. Every G-principal bundle on U is equivalent
to the trivial G-bundle U ×G equipped with the evident action of G on
the second factor, and under stackification this completely characterizes
G-principal bundles on general spaces. A connection on this trivial G-bundle

is given by a g-valued 1-form A ∈ Ω1(U, g). An isomorphism A
g �� A′

from the trivial bundle with connection A to that with connection A′ is
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given by a function g ∈ C∞(U, G) such that the equation

A′ = g−1Ag + g−1dg (1)

holds. Here, the first term on the right denotes the adjoint action of the Lie
group on its Lie algebra, whereas the second term denotes the pullback of
the Maurer–Cartan form on G along g to U .

We wish to amplify a specific way to understand this formula as the Lie
integration of a path of infinitesimal gauge transformations: write Δ1 = [0, 1]
for the standard interval regarded as a smooth manifold (with boundary)
and consider a smooth 1-form A ∈ Ω1(U ×Δ1, g) on the product of U with
Δ1. If we think of this as the trivial interval bundle U ×Δ1 → U and are
inspired by the discussion in Section 2.1, we can equivalently conceive of A
as a morphism of dg-algebras

A : W(g)→ Ω•(U ×Δ1)

from the Weil algebra of g into the de Rham algebra of differential forms on
the total space of the interval bundle. It makes sense to decompose A as the
sum of a horizontal 1-form AU and a vertical 1-form λ dt, where t : Δ1 → R

is the canonical coordinate on Δ1:

A = AU + λ dt.

The vertical part Avert = λ dt of A is an element of the completed tensor
product C∞(U) ⊗̂Ω1(Δ1, g) and can be seen as a family of g-connections on
a trivial G-principal bundle on Δ1, parameterized by U . At any fixed u0 ∈ U,
the 1-form λ(u0, t) dt ∈ Ω1(Δ1, g) satisfies the Maurer–Cartan equation by
trivial dimensional reasons, and so we have a commutative diagram

Ω•(U ×Δ1)vert CE(g)
Avert��

Ω•(U ×Δ1)

��

W(g)A��

��

By the discussion in Section 2.1, this can be seen as a first Cartan–
Ehresmann condition in the Δ1-direction; it precisely encodes the fact that
the 1-form A on the total space of U ×Δ1 → U is flat in the vertical
direction.
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The curvature 2-form of A decomposes as

FA = FAU
+ FΔ1 ,

where the first term is at each point t ∈ Δ1 the ordinary curvature FAU
=

dUAU + 1
2 [AU , AU ] of AU at fixed t ∈ Δ1 and where the second term is

FΔ1 =
(

dUλ + [AU , λ]− ∂

∂t
AU

)

∧ dt.

We shall require that FΔ1 = 0; this is the second Ehresmann condition in
the Δ1-direction . It implies that we have a commutative diagram

Ω•(Δ1 × U) W(g)A��

Ω•(U)

��

inv(g).
FA��

��

The condition FΔ1 = 0 is equivalent to the differential equation

∂

∂t
AU = dUλ + [AU , λ],

whose unique solution for given boundary condition AU |t=0 specifies AU |t=1

by the formula

AU (1) = g−1AU (0)g + g−1dg,

where

g := P exp
(∫

Δ1

λdt

)

: U → G

is, pointwise in U, the parallel transport of λdt along the interval. We may
think of this as exhibiting formula (1) for gauge transformations as arising
from Lie integration of infinitesimal data.

Globalizing this local picture of connections on trivial bundles and gauge
transformations between them now amounts to the following. For any
(smooth, paracompact) manifold X, we may find a good open cover {Ui →
X}, i.e., an open cover such that every non-empty n-fold intersection Ui1 ∩
· · · ∩ Uin for all n ∈ N is diffeomorphic to a Cartesian space. The cocycle
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data for a G-bundle with connection relative to this cover is in degree 0 and
1 given by diagrams

0 CE(g)
Avert��

Ω•(Ui)

��

W(g)A��

��

Ω•(Ui)

��

inv(g)
FA��

��
and

Ω•(Δ1 × Uij)vert CE(g)
Avert��

Ω•(Δ1 × Uij)

��

W(g)A��

��

Ω•(Uij)

��

inv(g)
FA��

��

, (2)

where the latter restricts to the former after pullback along the two inclusions
Uij → Ui, Uj and along the face maps Δ0 = {∗}⇒ Δ1. This gives a collec-
tion of 1-forms {Ai ∈ Ω1(Ui, g)}i and of smooth function {gij ∈ C∞(Ui ∩
Uj , G)}, such that the formula

Aj = g−1
ij Aigij + g−1

ij dgij

for gauge transformation holds on each double intersection Ui ∩ Uj . This is
almost the data defining a g-connecton on a G-principal bundle P → X, but
not quite yet, since it does not yet constrain the transition functions gij on
the triple intersections Ui ∩ Uj ∩ Uk to obey the cocycle relation gijgjk = gik.
But since each gij is the parallel transport of our connection along a vertical
1-simplex, the cocycle condition precisely says that parallel transport along
the three edges of a vertical 2-simplex is trivial, i.e., that the vertical parts
of our connection forms on Uijk ×Δ1 are the boundary data of a connection
form on Uijk ×Δ2 which is flat in the vertical direction. In other words, the
collection of commutative diagrams (2) is to be seen as the 0 and 1-simplices
of a simplicial set whose 2-simplices are the commutative diagrams

Ω•(Δ2 × Uijk)vert CE(g)
Avert��

Ω•(Δ2 × Uijk)

��

W(g)A��

��

Ω•(Uijk)

��

inv(g)
FA��

��

.

Having added 2-simplices to our picture, we have finally recovered the stan-
dard description of connections in terms of local differential form data. By
suitably replacing Lie algebras with L∞-algebras in this derivation, we will
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obtain a definition of connections on higher bundles in Section 4.2. As one
can expect, in the simplicial description of connections on higher bundles,
simplices of arbitrarily high dimension will appear.

3 Smooth ∞-groupoids

In this section, we introduce a central concept that we will be dealing with in
this paper, smooth ∞-groupoids, as a natural generalization of the classical
notion of Lie groups.

A Lie groupoid is, by definition, a groupoid internal to the category of
smooth spaces and smooth maps. It is a widely appreciated fact in Lie
groupoid theory that many features of Lie groupoids can be usefully thought
of in terms of their associated groupoid-valued presheaves on the category
of manifolds, called the differentiable stack represented by the Lie groupoid.
This is the perspective that immediately generalizes to higher groupoids.

Since many naturally appearing smooth spaces are not manifolds — par-
ticularly the spaces [Σ, X] of smooth maps Σ→ X between two manifolds —
for the development of the general theory it is convenient to adopt a not
too strict notion of ‘smooth space’ . This generalized notion will have to
be more flexible than the notion of manifold but at the same time not too
far from that. The basic example to have in mind is the following: every
smooth manifold X of course represents a sheaf

X : SmoothManifoldsop → Sets

U 
→ C∞(U, X).

on the category of smooth manifolds. But since manifolds themselves are
by definition glued from Cartesian spaces R

n, all the information about X
is in fact already encoded in the restriction of this sheaf to the category of
Cartesian spaces and smooth maps between them:

X : CartSpop → Sets.

Now notice that also the spaces [Σ, X] of smooth maps Σ→ X between two
manifolds naturally exist as sheaves on CartSp, given by the assignment

[Σ, X] : U 
→ C∞(Σ× U, X).

Sheaves of this form are examples of generalized smooth spaces that are
known as diffeological spaces or Chen smooth spaces. While not manifolds,
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these smooth spaces do have an underlying topological space and behave
like smooth manifolds in many essential ways.

Even more generally, we will need to consider also ‘smooth spaces’ that
do not have even an underlying topological space. The central example of
such is the sheaf of (real valued) closed differential n-forms

U 
→ Ωn
cl(U),

which we will need to consider later in the paper. We may think of these as
modelling a kind of smooth Eilenberg–MacLane space that support a single
(up to scalar multiple) smooth closed n-form. A precise version of this
statement will play a central role later in the theory of Lie ∞-integration
that we will describe in Section 4.

Thus we see that the common feature of generalized smooth spaces is not
that they are representable in one way or other. Rather, the common feature
is that they all define sheaves on the category of the archetypical smooth
spaces: the Cartesian spaces. This is a special case of an old insight going
back to Grothendieck, Lawvere and others: with a category C of test spaces
fixed, the correct context in which to consider generalized spaces modelled
on C is the category Sh(C) of all sheaves on C: the sheaf topos [29]. In there
we may find a hierarchy of types of generalized spaces ranging from ones
that are very close to being like these test spaces, to ones that are quite
a bit more general. In applications, it is good to find models as close as
possible to the test spaces, but for the development of the theory it is better
to admit them all.

Now if the manifold X happens, in addition, to be equipped with the
structure of a Lie group G, then it represents more than just an ordinary
sheaf of sets: from each group we obtain a simplicial set, its nerve, whose
set of k-cells is the set of k-tuples of elements in the group, and whose face
and degeneracy maps are built from the product operation and the neutral
element in the group. Since, for every U ∈ CartSp, also the set of functions
C∞(U, G) forms a group, this means that from a Lie group we obtain a
simplicial presheaf

BG : U 
→
{
· · · �������� C

∞(U, G×G)
������ C∞(U, G) ���� ∗ ,

}
,

where the degeneracy maps have not been displayed in order to make the
diagram more readable.

The simplicial presheaves arising this way are, in fact, special examples of
presheaves taking values in Kan complexes, i.e., in simplicial sets in which
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every horn — a simplex minus its interior and minus one face — has a
completion to a simplex; see for instance [23] for a review. It turns out
(see Section 1.2.5 of [34]) that Kan complexes may be thought of as mod-
elling ∞-groupoids: the generalization of groupoids where one has not only
morphisms between objects, but also 2-morphisms between morphisms and
generally (k + 1)-morphisms between k-morphisms for all k ∈ N. The tra-
ditional theory of Lie groupoids may be thought of as dealing with those
simplicial presheaves on CartSp that arise from nerves of Lie groupoids in
the above manner

This motivates the definitions that we now turn to.

3.1 Presentation by simplicial presheaves

Definition 3.1.1. A smooth ∞-groupoid A is a simplicial presheaf on the
category CartSp of Cartesian spaces and smooth maps between them such
that, over each U ∈ CartSp, A is a Kan complex.

Much of ordinary Lie theory lifts from Lie groups to this context. The
reader is asked to keep in mind that smooth∞-groupoids are objects whose
smooth structure may be considerably more general than that of a Kan
complex internal to smooth manifolds, i.e., of a simplicial smooth manifold
satisfying a horn filling condition. Kan complexes internal to smooth mani-
folds, such as for instance nerves of ordinary Lie groupoids, can be thought
of as representable smooth ∞-groupoids.

Example 3.1.2. The basic example of a representable smooth∞-groupoids
are ordinary Lie groupoids; in particular smooth manifolds and Lie groups
are smooth∞-groupoids. A particularly important example of representable
smooth ∞-groupoid is the Čech ∞-groupoid : for X a smooth manifold and
U = {Ui → X} an open cover, there is the simplicial manifold

Č(U) :=
{
· · · �������� {Uijk} ������ {Uij} ���� {Ui}

}

which in degree k is the disjoint union of the k-fold intersections Ui ∩ Uj ∩ · · ·
of open subsets (the degeneracy maps are not depicted). This is a Kan
complex internal to smooth manifolds in the evident way.

While the notion of simplicial presheaf itself is straightforward, the correct
concept of morphism between them is more subtle: we need a notion of
morphisms such that the resulting category — or ∞-category as it were —
of our smooth ∞-groupoids reflects the prescribed notion of gluing of test
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objects. In fancier words, we want simplicial presheaves to be equivalent to
a higher analog of a sheaf topos: an ∞-topos [34]. This may be achieved by
equipping the naive category of simplicial presheaves with a model category
structure [27]. This provides the information as to which objects in the
category are to be regarded as equivalent, and how to resolve objects by
equivalent objects for purposes of mapping between them. There are some
technical aspects to this this that we have relegated to the appendix. For
all details and proofs of the definitions and propositions, respectively, in the
remainder of this section see there.

Definition 3.1.3. Write [CartSpop, sSet]proj for the global projective model
category structure on simplicial presheaves: weak equivalences and fibra-
tions are objectwise those of simplicial sets.

This model structure presents the∞-category of∞-presheaves on CartSp.
We impose now an ∞-sheaf condition.

Definition 3.1.4. Write [CartSpop, sSet]proj,loc for the left Bousfield local-
ization (see for instance Section A.3 of [34]) of [CartSpop, sSet]proj at the set
of all Čech nerve projections Č(U)→ U for U a differentiably good open
cover of U , i.e., an open cover U = {Ui → U}i∈I of U such that for all n ∈ N

every n-fold intersection Ui1 ∩ · · · ∩ Uin is either empty or diffeomorphic to
R

dim U .

This is the model structure that presents the∞-category of∞-sheaves or
∞-stacks on CartSp. By standard results, it is a simplicial model category
with respect to the canonical simplicial enrichment of simplicial presheaves,
see [15]. For X, A two simplicial presheaves, we write

• [CartSpop, sSet](X, A) ∈ sSet for the simplicial hom-complex of mor-
phisms;
• H(X, A) := [CartSpop, sSet](Q(X), P (A)) for the right derived hom-

complex (well defined up to equivalence) where Q(X) is any local cofi-
brant resolution of X and P (A) any local fibrant resolution of A.

Notice some standard facts about left Bousfield localization:

• every weak equivalence in [CartSpop, sSet]proj is also a weak equivalence
in [CartSpop, sSet]proj,loc;
• the classes of cofibrations in both model structures coincide.
• the fibrant objects of the local structure are precisely the objects that

are fibrant in the global structure and in addition satisfy descent over
all differentiably good open covers of Cartesian spaces. What this
means precisely is stated in corollary A.2 in the appendix.
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• the localization right Quillen functor

Id : [CartSpop, sSet]proj → [CartSpop, sSet]proj,loc

presents ∞-sheafification, which is a left adjoint left exact ∞-functor
[34], therefore all homotopy colimits and all finite homotopy limits
in the local model structure can be computed in the global model
structure.

In particular, notice that an acyclic fibration in the global model structure
will not, in general, be an acyclic fibration in the local model structure;
nevertheless, it will be a weak equivalence in the local model structure.

Definition 3.1.5. We write

• � �� for isomorphisms of simplicial presheaves;
• ∼ �� for weak equivalences in the global model structure;

• ∼loc �� for weak equivalences in the local model structure;

(Notice that each of these generalizes the previous.)

• �� �� for fibrations in the global model structure.

We do not use notation for fibrations in the local model structure.

Since the category CartSp has fewer objects than the category of all man-
ifolds, we have that the conditions for simplicial presheaves to be fibrant in
[CartSpop, sSet]proj,loc are comparatively weak. For instance

BG : U 
→ N((C∞(U, G) ⇒ ∗)

is locally fibrant over CartSp but not over the site of all manifolds. This is
discussed below in Section 3.2. Conversely, the condition to be cofibrant is
stronger over CartSp than it is over all manifolds. But by a central result
by [15], we have fairly good control over cofibrant resolutions: these include
notably Čech nerves Č(U) of differentiably good open covers, i.e., the Čech
nerve Č(U)→ X of a differentiably good open cover over a paracompact
smooth manifold X is a cofibrant resolution of X in [CartSpop, sSet]proj,loc,
and so we write

Č(U) ∼loc−−→ X.

Note that in the present paper these will be the only local weak equivalences
that are not global weak equivalences that we need to consider.
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In the practice of our applications, all this means that much of the tech-
nology hidden in Definition 3.1.4 boils down to a simple algorithm: after
solving the comparatively easy tasks of finding a version A of a given smooth
∞-groupoid that is fibrant over CartSp, for describing morphisms of smooth
∞-groupoids from a manifold X to A, we are to choose a differentiably good
open cover U = {Ui → X}, form the Čech nerve simplicial presheaf Č(U)
and then consider spans of ordinary morphisms of simplicial presheaves of
the form

Č(U)
g ��

∼
lo

c

��

A

X

.

Such a diagram of simplicial presheaves presents an object in H(X, A), in
the hom-space of the ∞-topos of smooth ∞-groupoids. As discussed below
in Section 3.2, here the morphisms g are naturally identified with cocycles
in non-abelian Čech cohomology on X with coefficients in A. In Section 4.2,
we discus that we may also think of these cocycles as transition data for
A-principal ∞-bundles on X [44].

For discussing the ∞-Chern–Weil homomorphism, we are crucially inter-
ested in composites of such spans: a characteristic map on a coefficient
object A is nothing but a morphism c : A→ B in the ∞-topos, presented
itself by a span

Â

	
����

�� B

A

.

The evaluation of this characteristic map on the A-principal bundle on X
encoded by a cocycle g : Č(U)→ A is the composite morphism X → A→
B in the ∞-topos, which is presented by the composite span of simplicial
presheaves

QX

	
����

�� Â

	
����

�� B

Č(U) ��

∼
lo

c

��

A

X

.
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Here QX → Č(U) is the pullback of the acyclic fibration Â→ A, hence itself
an acyclic fibration; moreover, since Č(U) is cofibrant, we are guaranteed
that a section Č(U)→ QX exists and is unique up to homotopy. Therefore
the composite morphism X → A→ B is encoded in a cocylce Č(U)→ B as
in the diagram below:

QX

	
����

�� Â

	
����

�� B

Č(U) ��

��

∼
lo

c

��

A

X

.

Our main theorems will involve the construction of such span composites.

3.2 Examples

In this paper we will consider three main sources of smooth ∞-groupoids

• Lie groups and Lie groupoids, leading to Kan complexes via their
nerves; examples of this kind will be the smooth∞-groupoid BG asso-
ciated with a Lie group G, and its refinements BGdiff and BGconn;
• complexes of abelian groups concentrated in non-negative degrees,

leading to Kan complexes via the Dold–Kan (DK) correspondence;
examples of this kind will be the smooth ∞-groupoid BnU(1) associ-
ated with the chain complex of abelian groups consisting in U(1) con-
centrated in degree n, and its refinements BnU(1)diff and BnU(1)conn;
• Lie algebras and L∞-algebras, via flat connections over simplices; this

construction will produce, for any Lie or L∞-algebra g, a smooth ∞-
groupoid expΔ(g) integrating g; other examples of this kind are the
refinements expΔ(g)diff and expΔ(g)conn of expΔ(g).

In the following sections, we will investigate these examples and show how
they naturally combine in ∞-Chern–Weil theory.

Smooth ∞-groups. With a useful notion of smooth ∞-groupoids and
their morphisms thus established, we automatically obtain a good notion
of smooth ∞-groups. This is accomplished simply by following the gen-
eral principle by which essentially all basic constructions and results famil-
iar from classical homotopy theory lift from the archetypical ∞-topos Top
of (compactly generated) topological spaces (or, equivalently, of discrete
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∞-groupoids) to any other ∞-topos, such as our ∞-topos H of smooth
∞-groupoids.

Namely, in classical homotopy theory a monoid up to higher coherent
homotopy is a topological space X ∈ Top 	 ∞Grpd equipped with A∞-
structure [45] or, equivalently, an E1-structure, i.e., a homotopical action
of the little 1-cubes operad [36]. A groupal A∞-space — an ∞-group — is
one where this homotopy-associative product is invertible, up to homotopy.
Famously, May’s recognition theorem identifies such∞-groups as being pre-
cisely, up to weak homotopy equivalence, loop spaces. This establishes an
equivalence of pointed connected spaces with ∞-groups, given by looping Ω
and delooping B:

∞Grp
B

� ��
�� Ω

∞Grpd∗ .

Lurie shows in Section 6.1.2 of [34] (for ∞-groups) and in theorem 5.1.3.6
of [35] that these classical statements have direct analogues in any∞-topos.
We are thus entitled to think of any (pointed) connected smooth∞-groupoid
X as the delooping BG of a smooth ∞-group G 	 ΩX

Smooth∞Grp
B

� ��
�� Ω

H∗ = Smooth∞Grpd∗ ,

where we use boldface B to indicate that the delooping takes place in the
∞-topos H of smooth ∞-groupoids.

The most basic example for this, we have already seen above: for G any
Lie group the Lie groupoid BG described above is precisely the delooping
of G — not in Top but in our H.

In this paper most smooth∞-groups G appear in the form of their smooth
delooping ∞-groupoids BG. Apart from Lie groups, the main examples
that we consider will be the higher line and circle Lie groups BnU(1) and
Bn

R that have arbitrary many delooping, as well as the non-abelian smooth
2-group String and the non-abelian smooth 6-group Fivebrane, which are
smooth refinements of the higher connected covers of the Spin-group.

3.2.1 BG, BGconn and principal G-bundles with connection

The standard example of a stack on manifolds is the classifying stack BG for
G-principal bundles with G a Lie group. As an illustration of our setup, we
describe what this looks like in terms of simplicial presheaves over the site
CartSp. Then, we discuss its differential refinements BGdiff and BGconn.
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Definition 3.2.1. Let G be a Lie group. The smooth ∞-groupoid BG
is defined to associate to a Cartesian space U the nerve of the action
groupoid ∗//C∞(U, G), i.e., of the one-object groupoid with C∞(U, G) as
its set of morphisms and composition given by the product of G-valued
functions.

Remark 3.2.2. Often this object is regarded over the site of all manifolds,
where it is just a pre-stack, hence not fibrant. Its fibrant replacement over
that site is the stack GBund : Manfdop → Grpd that sends a manifold to
the groupoid of G-principal bundles over it. We may think instead of BG as
sending a space to just the trivial G-principal bundle and its automorphisms.
But since the site of Cartesian spaces is smaller, we have:

Proposition 3.2.3. The object BG ∈ [CartSpop, sSet]proj,loc is fibrant.

On the other hand, over the site of manifolds, every manifold itself is cofi-
brant. This means that to compute the groupoid of G-bundles on a manifold
X in terms of morphisms of stacks over all manifolds, one usually passes to
the fibrant replacement GBund of BG, then considers Hom(X, GBund) and
uses the 2-Yoneda lemma to identify this with the groupoid GBund(X) of
principal G-bundles on X. When working over CartSp instead, the situ-
ation is the opposite: here BG is already fibrant, but the manifold X is
in general no longer cofibrant! To compute the groupoid of G-bundles on
X, we pass to a cofibrant replacement of X given according to Proposi-
tion 2 by the Čech nerve Č(U) of a differentiably good open cover and then
compute Hom[CartSpop,sSet](Č(U),BG). To see that the resulting groupoid is
again equivalent to GBund(X) (and hence to prove the above proposition
by taking X = R

n) one proceeds as follows:

The object Č(U) is equivalent to the homotopy colimit in [CartSpop,
sSet]proj over the simplicial diagram of its components

Č(U) 	 hocolim
(
· · · ��������

∐
i,j,k Uijk

������
∐

ij Uij
����
∐

i Ui

)

	
∫ [k]∈Δ

Δ[k] ·
∐

i0,...,ik

Ui0,...,ik .

(Here in the middle we are notationally suppressing the degeneracy maps
for readability and on the second line we display for the inclined reader the
formal coend expression that computes this homotopy colimit as a weighted
colimit [27]. The dot denotes the tensoring of simplicial presheaves over
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simplicial sets). Accordingly Hom(Č(U),BG) is the homotopy limit

Hom(Č(U),BG)

	 holim
(
· · · {BG(Uijk)}����

���� {BG(Uij)}����
�� {BG(Ui)}����

)

	
∫

[k]∈Δ
Hom

⎛

⎝Δ[k],
∏

i0,...,ik

BG (Ui0,...,ik)

⎞

⎠

.

The last line tells us that an element g : Č(U)→ BG in this Kan complex
is a diagram

...
...

Δ[2]

�� �� �� �� ��

g(2)

��
∏

i,j,k BG(Uijk)

�� �� �� �� ��

Δ[1]
g(1)

��

�� �� ��

∏
i,j BG(Uij)

�� �� ��

Δ[0]
g(0)

��

����

∏
i BG(Ui)

����

of simplicial sets. This is a collection ({gi}, {gij}, {gijk}, . . .), where

• gi is a vertex in BG(Ui);
• gij is an edge in BG(Uij);
• gijk is a 2-simplex in BG(Uijk)
• etc.

such that the kth face of the n-simplex in BG(Ui0,...,in) is the image of
the (n− 1)-simplex under the kth face inclusion BG(Ui0,...,̂ik,...,in

)→ BG

(Ui0,...,in). (And similarly for the coface maps, which we continue to disre-
gard for brevity.) This means that an element g : Č(U)→ BG is precisely an
element of the set Č(U ,BG) of non-abelian Čech cocycles with coefficients
in BG. Specifically, by definition of BG, this reduces to

• a collection of smooth maps gij : Uij → G, for every pair of indices
i, j;
• the constraint gijgjkgki = 1G on Uijk, for every i, j, k (the cocycle con-

straint).
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These are manifestly the data of transition functions defining a principal
G-bundle over X.

Similarly working out the morphisms (i.e., the 1-simplices) in Hom(Č(U),
BG), we find that their components are collections hi : Ui → G of smooth
functions, such that g′ij = h−1

i gijhj . These are precisely the gauge transfor-
mations between the G-principal bundles given by the transition functions
({gij}) and ({g′ij}). Since the cover {Ui → X} is good, it follows that we
have indeed reproduced the groupoid of G-principal bundles

Hom(Č(U),BG) = Č(U ,BG) 	 GBund(X).

Two cocycles define isomorphic principal G-bundles precisely when they
define the same element in Čech cohomology with coefficients in the sheaf
of smooth functions with values in G. Thus we recover the standard fact
that isomorphism classes of principal G-bundles are in natural bijection with
H1(X, G).

We now consider a differential refinement of BG.

Definition 3.2.4. Let G be a Lie group with Lie algebra g. The smooth
∞-groupoid BGconn is defined to associate with a Cartesian space U the
nerve of the action groupoid Ω1(U, g)//C∞(U, G).

This is over U the groupoid BGconn(U)

• whose set of objects is the set of smooth g-valued 1-forms A ∈ Ω1(U, g);
• whose morphisms g : A→ A′ are labelled by smooth functions

g ∈ C∞(U, G) such that they relate the source and target by a gauge
transformation

A′ = g−1Ag + g−1dg,

where g−1Ag denotes pointwise the adjoint action of G on g and g−1dg
is the pullback g∗(θ) of the Maurer–Cartan form θ ∈ Ω1(G, g).

With X and Č(U) as before we now have:

Proposition 3.2.5. The smooth ∞-groupoid BGconn is fibrant and there is
a natural equivalence of groupoids

H(X,BGconn) 	 GBundconn(X),

where on the right we have the groupoid of G-principal bundles on X equipped
with connection.
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This follows along the above lines, by unwinding the nature of the sim-
plicial hom-set Č(U ,BGconn) := Hom(Č(U),BGconn) of non-abelian Čech
cocycles with coefficients in BGconn. Such a cocycle is a collection ({Ai},
{gij}) consisting of

• a 1-form Ai ∈ Ω1(Ui, g) for each index i;
• a smooth function gij : Uij → G, for all indices i, j;
• the gauge action constraint Aj = g−1

ij Aigij + g−1
ij dgij on Uij , for all

indices i, j;
• the cocycle constraint gijgjkgki = 1G on Uijk, for all indices i, j, k.

These are readily seen to be the data defining a g-connection on a principal
G-bundle over X.

Notice that there is an evident “forget the connection” -morphism
BGconn → BG, given over U ∈ CartSp by

(A
g→ A′) 
→ (• g→ •).

We denote the set of isomorphism classes of principal G-bundles with con-
nection by the symbol H1(X, G)conn. Thus, we obtain a morphism

H1(X, G)conn → H1(X, G).

Finally, we introduce a smooth ∞-groupoid BGdiff in between BG and
BGconn. This may seem a bit curious, but we will see in Section 4.3 how
it is the degree one case of a completely natural and noteworthy general
construction. Informally, BGdiff is obtained from BG by freely decorating
the vertices of the simplices in BG by elements in Ω1(U, g). More formally,
we have the following definition.

Definition 3.2.6. Let G be a Lie group with Lie algebra g. The smooth∞-
groupoid BGdiff is defined to associate with a Cartesian space U the nerve
of the groupoid

(1) Whose set of objects is Ω1(U, g);

(2) A morphism A
(g,a)→ A′ is labelled by g ∈ C∞(U, G) and a ∈ Ω1(U, g)

such that

A = g−1A′g + g−1dg + a;

(3) Composition of morphisms is given by

(g, a) ◦ (h, b) =
(
gh, h−1ah + h−1dh + b

)
.
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Remark 3.2.7. This definition intentionally carries an evident redundancy:
given any A, A′ and g the element a that makes the above equation hold
does exist uniquely; the 1-form a measures the failure of g to constitute
a morphism from A to A′ in BGconn. We can equivalently express the
redundancy of a by saying that there is a natural isomorphism between
BGdiff and the direct product of BG with the codiscrete groupoid on the
sheaf of sets Ω1(−; g).

Proposition 3.2.8. The evident forgetful morphism BGconn → BG factors
through BGdiff by a monomorphism followed by an acyclic fibration (in the
global model structure)

BGconn ↪→ BGdiff
∼� BG.

3.2.2 BG2, and non-abelian gerbes and principal 2-bundles

We now briefly discuss the first case of G-principal ∞-bundles after ordi-
nary principal bundles, the case where G is a Lie 2-group: G-principal
2-bundles.

When G = AUT(H) the automorphism 2-group of a Lie group H (see
below) these structures have the same classification (though are conceptually
somewhat different from) the smooth version of the H-banded gerbes of [22]
(see around Definition 7.2.2.20 in [34] for a conceptually clean account in the
modern context of higher toposes): both are classified by the non-abelian
cohomology H1

Smooth(−, AUT(H)) with coefficients in that 2-group. But the
main examples of 2-groups that we shall be interested in, namely string
2-groups, are not equivalent to AUT(H) for any H, hence the 2-bundles
considered here are strictly more general than Giraud’s gerbes. The liter-
ature knows what has been called non-abelian bundle gerbes, but despite
their name these are not Giraud’s gerbes, but are instead models for the
total spaces of what we call here principal 2-bundles. A good discussion
of the various equivalent incarnations of principal 2-bundles is
in [39].

To start with, note the general abstract notion of smooth 2-groups:

Definition 3.2.9. A smooth 2-group is a 1-truncated group object in H =
Sh∞(CartSp). These are equivalently given by their (canonically pointed)
delooping 2-groupoids BG ∈ H, which are precisely, up to equivalence, the
connected 2-truncated objects of H.

For X ∈ H any object, G2Bundsmooth(X) := H(X,BG) is the 2-groupoid
of smooth G-principal 2-bundles on G.
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While nice and abstract, in applications one often has — or can get —
hold of a strict model of a given smooth 2-group. The following definitions
can be found recalled in any reference on these matters, for instance in [39].

Definition 3.2.10. (1) A smooth crossed module of Lie groups is a pair
of homomorphisms ∂ : G1 → G0 and ρ : G0 → Aut(G1) of Lie groups,
such that for all g ∈ G0 and h, h1, h2 ∈ G1, we have ρ(∂h1)(h2) =
h1h2h

−1
1 and ∂ρ(g)(h) = g∂(h)g−1.

(2) For (G1 → G0) a smooth crossed module, the corresponding strict Lie
2-group is the smooth groupoid G0 ×G1

��
�� G0 , whose source map

is given by projection on G0, whose target map is given by applying
∂ to the second factor and then multiplying with the first in G0, and
whose composition is given by multiplying in G1.

This groupoid has a strict monoidal structure with strict inverses
given by equipping G0 ×G1 with the semidirect product group struc-
ture G0 � G1 induced by the action ρ of G0 on G1.

(3) The corresponding one-object strict smooth 2-groupoid we write B
(G1 → G0). As a simplicial object (under Duskin nerve of 2-categories)
this is of the form

B(G1 → G0) = cosk3

(

G×3
0 ×G×3

1 ��
��
��
G×2

0 ×G1 ��
��
G0

�� ∗
)

.

Examples.

(1) For A any abelian Lie group, A→ 1 is a crossed module. Conversely,
for A any Lie group A→ 1 is a crossed module precisely if A is abelian.
We write B2A = B(A→ 1). This case and its generalizations is dis-
cussed below in Section 3.2.3.

(2) For H any Lie group with automorphism Lie group Aut(H), the
morphism H

Ad→ Aut(H) that sends group elements to inner automor-
phisms, together with ρ = id, is a crossed module. We write AUT(H):=
(H → Aut(H)) and speak of the automorphism 2-group of H,
because this is 	 AutH(BH).

(3) For G an ordinary Lie group and c : BG→ B3U(1) a morphism in
H (see Section 3.2.3 for a discussion of BnU(1)), its homotopy fibre
BĜ→ BG is the delooping of a smooth 2-group Ĝ. If G is compact,
simple and simply connected, then this is equivalent ( [41], Section
5.1) to a strict 2-group (Ω̂G→ PG) given by a U(1)-central extension
of the loop group of G, as described in [8]. This is called the string
2-group extension of G by c. We come back to this in Section 5.1.

Observation 3.2.11. For every smooth crossed module, its delooping object
B(G1 → G0) is fibrant in [CartSpop, sSet].
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Proof. Since (G1 → G0) induces a strict 2-group, there are horn fillers
defined by the smooth operations in the 2-group: we can always solve for
the missing face in a horn in terms of an expression involving the smooth
composite-operations and inverse-operations in the 2-group. �

Proposition 3.2.12. Suppose that the smooth crossed module (G1 → G0) is
such that the quotient π0G = G0/G1 is a smooth manifold and the projection
G0 → G0/G1 is a submersion.

Then B(G1 → G0) is fibrant also in [CartSpop, sSet]proj,loc.

Proof. We need to show that for {Ui → R
n} a good open cover, the canonical

descent morphism

B (C∞(Rn, G1)→ C∞(Rn, G0))→ [CartSpop, sSet]
(
Č(U),B(G1 → G0)

)

is a weak homotopy equivalence. The main point to show is that, since the
Kan complex on the left is connected by construction, also the Kan complex
on the right is.

To that end, notice that the category CartSp equipped with the open
cover topology is a Verdier site in the sense of Section 8 of [13]. By the
discussion there it follows that every hypercover over R

n can be refined by a
split hypercover, and these are cofibrant resolutions of R

n in both the global
and the local model structure [CartSpop, sSet]proj,loc. Since also Č(U)→ R

n

is a cofibrant resolution and since BG is fibrant in the global structure by
observation 3.2.11, it follows from the existence of the global model structure
that morphisms out of Č(U) into B(G1 → G0) capture all cocycles over any
hypercover over R

n, hence that

π0[CartSpop, sSet]
(
Č(U),B(G1 → G0)

) 	 H1
smooth (Rn, (G1 → G0))

is the standard Čech cohomology of R
n, defined as a colimit over refinements

of covers of equivalence classes of Čech cocycles.

Now by Proposition 4.1 of [39] (which is the smooth refinement of the
statement of [7] in the continuous context) we have that under our assump-
tions on (G1 → G0) there is a topological classifying space for this smooth
Čech cohomology set. Since R

n is topologically contractible, it follows that
this is the singleton set and hence the above descent morphism is indeed an
isomorphism on π0.

Next we can argue that it is also an isomorphism on π1, by reducing to
the analogous local trivialization statement for ordinary principal bundles:
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a loop in [CartSpop, sSet]
(
Č(U),B(G1 → G0)

)
on the trivial cocycle is read-

ily seen to be a G0//(G0 � G1)-principal groupoid bundle, over the action
groupoid as indicated. The underlying G0 � G1-principal bundle has a triv-
ialization on the contractible R

n (by classical results or, in fact, as a special
case of the previous argument), and so equivalence classes of such loops are
given by G0-valued smooth functions on R

n. The descent morphism exhibits
an isomorphism on these classes.

Finally the equivalence classes of spheres on both sides are directly seen
to be smooth ker(G1 → G0)-valued functions on both sides, identified by the
descent morphism. �
Corollary 3.2.13. For X ∈ SmoothMfd ⊂ H a paracompact smooth man-
ifold, and (G1 → G0) as above, we have for any good open cover {Ui → X}
that the 2-groupoid of smooth (G1 → G0)-principal 2-bundles is

(G1 → G0)Bund(X)

:= H(X,B(G1)) 	 [CartSpop, sSet]
(
Č(U),B(G1 → G0)

)

and its set of connected components is naturally isomorphic to the non-
abelian Čech cohomology

π0H (X,B(G1 → G0)) 	 H1
smooth(X, (G1 → G0)).

3.2.3 BnU (1), BnU (1)conn, circle n-bundles and Deligne
cohomology

A large class of examples of smooth ∞-groupoids is induced from chain
complexes of sheaves of abelian groups by the DK correspondence [23].

Proposition 3.2.14. The DK correspondence is an equivalence of cate-
gories

Ch+
• ��

N•

DK ��
sAb ,

between non-negatively graded chain complexes and simplicial abelian groups,
where N• forms the normalized chains complex of a simplicial abelian group
AΔ. Composed with the forgetful functor sAb→ sSet and prolonged to a
functor on sheaves of chain complexes, the functor

DK : [CartSpop, Ch+
• ]→ [CartSpop, sSet]

takes degreewise surjections to fibrations and degreewise quasi-isomorphisms
to weak equivalences in [CartSpop, sSet]proj.
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We will write an element (A•, ∂) of Ch+
• as

· · · → Ak → Ak−1 → · · · → A2 → A1 → A0

and will denote by [1] the “shift on the left” functor on chain complexes
defined by (A•[1])k = Ak−1, i.e., A•[1] is the chain complex

· · · → Ak−1 → · · · → A2 → A1 → A0 → 0.

Remark 3.2.15. The reader used to cochain complexes, and so to the shift
functor (A•[1])k = Ak+1 could at first be surprised by the minus sign in the
shift functor on chain complexes; but the shift rule is actually the same in
both contexts, as it is evident by writing it as (A•[1])k = Ak+deg(∂).

For A any abelian group, we can consider A as a chain complex concen-
trated in degree zero, and so A[n] will be the chain complex consisting of A
concentrated in degree n.

Definition 3.2.16. Let A be an abelian Lie group. Define the simpli-
cial presheaf BnA to be the image under DK of the sheaf of complexes
C∞(−, A)[n]:

BnA : U 
→ DK (C∞(U, A)→ 0→ · · · → 0) ,

with C∞(U, A) in degree n. Similarly, for K → A a morphism of abelian
groups, write Bn(K → A) for the image under DK of the complex of sheaves
of abelian groups

(C∞(−, K)→ C∞(−, A)→ 0→ · · · → 0)

with C∞(−, A) in degree n; for n ≥ 1 we write EBn−1A for Bn−1(A Id→ A).

Proposition 3.2.17. For n ≥ 1 the object BnA is indeed the delooping of
the object Bn−1A.

Proof. This means that there is an ∞-pullback diagram [34]

Bn−1A

��

�� ∗

��
∗ �� BnA

.
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This is presented by the corresponding homotopy pullback in [CartSpop,
sSet]. Consider the diagram

Bn−1A

��

�� EBn−1A

����

∼ �� ∗

∗ �� BnA

,

The right vertical morphism is a replacement of the point inclusion by a
fibration and the square is a pullback in [CartSpop, sSet] (the pullback of
presheaves is computed objectwise and under the DK-correspondence may
be computed in Ch+

• , where it is evident). Therefore this exhibits Bn−1A
as the homotopy pullback, as claimed. �

Proposition 3.2.18. For A = Z, R, U(1) and all n ≥ 1 we have that BnA
satisfies descent over CartSp in that it is fibrant in [CartSpop,
sSet]proj,loc.

Proof. One sees directly in terms of Čech cocycles that the homotopy groups
based at the trivial cocycle in the simplicial hom-sets [CartSpop, sSet](
Č(U),BnA

)
and [CartSpop, sSet](U,BnA) are naturally identified. There-

fore it is sufficient to show that

∗ 	 π0[CartSpop, sSet](U,BnA)→ π0[CartSpop, sSet]
(
Č(U),BnA

)

is an isomorphism. This amounts to proving that the nth Čech cohomology
group of U with coefficients in Z, R or U(1) is trivial, which is immediate
since U is contractible (for U(1) one uses the isomorphism Hn(U, U(1)) 	
Hn+1(U, Z) in Čech cohomology). �

Definition 3.2.19. For X a smooth ∞-groupoid and QX → X a cofibrant
replacement, we say that

• for X
∼loc←−− QX

g→ BnA a span in [CartSpop, sSet], the corresponding
(Bn−1)A-principal n-bundle is the ∞-pullback

P

��

�� ∗

��
X

g �� BnA.
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Hence, the ordinary pullback in [CartSpop, sSet]

P ��

��

EBn−1A

��
QX

∼
lo

c

��

g �� BnA

X

.

• the Kan complex

(Bn−1A)Bund(X) := H(X,BnA)

is the n-groupoid of smooth Bn−1A-principal n-bundles on X.

Proposition 3.2.20. For X a smooth paracompact manifold, the n-groupoid
(Bn−1A)Bund(X) is equivalent to the n-groupoid Č(U ,BnA) of degree n
Čech cocycles on X with coefficients in the sheaf of smooth functions with
values in A. In particular

π0(Bn−1A)Bund(X) = π0H(X,BnA) 	 Hn(X, A)

is the Čech cohomology of X in degree n with coefficients in A.

Proof. This follows from the same arguments as in the previous section given
for the more general non-abelian Čech cohomology. �

We will be interested mainly in the abelian Lie group A = U(1). The
exponential exact sequence 0→ Z→ R→ U(1)→ 1 induces an acyclic fibra-
tion (in the global model structure) Bn(Z ↪→ R)

∼� BnU(1), and one has the
long fibration sequence

Bn(Z ↪→ R)

	
����

�� Bn+1
Z · · ·

· · · → Bn
Z

�� Bn
R

�� BnU(1)

from which one recovers the classical isomorphism Hn (X, U(1)) 	 Hn+1

(X, Z). Next, we consider differential refinements of these cohomology
groups.
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Definition 3.2.21. The smooth ∞-groupoid BnU(1)conn is the image via
the DK correspondence of the Deligne complex U(1)[n]∞D , i.e., of the chain
complex of sheaves of abelian groups

U(1)[n]∞D :=
(
C∞ (−, U(1))

dlog−−→ Ω1 (−, R) d−→ · · · d−→ Ωn (−, R)
)

concentrated in degrees [0, n]. Similarly, the smooth ∞-groupoid Bn(Z ↪→
R)conn is the image via the DK correspondence of the complex of sheaves of
abelian groups

Z[n + 1]∞D :=
(
Z ↪→ C∞ (−, R) d−→ Ω1 (−, R) d−→ · · · d−→ Ωn (−, R)

)
,

concentrated in degrees [0, n + 1].

The natural morphism of sheaves of complexes Z[n + 1]∞D → U(1)[n]∞D
is an acyclic fibration and so we have an induced acyclic fibration (in the
global model structure) Bn(Z ↪→ R)conn

∼� BnU(1)conn. Therefore, we find
a natural isomorphism

H0 (X, U(1)[n]∞D ) 	 H0 (X, Z[n + 1]∞D )

and a commutative diagram

H0 (X, U(1)[n]∞D )

�

��

�� Hn (X, U(1))

�

��
H0 (X, Z[n + 1]∞D ) �� Hn+1(X, Z).

Definition 3.2.22. We denote the cohomology group H0 (X, Z[n]∞D ) by
the symbol Ĥn(X, Z), and call it the nth differential cohomology group of
X (with integer coefficients). The natural morphism Ĥn(X, Z)→ Hn(X, Z)
will be called the differential refinement of ordinary cohomology.

Remark 3.2.23. The reader experienced with gerbes and higher gerbes will
have recognized that Hn (X, U(1)) 	 Hn+1(X, Z) is the set of isomorphism
classes of U(1)-(n− 1)-gerbes on a manifold X, whereas H0 (X, U(1)[n]∞D ) 	
Ĥn+1(X, Z) is the set of isomorphism classes of U(1)-(n− 1)-gerbes with
connection on X, and that the natural morphism Ĥn+1(X, Z)→ Hn+1(X, Z)
is ‘forgetting the connection’, see, e.g., [19].
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The natural projection U(1)[n]∞D → C∞(−, U(1)[n] is a fibration, so we
have a natural fibration BnU(1)conn � BnU(1), and, as for the case of Lie
groups, we have a natural factorization

BnU(1)conn ↪→ BnU(1)diff
∼� BnU(1)

into a monomorphism followed by an acyclic fibration (in the global model
structure).

The smooth ∞-groupoid BnU(1)diff is best defined at the level of chain
complexes, where we have the well known “cone trick” from homological
algebra to get the desired factorization. In the case at hand, it works as
follows: let cone(ker π ↪→ U(1)[n]∞D (U)) be the mapping cone of the inclusion
of the kernel of π : U(1)[n]∞D → C∞(−, U(1)[n] into U(1)[n]∞D , i.e., the chain
complex

C∞ (−, U(1))
dlog �� Ω1(−) d �� Ω2(−) d �� · · · d �� Ωn(−)

⊕ ⊕ ⊕ ⊕
Ω1(−)

Id����

������

d
�� Ω2(−)

����
�� · · · �� Ωn(−)

Id���

		���

�� 0

Then U(1)[n]∞D naturally injects into cone(kerπ ↪→ U(1)[n]∞D ), and π induces
a morphism of complexes π : cone(ker π ↪→ U(1)[n]∞D )→ C∞(−, U(1)[n]
which is an acyclic fibration; the composition

U(1)[n]∞D ↪→ cone(ker π ↪→ U(1)[n]∞D ) π−→ C∞(−, U(1)[n]

is the sought for factorization.

Definition 3.2.24. Define the simplicial presheaf

BnU(1)diff = DK(cone(ker π ↪→ U(1)[n]∞D ))

to be the image under the DK equivalence of the chain complex of sheaves
of abelian groups cone(kerπ ↪→ U(1)[n]∞D ).

The last smooth ∞-groupoid we introduce in this section is the natural
ambient for curvature forms to live in. As above, we work at the level of
sheaves of chain complexes first. So, let 	R[n]∞dR be the truncated de Rham
complex

	R[n + 1]∞dR :=
(
Ω1(−) d→ Ω2(−) d→ · · · d→ Ωn+1

cl (−)
)

seen as a chain complex concentrated in degrees [0, n].
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There is a natural morphism of complexes of sheaves, which we call the
curvature map,

curv : cone(ker π ↪→ U(1)[n]∞D )→ 	R[n + 1]∞dR

given by the projection cone(kerπ ↪→ U(1)[n]∞D )→ ker π[1] in degrees [1, n]
and given by the de Rham differential d : Ωn(−)→ Ωn+1

cl (−) in degree zero.
Note that the preimage of (0→ 0→ · · · → Ωn+1

cl (−)) via curv is precisely
the complex U(1)[n]∞D , and that for n = 1 the induced morphism

curv : U(1)[1]∞D → Ω2
cl(−)

is the map sending a connection on a principal U(1)-bundle to its curvature
2-form.

Definition 3.2.25. The smooth ∞-groupoid 	dRBn+1
R is

	dRBn+1
R = DK

(
Ω1(−) d→ Ω2(−) d→ · · · d→ Ωn+1

cl (−)
)

,

the image under DK of the truncated de Rham complex.

The above discussion can be summarized as

Proposition 3.2.26. In [CartSpop, sSet]proj,loc we have a natural commu-
tative diagram

BnU(1)conn

��

�� Ωn+1
cl (−)

��
BnU(1)diff

curv ��

	
����

	dRBn+1
R

BnU(1)

.

whose upper square is a pullback and whose lower part presents a morphism
of smooth ∞-groupoids from BnU(1) to 	dRBn+1

R. We call this morphism
the curvature characteristic map.

Remark 3.2.27. One also has a natural (Z ↪→ R) version of BnU(1)diff ,
i.e., we have a smooth∞-groupoid Bn(Z ↪→ R)diff with a natural morphism

Bn(Z ↪→ R)diff
∼� BnU(1)diff

which is an acyclic fibration in the global model structure.
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4 Differential ∞-Lie integration

As the notion of L∞-algebra generalizes that of Lie algebra so that of Lie
∞-group generalizes that of Lie group. We describe a way to integrate
an L∞-algebra g to the smooth delooping BG of the corresponding Lie
∞-group by a slight variant of the construction of [25]. (Recall from the
introduction that we use “Lie” to indicate generalized smooth structure
which may or may not be represented by smooth manifolds). Then we gen-
eralize this to a differential integration: an integration of an L∞-algebroid
g to smooth ∞-groupoids BGdiff and BGconn. Cocycles with coefficients in
BG give G-principal ∞-bundles; those with coefficients in BGdiff support
the ∞-Chern–Weil homomorphism, those with coefficients in BGconn give
G-principal ∞-bundles with connection.

4.1 Lie ∞-algebroids: cocycles, invariant polynomials and
CS-elements

We summarize the main definitions and properties of L∞-algebroids from [32,
33], and their cocycles, invariant polynomials and Chern–Simons elements
from [43,44].

Definition 4.1.1. Let R be a commutative R-algebra, and let g be a chain
complex of finitely generated (in each degree) R-modules, concentrated in
non-negative degree. Then a (reduced) L∞-algebroid (or Lie ∞-algebroid)
structure on g is the datum of a degree 1 R-derivation dCE(g) on the exterior
algebra

∧•R g∗ := Sym•
R (g∗[−1])

(the free graded commutative algebra on the shifted dual of g), which is a
differential (i.e., squares to zero) compatible with the differential of g.

A chain complex g endowed with an L∞-algebroid structure will be called
a L∞-algebroid. The differential graded commutative algebra

CE(g) :=
(∧•R g∗, dCE(g)

)

will be called the Chevalley–Eilenberg algebra of the L∞-algebroid g. A mor-
phism of L∞-algebroids g1 → g2 is defined to be a dgca morphism CE(g2)→
CE(g1)



188 DOMENICO FIORENZA ET AL.

Since all L∞-algebroids which will be met in this paper will be reduced,
we will just say Lie ∞-algebroid to mean reduced Lie ∞-algebroid in what
follows.

Remark 4.1.2.

• Lie ∞-algebroids could be more intrinsically defined as follows: the
category L∞Algd ⊂ dgAlgop of L∞-algebroids is the full subcategory
of the opposite of that of differential graded commutative R-algebras
on those dg-algebras whose underlying graded-commutative algebra is
free on a finitely generated graded module concentrated in positive
degree over the commutative algebra in degree 0.
• The dual g∗ = Hom−•

R (g, R) is a cochain complex concentrated in non-
negative degrees. In particular the shift to the right functor [−1]
changes it into a cochain complex concentrated in strictly positive
degrees.
• The restriction to finite generation is an artifact of dualizing g rather

than working with graded alternating multilinear functions on g as
the masters (Chevalley–Eilenberg–Koszul) did in the original ungraded
case. In particular, the direct generalization of their approach consists
in working with the cofree connected cocommutative coalgebra cogen-
erated by g[1], see, e.g., [46]. At least for L∞-algebras, there are alter-
nate definitions and conventions as to bounds on the grading, signs,
etc. cf. [32, 33] among others.
• Given an L∞-algebroid g, the degree 0 part CE(g)0 of CE(g) is is

a commutative R-algebra which we think of as the formal dual to
the space of objects over which the Lie ∞-algebroid is defined. If
CE(g)0 = R equals the ground field, we say we have an ∞ algebroid
over the point, or equivalently that we have an L∞-algebra.
• The underlying algebra in degree 0 can be generalized to an algebra

over some Lawvere theory. In particular in a proper setup of higher
differential geometry, we would demand CE(g)0 to be equipped with
the structure of a C∞-ring.

Example 4.1.3. • For g an ordinary (finite-dimensional) Lie algebra,
CE(g) is the ordinary Chevalley–Eilenberg algebra with coefficients in
R. The differential is given by the dual of the Lie bracket,

dCE(g) = [−,−]∗

extended uniquely as a graded derivation.
• For a dg-Lie algebra g = (g•, ∂), the differential is

dCE(g) = [−,−]∗ + ∂∗.
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• In the general case, the total differential is further determined by (and
is equivalent to) a sequence of higher multilinear brackets [33].
• For n ∈ N, the L∞-algebra bn−1

R is defined in terms of CE(bn−1
R)

which is the dgc-algebra on a single generator in degree n with van-
ishing differential.
• For X a smooth manifold, its tangent Lie algebroid is defined to

have CE(TX) = (Ω•(X), ddR) the de Rham algebra of X. Notice that
Ω•(X) = ∧•C∞(X)Γ(T ∗X).

We shall extensively use the tangent Lie algebroid T (U ×Δk) where
U ∈ CartSp and Δk is the standard k-simplex.

Definition 4.1.4. For g a Lie ∞-algebroid and n ∈ N, a cocycle in degree
n on g is, equivalently

• an element μ ∈ CE(g) in degree n, such that dCE(g) μ = 0;
• a morphism of dg-algebras μ : CE(bn−1

R)→ CE(g);
• a morphism of Lie ∞-algebroids μ : g→ bn−1

R.

Example 4.1.5. • For g an ordinary Lie algebra, a cocycle in the above
sense is the same as a Lie algebra cocycle in the ordinary sense (with
values in the trivial module).
• For X a smooth manifold, a cocycle in degree n on the tangent Lie

algebroid TX is precisely a closed n-form on X.

For our purposes, a particularly important Chevalley–Eilenberg algebra
is the Weil algebra.

Definition 4.1.6. The Weil algebra of an L∞-algebra g is the dg-algebra

W(g) :=
(
Sym• (g∗[−1]⊕ g∗[−2]) , dW (g)

)
,

where the differential on the copy g∗[−1] is the sum

dW (g)|g∗ = dCE(g) + σ,

with σ : g∗ → g∗[−1] is the grade-shifting isomorphism, i.e., it is the iden-
tity of g∗ seen as a degree 1 map g∗[−1]→ g∗[−2], extended as a graded
derivation, and where

dW (g) ◦ σ = −σ ◦ dW (g).

Proposition 4.1.7. The Weil algebra is a representative of the free differ-
ential graded commutative algebra on the graded vector space g∗[−1] in that
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there exist a natural isomorphism

Homdgca (W (g), Ω•) 	 Homgr−vect (g∗[−1], Ω•) ,

for Ω• an arbitrary dgca. Moreover, the Weil algebra is precisely that algebra
with this property for which the projection morphism i∗ : g∗[−1]⊕ g∗[−2]→
g∗[−1] of graded vector spaces extends to a dg-algebra homomorphism

i∗ : W(g)→ CE(g).

Notice that the free dgca on a graded vector space is defined only up to
isomorphism. The condition on i∗ is what picks the Weil algebra among all
free dg-algebras. A proof of the above proposition can be found, e.g., in [43].

Equivalently, one can state the freeness of the Weil algebra by saying that
the dgca-morphisms A : W(g)→ Ω• are in natural bijection with the degree
1 elements in the graded vector space Ω• ⊗ g.

Example 4.1.8. • For g an ordinary Lie algebra, W(g) is the ordinary
Weil algebra [10]. In that paper, H. Cartan defines a g-algebra as
an analog of the dg-algebra Ω•(P ) of differential forms on a principal
bundle, i.e., as a dg-algebra equipped with operations iξ and Lξ for all
ξ ∈ g satisfying the usual relations, including

Lξ = diξ + iξd.

Next, Cartan introduces the Weil algebra W(g) as the universal
g-algebra and identifies a g-connection A on a principal bundle P as a
morphism of g-algebras

A : W(g)→ Ω•(P ).

This can in turn be seen as a dgca morphism satisfying the Cartan–
Ehresmann conditions, and it is this latter point of view that we gen-
eralize to an arbitrary L∞-algebra.
• The dg-algebra W(bn−1

R) of bn−1
R is the free dg-algebra on a single

generator in degree n. As a graded algebra, it has a generator b in
degree n and a generator c in degree (n + 1) and the differential acts
as dW : b 
→ c. Note that, since dCEb = 0, this is equivalent to c = σb.

Remark 4.1.9. Since the Weil algebra is itself a dg-algebra whose underly-
ing graded algebra is a graded symmetric algebra, it is itself the CE-algebra
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of an L∞-algebra. The L∞-algebra thus defined we denote inn(g):

CE (inn(g)) = W(g).

Note that the underlying graded vector space of inn(g) is g⊕ g[1]. Looking
at W(g) as the Chevalley–Eilenberg algebra of inn(g) we therefore obtain
the following description of morphisms out of W(g): for any dgca Ω•, a dgca
morphism W(g)→ Ω• is the datum of a pair (A, FA), where A and FA are
a degree 1 and a degree 2 element in Ω• ⊗ g, respectively, such that (A, FA)
satisfies the Maurer–Cartan equation in the L∞-algebra Ω• ⊗ inn(g). The
Maurer–Cartan equation actually completely determines FA in terms of A;
this is an instance of the freeness property of the Weil algebra stated in
Proposition 4.1.7.

Definition 4.1.10. For X a smooth manifold, a g-valued connection form
on X is a morphism of Lie∞-algebroids A : TX → inn(g), hence a morphism
of dg-algebras

A : W(g)→ Ω•(X).

Remark 4.1.11. A g-valued connection form on X can be equivalently seen
as an element A in the set Ω1(X, g) of degree 1 elements in Ω•(X)⊗ g, or
as a pair (A, FA), where A ∈ Ω1(U, g), FA ∈ Ω2(U, g), and A and FA are
related by the Maurer–Cartan equation in Ω•(X, inn(g)). The element FA

is called the curvature form of A.

Example 4.1.12. If g is an ordinary Lie algebra, then a g-valued connection
form A on X is a 1-form on X with coefficients in g, i.e., it is naturally a
connection 1-form on a trivial principal G-bundle on X. The element FA in
Ω2(X, g) is then given by equation

FA = dA +
1
2
[A, A],

so it is precisely the usual curvature form of A.

The last ingredient we need to generalize from Lie algebras to L∞-
algebroids is the algebra inv(g) of invariant polynomials.

Definition 4.1.13. An invariant polynomial on g is a dW(g)-closed element
〈−〉 in Sym•(g∗[−2]) ⊂W(g).

To see how this definition encodes the classical definition of invariant
polynomials on a Lie algebra, notice that invariant polynomials are ele-
ments of Sym•(g∗[−2]) that are both horizontal and ad-invariant (“basic
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forms”). Namely, for any v ∈ g we have, for an invariant polynomial 〈−〉, the
identities

ιv〈−〉 = 0 (horizontality)

and

Lv〈−〉 = 0 (ad-invariance),

where ιv : W(g)→W(g) the contraction derivation defined by v and Lv :=
[dW(g), ιv] is the corresponding Lie derivative.

We want to identify two indecomposable invariant polynomials which dif-
fer by a “horizontal shift”. A systematic way of doing this is to introduce
the following equivalence relation on the dgca of all invariant polynomials:
we say that two invariant polynomials 〈−〉1, 〈−〉2 are horizontally equivalent
if there exists ω in ker(W(g)→ CE(g)) such that

〈−〉1 = 〈−〉2 + dWω.

Write inv(g)V for the quotient graded vector space of horizontal equivalence
classes of invariant polynomials.

Definition 4.1.14. The dgca inv(g) is defined as the free polynomial algebra
on the graded vector space invV (g), endowed with the trivial differential.

Remark 4.1.15. A choice of a linear section to the projection

{invariant polynomials} → inv(g)V

gives a morphism of graded vector spaces inv(g)V →W(g), canonical up to
horizontal homotopy, that sends each equivalence class to a representative.
This linear morphism uniquely extends to a dg-algebra homomorphism

inv(g)→W(g).

Remark 4.1.16. The algebra inv(g) is at first sight a quite abstract
construction which is apparently unrelated to an equivalence relation on
indecomposable invariant polynomials. A closer look shows that it is actu-
ally not so. Namely, only indecomposable invariant polynomials can be
representatives for the non-zero equivalence classes. Indeed, if 〈−〉1 and
〈−〉2 are two non-trivial invariant polynomials, then since the cohomology
of W(g) is trivial in positive degree, there is cs1 in W(g) (not necessarily
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in ker(W(g)→ CE(g)) ) such that dWcs1 = 〈−〉1, but then cs1 ∧ 〈−〉2 is a
horizontal trivialization of 〈−〉1 ∧ 〈−〉2. One therefore obtains a very con-
crete description of the algebra inv(g) as follows: one picks a representative
indecomposable invariant polynomial for each horizontal equivalence class
and considers the subalgebra of W(g) generated by these representatives.
The morphism inv(g)→W(g) is then realized as the inclusion of this sub-
algebra into the Weil algebra. Different choices of representative generators
lead to distinct but equivalent subalgebras: each one is isomorphic to the
others via an horizontal shift in the generators.

Remark 4.1.17. For g an ordinary reductive Lie algebra, Definition 4.1.14
reproduces the traditional definition of the algebra of adg-invariant polyno-
mials. Indeed, for a Lie algebra g, the condition dW(g)〈−〉 = 0 is precisely
the usual adg-invariance of an element 〈−〉 in Sym•g∗[−2]. Moreover, the
horizonal equivalence on indecomposables is trivial in this case and it is a
classical fact (for instance theorem I on page 242 in volume III of [21]) that
the graded algebra of adg-invariant polynomials is indeed free on the space
of indecomposables.

Definition 4.1.18. For any dgca morphism A : W(g)→ Ω•, the composite
morphism inv(g)→W(g)→ Ω• is the evaluation of invariant polynomials
on the element FA. In particular, if X is a smooth manifold and A is a
g-valued connection form on X, then the image of FA : inv(g)→ Ω•(X) is a
collection of differential forms on X, to be called the curvature characteristic
forms of A.

Example 4.1.19. For the L∞-algebra bn−1
R, in the notations of Exam-

ple 4.1.8, one has inv(bn−1
R) = R[c].

Definition 4.1.20. We say an invariant polynomial 〈−〉 on g is in trans-
gression with a cocycle μ if there exists an element cs ∈W(g) such that

(1) i∗cs = μ;
(2) dW(g)cs = 〈−〉.

We call cs a Chern–Simons element for μ and 〈−〉.

For ordinary Lie algebras this reduces to the classical notion, for instance
6.13 in vol. III of [21].

Remark 4.1.21. If we think of inv(g) ⊂ ker i∗ as a subcomplex of the ker-
nel of i∗, then this transgression exhibits the connecting homomorphism
Hn−1 (CE(g))→ Hn(ker i∗) of the long sequence in cohomology induced
from the short exact sequence ker i∗ →W(g) i∗→ CE(g).



194 DOMENICO FIORENZA ET AL.

If we think of

• W(g) as differential forms on the total space of a universal principal
bundle;
• CE(g) as differential forms on the fibre;
• inv(g) as forms on the base;

then the above notion of transgression is precisely the classical one of trans-
gression of forms in the setting of fibre bundles (for instance Section 9
of [6]).

Example 4.1.22.

• For g a semisimple Lie algebra with 〈−,−〉 the Killing form invari-
ant polynomial, the corresponding cocycle in transgression is μ3 =
1
2〈−, [−,−]〉. The Chern–Simons element witnessing this transgression
is cs = 〈σ(−),−〉+ 1

2〈−, [−,−]〉.
• For the Weil algebra W(bn−1

R) of Example 4.1.8, the element b (as ele-
ment of the Weil algebra) is a Chern–Simons element transgressing the
cocycle b (as element of the Chevalley–Eilenberg algebra CE(bn−1

R))
to the invariant polynomial c.
• For g a semisimple Lie algebra, μ3 = 1

2〈−, [−,−]〉 the canonical Lie
algebra 3-cocycle in transgression with the Killing form, let gμ3 be the
corresponding string Lie 2-algebra given by the next Definition 4.1.23,
and discussed below in 4.2.3. Its Weil algebra is given by

dW ta = −1
2
Ca

bct
b ∧ tc + ra

dW b = h− μ3

and the corresponding Bianchi identities, with {ta} a dual basis for
g in degree 1, with b a generator in degree 2 and h its curvature
generator in degree 3. We see that every invariant polynomial of g
is also an invariant polynomial of gμ3 . But the Killing form 〈−,−〉
is now horizontally trivial: let cs3 be any Chern–Simons element for
〈−,−〉 in W(g). This is not horizontal. But the element

c̃s3 := cs3 − μ3 + h

is in ker(W (gμ3)→ CE(gμ3)) and

dW ˜cs3 = 〈−,−〉.
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Therefore inv(gμ3) has the same generators as inv(g) except the Killing
form, which is discarded.

Definition 4.1.23. For μ : g→ bn−1
R a cocycle in degree n ≥ 1, the exten-

sion that it classifies is the L∞-algebra given by the pullback

gμ ��

��

inn(bn−2
R)

��
g

μ �� bn−1
R

.

Remark 4.1.24. Dually, the L∞-algebra gμ is the pushout

CE(gμ) ��
��

W(bn−2
R)

��

CE(g) �� μ
CE(bn−1

R)

in the category dgcAlg. This means that CE(gμ) is obtained from CE(g) by
adding one more generator b in degree (n− 1) and setting

dCE(gμ) : b 
→ −μ.

These are standard constructions on dgc-algebras familiar from rational
homotopy theory, realizing CE(g)→ CE(gμ) as a relative Sullivan algebra.
Yet, it is still worthwhile to make the ∞-Lie theoretic meaning in terms
of L∞-algebra extensions manifest: we may think of gμ as the homotopy
fibre of μ or equivalently as the extension of g classified by μ. In Section 5
we discuss how these L∞-algebra extensions are integrated to extensions of
smooth ∞-groups; the homotopy fibre point of view will be emphasized in
Section 6.

Example 4.1.25. For g a semisimple Lie algebra and μ = 1
2〈−, [−,−]〉 the

cocycle in transgression with the Killing form, the corresponding extension
is the string Lie 2-algebra gμ discussed in Section 4.2.3, [8, 25].

We may summarize the situation as follows: for μ a degree n cocycle
which is in transgression with an invariant polynomial 〈−〉 via a Chern–
Simons element cs, the corresponding morphisms of dg-algebras fit into a
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commutative diagram

CE(g) �� μ

��
CE(bn−1)

��

W(g) �� cs

��
W(bn−1

R)
��

inv(g) �� 〈−〉
inv(bn−1

R)

In Section 4.3, we will see that under ∞-Lie integration this diagram corre-
sponds to a universal circle n-bundle connection on BG. The composition of
the diagrams defining the cells in expΔ(g)diff (Section 4.3) with this diagram
models the ∞-Chern–Weil homomorphism for the characteristic class given
by 〈−〉.

4.2 Principal ∞-bundles

We describe the integration of Lie∞-algebras g to smooth∞-groupoids BG
in the sense of Section 3.

The basic idea is Sullivan’s old construction [47] in rational homotopy
theory of a simplicial set from a dg-algebra. It was essentially noticed by
Getzler [20], following Hinich [26], that this construction may be interpreted
in∞-Lie theory as forming the smooth∞-groupoid underlying the Lie inte-
gration of an L∞ -algebra. Henriques [25] refined the construction to land
in ∞-groupoids internal to Banach spaces. Here, we observe that the con-
struction has an evident refinement to yield genuine smooth ∞-groupoids
in the sense of Section 3 (this refinement has independently also been con-
sidered by Roytenberg in [40]): the integrated smooth ∞-groupoid sends
each Cartesian space U to a Kan complex which in degree k is the set of
smoothly U -parameterized families of smooth flat g-valued differential forms
on the standard k-simplex Δk ⊂ R

k regarded as a smooth manifold (with
boundary and corners).

To make this precise, we need a suitable notion of smooth differential
forms on the k-simplex. Recall that an ordinary smooth form on Δk is
a smooth form on an open neighbourhood of Δn in R

n. This says that
the derivatives are well behaved at the boundary. The following technical
definition imposes even more restrictive conditions on the behaviour at the
boundary.
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Definition 4.2.1. For any point p in Δk, let Δp be the lowest dimensional
subsimplex of Δk the point p belongs to, and let πp the orthogonal projection
on the affine subspace spanned by Δp. A smooth differential form ω on Δk

is said to have sitting instants along the boundary if for any point p in Δk

there is a neighbourhood Vp of p such that ω = π∗
p(ω|Δp) on Vp.

For any U ∈ CartSp, a smooth differential form ω on U ×Δk is said to
have sitting instants if for all points u : ∗ → U the pullback along (u, Id) :
Δk → U ×Δk has sitting instants.

Smooth forms with sitting instants clearly form a sub-dg-algebra of all
smooth forms. We shall write Ω•

si(U ×Δk) to denote this sub-dg-algebra.

Remark 4.2.2. The inclusion Ω•
si(Δ

k) ↪→ Ω•(Δk) is a quasi-isomorphism.
Indeed, by using bump functions with sitting instants one sees that the sheaf
of differential forms with sitting instants is fine, and it is immediate to show
that the stalkwise Poincaré lemma holds for this sheaf. Hence the usual
hypercohomology argument applies. We thank Tom Goodwillie for having
suggested a sheaf-theoretic proof of this result.

Remark 4.2.3. For a point p in the interior of the simplex Δk the sitting
instants condition is clearly empty; this justifies the name “sitting instants
along the boundary”. Also note that the dimension of the normal direc-
tion to the boundary depends on the dimension of the boundary stratum:
there is one perpendicular direction to a codimension-1 face, and there are
k perpendicular directions to a vertex.

Definition 4.2.4. For a Cartesian space U , we denote by the symbol

Ω•
si(U ×Δk)vert ⊂ Ω•(U ×Δk)

the sub-dg-algebra on forms that are vertical with respect to the projection
U ×Δk → U .

Equivalently this is the completed tensor product,

Ω•
si(U ×Δk)vert = C∞(U ; R)⊗̂Ω•

si(Δ
k),

where C∞(U ; R) is regarded as a dg-algebra concentrated in degree zero.

Example 4.2.5. • A 0-form (a smooth function) has sitting instants on
Δ1 if in a neighbourhood of the endpoints it is constant. A smooth
function f : U ×Δ1 → R is in Ω0

si(U ×Δ1)vert if for each u ∈ U it is
constant in a neighbourhood of the endpoints of Δ1.
• A 1-form has sitting instants on Δ1 if in a neighbourhood of the end-

points it vanishes.
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• Let X be a smooth manifold and ω ∈ Ω•(X) be a smooth form on X.
Let φ : Δk → X be a smooth map with sitting instants in the ordinary
sense: for every r-face of Δk there is a neighbourhood such that φ is
perpendicularly constant on that neighbourhood. Then the pullback
form φ∗ω is a form with sitting instants on Δk.

Remark 4.2.6. The point of the definition of sitting instants, clearly rem-
iniscent of the use of normal cylindrical collars in cobordism theory, is that,
when gluing compatible forms on simplices along faces, the resulting differ-
ential form is smooth.

Proposition 4.2.7. Let Λk
i ⊂ Δk be the ith horn of Δk, regarded naturally

as a closed subset of R
k−1. If {ωj ∈ Ω•

si(Δ
k−1)} is a collection of smooth

forms with sitting instants on the (k − 1)-simplices of Λk
i that match on

their coinciding faces, then there is a unique smooth form ω on Λk
i that

restricts to ωj on the jth face.

Proof. By the condition that forms with sitting instants are constant per-
pendicular to their value on a face in a neighbourhood of any face it follows
that if two agree on an adjacent face then all derivatives at that face of the
unique form that extends both exist in all directions. Hence that unique
form extending both is smooth. �

Definition 4.2.8. For g an L∞-algebra, the simplicial presheaf expΔ(g) on
the site of Cartesian spaces is defined as

expΔ(g) : (U, [k]) 
→ HomdgAlg

(
CE(g), Ω•

si(U ×Δk)vert

)
.

Note that the construction of expΔ(g) is functorial in g: a morphism of
L∞-algebras g1→ g2, i.e., a dg-algebra morphism CE(g2)→ CE(g1), induces
a morphism of simplicial presheaves expΔ(g1)→ expΔ(g2).

Remark 4.2.9. A k-simplex in expΔ(g)(U) may be thought of as a smooth
family of flat g-valued forms on Δn, parameterized by U . We write expΔ(g)
for this simplicial presheaf to indicate that it plays a role analogous to the
formal exponentiation of a Lie algebra to a Lie group.

Proposition 4.2.10. The simplicial presheaf expΔ(g) is a smooth ∞-
groupoid in that it is fibrant in [CartSpop, sSet]proj: it takes values in Kan
complexes. We say that the smooth ∞-groupoid expΔ(g) integrates the L∞-
algebra g.

Proof. Since our forms have sitting instants, this follows in direct analogy to
the standard proof that the singular simplicial complex of any topological
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space is a Kan complex: we may use the standard retracts of simplices onto
their horns to pullback forms from horns to simplices. The retraction maps
are smooth except where they cross faces, but since the forms have sitting
instants there, their smooth pullback exists nevertheless.

Let π : Δk → Λk
i be the standard retraction map of a k-simplex on its

ith horn. Since π is smooth away from the preimages of the faces, the
commutative diagram

U × Λk
i

id×i ��

id 

���������
U ×Δk

id×π
��

U × Λk
i

induces a commutative diagram of dgcas

HomdgAlg(CE(g), Ω•
si(U × Λk

i )vert) HomdgAlg

(
CE(g), Ω•

si(U × Δk)vert
)(id×i)∗◦−��

HomdgAlg (CE(g), Ω•
si(U × Λn

i )vert)

(id×π)∗◦−

��

id

���������������������������

,

so that, in particular, the horn-filling map HomdgAlg(CE(g), Ω•
si

(U × Λk
i )vert)→ HomdgAlg

(
CE(g), Ω•

si(U ×Δk)vert

)
is surjective. �

Example 4.2.11. We may parameterize the 2-simplex as

Δ2 =
{
(x, y) ∈ R

2||x| ≤ 1, 0 ≤ y ≤ 1− |x|} .

The retraction map Δ2 → Λ2
1 in this parameterization is

(x, y) 
→ (x, 1− |x|).

This is smooth away from x = 0. A 1-form with sitting instants on Λ1
1

vanishes in a neighbourhood of x = 0, hence its pullback along this map
exists and is smooth.

Typically one is interested not in expΔ(g) itself, but in a truncation
thereof. For our purposes truncation is best modelled by the coskeleton
operation.

Write Δ≤n ↪→ Δ for the full subcategory of the simplex category on
the first n objects [k], with 0 ≤ k ≤ n. Write sSet≤n for the category of
presheaves on Δ≤n. By general abstract reasoning the canonical projection
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trn : sSet→ sSet≤n has a left adjoint skn : sSet≤n → sSet and a right adjoint
coskn : sSet≤n → sSet.

(skn � trn � coskn) : sSet
�� skn

trn ��
��
coskn

sSet≤n .

The coskeleton operation on a simplicial set is the composite

coskn := coskn ◦ trn : sSet→ sSet.

Since coskn is a functor, it extends to an operation of simplicial presheaves,
which we shall denote by the same symbol

coskn : [CartSpop, sSet]→ [CartSpop, sSet]

For X ∈ sSet or X ∈ [CartSpop,sSet] we say cosknX is its n-coskeleton.

Remark 4.2.12. Using the adjunction relations, we have that the k-cells
of cosknX are images of the n-truncation of Δ[k] in the n-truncation of X:

(cosknX)k = HomsSet (Δ[k], cosknX) = HomsSet≤n
(trnΔ[k], trnX) .

A standard fact (e.g. [14, 23]) is

Proposition 4.2.13. For X a Kan complex

• the simplicial homotopy groups πk of cosknX vanishing in degree k ≥
n;
• the canonical morphism X → cosknX (the unit of the adjunction) is

an isomorphism on all πk in degree k < n;
• in fact, the sequence

X → · · · → coskkX → coskk−1X → · · · → cosk1X → cosk0X 	 ∗

is a model for the Postnikov tower of X.

Example 4.2.14. For G a groupoid and NG its simplicial nerve, the canon-
ical morphism NG → cosk2NG is an isomorphism.

Definition 4.2.15. We say a Kan complex or L∞-groupoid X is an
n-groupoid if the canonical morphism

X → coskn+1X

is an isomorphism. If this morphism is just a weak equivalence, we say X is
an n-type.
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We now spell out details of the Lie ∞-integration for:

(1) an ordinary Lie algebra;
(2) the string Lie 2-algebra;
(3) the line Lie n-algebras bn−1

R.

The basic mechanism is is that discussed in [25], there for Banach ∞-
groupoids. We present now analogous discussions for the context of smooth
∞-groupoids that we need for the differential refinement in 4.3 and then for
the construction of the ∞-Chern–Weil homomorphism in 5

4.2.1 Ordinary Lie group

Let G be a Lie group with Lie algebra g. Then every smooth g-valued 1-form
on the 1-simplex defines an element of G by parallel transport:

tra : Ω1
si ([0, 1], g)→ G

ω 
→ Pexp

(∫

[0,1]
ω

)

,

where the right hand P exp(· · · ) is notation defined to be the endpoint eval-
uation f(1) of the unique solution f : [0, 1]→ G to the differential equation

df + rf ∗(ω) = 0

with initial condition f(0) = e, where rg : G→ G denotes the right action
of g ∈ G on G itself. In the special case that G is simply connected, there is
a unique smooth path γ : [0, 1]→ G starting at the neutral element e such
that ω equals the pullback γ∗θ of the Maurer–Cartan form on G. The value
of the parallel transport is then the endpoint of this path in G.

More generally, this construction works in families and produces for every
Cartesian space U , a parallel transport map

tra : Ω1
si (U × [0, 1], g)vert → C∞(U, G)

from smooth U -parameterized families of g-valued 1-forms on the interval
to smooth functions from U to G. If we now consider a g-valued 1-form
ω on the n-simplex instead, parallel transport along the sequence of edges
[0, 1], [1, 2], . . . , [n− 1, n] defines an element in Gn+1, and so we have an
induced map Ω1

si(U ×Δn, g)vert → BG(U)n. This map, however is not in
general a map of simplicial sets: the composition of parallel transport along
[0, 1] and [1, 2] is in general not the same as the parallel transport along
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the edge [0, 2] so parallel transport is not compatible with face maps. But
precisely if the g-valued 1-form is flat does its parallel transport (over the
contractible simplex) only depend on the endpoint of the path along which
it is transported. Therefore, we have in particular the following

Proposition 4.2.16. Let G be a Lie group with Lie algebra g.

• Parallel transport along the edges of simplices induces a morphism of
smooth ∞-groupoids

tra : expΔ(g)→ BG.

• When G is simply connected, there is a canonical bijection between
smooth flat g-valued 1-forms A on Δn and smooth maps φ : Δn → G
that send the 0-vertex to the neutral element. This bijection is given
by A = φ∗θ, where θ is the Maurer–Cartan form of G.

As for every morphism of Kan complexes, we can look at coskeletal
approximations of parallel transport given by the morphism of coskeletal
towers

exp(g) ��

tra

��

· · · �� coskn+1 (exp(g))

��

�� coskn (exp(g))

��

�� · · · �� ∗

��
BG �� · · · �� coskn+1(BG) �� coskn(BG) �� · · · �� ∗

Proposition 4.2.17. If the Lie group G is (k − 1)-connected, then the
induced maps

coskn (expΔ(g))→ coskn(BG)

are acyclic fibrations in [CartSpop, sSet]proj for any n ≤ k.

Proof. Recall that an acyclic fibration in [CartSpop, sSet]proj is a morphism
of simplicial presheaves that is objectwise an acyclic Kan fibration of sim-
plicial sets. By standard simplicial homotopy theory [23], the latter are
precisely the maps that have the left lifting property against all simplex
boundary inclusions ∂Δ[p] ↪→ Δ[p].

Notice that for n = 0 and n = 1 the statement is trivial. For n ≥ 2 we
have an isomorphism BG→ cosknBG. Hence we need to prove that for
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2 ≤ n ≤ k we have for all U ∈ CartSp lifts σ in diagrams of the form

∂Δ[n] ��

i
��

expΔ(g)

tra

��
Δ[n] ��

σ
���

�
�

�
�

BG

By parallel transport and using the Yoneda lemma, the outer diagram is
equivalently given by a map U × ∂Δp → G that is smooth with sitting
instants on each face Δp−1. By Proposition 4.2.7 this may be thought of as
a smooth map U × Sp−1 → G. The lift σ then corresponds to a smooth map
with sitting instants σ : U ×Δn → G extending this, hence to a smooth map
σ : U ×Dp → G that in a neighbourhood of Sp−1 is constant in the direction
perpendicular to that boundary.

By the connectivity assumption on G there is a continuous map with
these properties. By the Steenrod–Wockel-approximation theorem [49], this
delayed homotopy on a smooth function is itself continuously homotopic
to a smooth such function. This smooth enhancement of the continuous
extension is a lift σ. �

For n = 1 the Kan complex cosk1(BG) is equivalent to the point. For
n = 2 we have an isomorphism BG→ cosk2BG (since BG is the nerve of a
Lie groupoid) and so the proposition asserts that for simply connected Lie
groups cosk2 expΔ(g) is equivalent to BG.

Corollary 4.2.18. If G is a compact connected and simply connected Lie
group with Lie algebra g, then the natural morphism expΔ(g)→ BG
induces an acyclic fibration cosk3 (expΔ(g))→ BG in the global model
structure.

Proof. Since a compact connected and simply connected Lie group is auto-
matically 2-connected, we have an induced acyclic fibration cosk3

(exp(g))→ cosk3(BG). Now notice that BG is 2-coskeletal, i.e, its coskele-
tal tower stabilizes at cosk2(BG) = BG. �

4.2.2 Line n-group

Definition 4.2.19. For n ≥ 1 write bn−1
R for the line Lie n-algebra: the

L∞-algebra characterized by the fact that its Chevalley–Eilenberg algebra
is generated from a single generator c in degree n and has trivial differentual
CE(bn−1

R) = (∧•〈c〉, d = 0).
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Proposition 4.2.20. Fiber integration over simplices induces an equiva-
lence

∫

Δ•
: expΔ(bn−1

R) �→ Bn
R.

Proof. By the DK correspondence we only need to show that integration
along the simplices is a chain map from the normalized chain complex
of expΔ(bn−1

R) to C∞(−)[n]. The normalized chain complex N•(expΔ

(bn−1
R)) has in degree −k the abelian group C∞(−)⊗̂Ωn

cl(Δ
k), and the

differential

∂ : N−k
(
expΔ(bn−1

R)
)→ N−k+1

(
expΔ(bn−1

R)
)

maps a differential form ω to the alternating sum of its restrictions on the
faces of the simplex. If ω is an element in C∞(−)⊗ Ωn

cl(Δ
k), integration

of ω on Δk is zero unless k = n, which shows that integration along the
simplex maps N• (

expΔ(bn−1
R)

)
to C∞(−)[n]. Showing that this map is

actually a map of chain complexes is trivial in all degrees but for k = n + 1;
in this degree, checking that integration along simplices is a chain map
amounts to checking that for a closed n-form ω on the (n + 1)-simplex, the
integral of ω on the boundary of Δn+1 vanishes, and this is obvious by Stokes
theorem. �
Remark 4.2.21. For n = 1, the morphism expΔ(R)→ BR coincides with
the morphism described in Proposition 4.2.16, for G = R.

4.2.3 Smooth string 2-group

Definition 4.2.22. Let string := soμ3 be the extension of the Lie algebra so

classified by its 3-cocycle μ3 = 1
2〈−, [−,−]〉 according to Definition 4.1.23.

This is called the string Lie 2-algebra. Let

BString := cosk3 expΔ(soμ3)

be its Lie integration. We call this the delooping of the smooth string
2-group.

The Banach-space∞-groupoid version of this Lie integration is discussed
in [25].

Remark 4.2.23. The 7-cocycle μ7 on so is still, in the evident way, a cocycle
on soμ3

μ7 : so3 → b6
R.
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Proposition 4.2.24. We have an ∞-pullback of smooth ∞-groupoids

BString

��

�� ∗

��
BSpin

1
2
p1 �� B3U(1)

presented by the ordinary pullback of simplicial presheaves

BS̃tring

��

�� EB2(Z→ R)

��
cosk3 expΔ(so)

expΔ(μ3) ��

	
��

B3(Z→ R)

BSpin

,

where BString ∼→ BS̃tring is induced by integrating the 2-form over simplices.

Remark 4.2.25. In terms of Definition 3.2.19, BString is the smooth
B2U(1)-principal 3-bundle over BSpin classified by the smooth refinement
of the first fractional Pontryagin class.

Proof. Since all of cosk3 expΔ(so), B3(Z→ R) and EB2(Z→ R) are fibrant
in [CartSpop, sSet]proj and since EB2U(1)→ B3(Z→ R) is a fibration (being
the image under DK of a surjection of complexes of sheaves), we have by
standard facts about homotopy pullbacks that the ordinary pullback is a
homotopy pullback in [CartSpop, sSet]proj. By [34] this presents the ∞-
pullback of ∞-presheaves on CartSp. And since ∞-stackification is left
exact, this is also presents the ∞-pullback of ∞-sheaves.

This ordinary pullback manifestly has 2-cells given by 2-simplices in G
labelled by elements in U(1) and 3-cells being 3-simplices in G such that
the labels of their faces differ by

∫

Δ3→G μ modZ. This is the definition of
BString. That expΔ(μ3) indeed presents a smooth refinement of the second
fractional Pontryagin class as indicated is shown below. �
Proposition 4.2.26. There is a zigzag of equivalences

cosk3 exp(soμ3) 	 · · · 	 B
(
Ω̂Spin→ PSpin

)

in [CartSpop, sSet]proj, of the Lie integration, Proposition 4.2.24, of soμ3

with the strict 2-group, Definition 3.2.10 coming from the crossed module
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(Ω̂Spin→ PSpin) of Fréchet Lie groups, discussed in [8], consisting of the
centrally extended loop group and the path group of Spin.

This is proven in Section 5.2 of [41].

Proposition 4.2.27. The object BString = cosk3 (exp(soμ3)) is fibrant in
[CartSpop, sSet]proj,loc.

Proof. Observe first that both object are fibrant in [CartSpop, sSet]proj (the
Lie integration by Proposition 4.2.10, the delooped strict 2-group by obser-
vation 3.2.11). The claim then follows with Proposition 4.2.26 and Propo-
sition 3.2.12, which imply that for C ({Ui})→ R

n the Čech nerve of a good
open cover, hence a cofibrant resolutions, there is a homotopy equivalence

[CartSpop, sSet]
(
Č(U), cosk3 exp(soμ3)

)

	 [CartSpop, sSet]
(
Č(U),B(Ω̂Spin→ PSpin)

)
. �

Corollary 4.2.28. A Spin-principal bundle P → X can be lifted to a String-
principal bundle precisely if it trivializes 1

2p1, i.e., if the induced mophism
H(X,BSpin)→ H

(
X,B3U(1)

)
is homotopically trivial. The choice of such

a lifting is called a String structure on the Spin-bundle.

We discuss string structures and their twisted versions further in 6.

4.3 Principal ∞-bundles with connection

For an ordinary Lie group G with Lie algebra g, we have met in Section 3.2.1
the smooth groupoids BG, BGconn and BGdiff arising from G, and in 4.2
the smooth ∞-groupoid expΔ(g) coming from g, and have shown that they
are related by a diagram

expΔ(g)

��
BGconn

� � �� BGdiff
∼ �� �� BG

and that BGconn is the moduli stack of G-principal bundles with connection.
Now we discuss such differential refinements expΔ(g)diff and expΔ(g)conn

that complete the above diagram for any integrated smooth ∞-group expΔ

(g). Where a truncation of expΔ(g) is the object that classifies G-principal



DIFFERENTIAL CHARACTERISTIC CLASSES 207

∞-bundles, the corresponding truncation of expΔ(g)conn classifies princi-
pal ∞-bundles with connection. Between expΔ(g)conn and expΔ(g)diff , we
will also meet the Chern–Weil ∞-groupoid expΔ(g)CW which is the natural
ambient for ∞-Chern–Weil theory to live in.

For the following, let g be any Lie ∞-algebra.

Definition 4.3.1. The differential refinement expΔ(g)diff of expΔ(g) is the
simplicial presheaf on the site of Cartesian spaces given by the assignment

(U, [k]) 
→

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Ω•
si(U ×Δk)vert CE(g)

Avert��

Ω•
si(U ×Δk)

��

W (g)A��

��

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

,

where on the right we have the set of commuting diagrams in dgcAlg as
indicated.

Remark 4.3.2. This means that a k-cell in expΔ(g)diff over U ∈ CartSp is
a g-valued form A on U ×Δk that satisfies the condition that its curvature
forms FA vanish when restricted in all arguments to vectors on the simplex.
This is the analog of the first Ehresmann condition on a connection form
on an ordinary principal bundle: the form A on the trivial simplex bundle
U ×Δk → U is flat along the fibres.

Proposition 4.3.3. The evident morphism of simplicial presheaves

expΔ(g)diff
∼ �� �� expΔ(g)

is an acyclic fibration of smooth ∞-groupoids in the global model structure.

Proof. We need to check that, for all U ∈ CartSp and [k] ∈ Δ and for all
diagrams

∂Δ[k]
A|∂��

��

expΔ(g)diff(U)

��
Δ[k] ��Avert��

A���



���

expΔ(g)(U)

we have a lift as indicated by the dashed morphism. For that we need to
extend the composite

W(g)→ CE(g) Avert→ Ω•
si(U ×Δn)vert
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to an element in Ω•
si(U ×Δk)⊗ g with fixed boundary value A∂ in Ω•

si(U ×
∂Δk)⊗ g. To see that this is indeed possible, use the decomposition

Ω•
si(U ×Δk) = Ω•

si(U ×Δn)vert ⊕
(
Ω>0(U)⊗̂Ω•

si(Δ
k)

)

to write A∂ = Avert|∂Δk + A>0
∂ . Extend A>0

∂ to an element A>0 in Ω>0(U) ⊗̂
Ω•

si(Δ
k). This is a trivial extension problem: any smooth differential form

on the boundary of an k-simplex can be extended to a smooth differential
form on the whole simplex. Then the degree 1 element Avert + A>0 is a
solution to our original extension problem. �

Remark 4.3.4. This means that expΔ(g)diff is a certain resolution of
expΔ(g). In the full abstract theory [41], the reason for its existence is that
it serves to model the canonical curvature characteristic map BG→ 	dRBn

U(1) in the ∞-topos of smooth ∞-groupoids by a truncation of the zigzag
expΔ(g) ∼← expΔ(g)diff → expΔ(bn−1

R) of simplicial presheaves. By the
nature of acyclic fibrations, we have that for every expΔ(g)-cocycle X

∼loc←−−
Č(U)

g→ expΔ(g) there is a lift gdiff to an expΔ(g)diff -cocycle

QX

	
��

gdiff�� expΔ(g)diff

	
��

Č(U)

∼
lo

c

��

g �� expΔ(g)

X

.

For the abstract machinery of ∞-theory to work, it is only the existence of
this lift that matters. However, in practice it is useful to make certain nice
choices of lifts. In particular, when X is a paracompact smooth manifold,
there is always a choice of lift with the property that the corresponding
curvature characteristic forms are globally defined forms on X, instead of
more general (though equivalent) cocycles in total Čech–de Rham cohomol-
ogy. Moreover, in this case the local connection forms can be chosen to
have Δ-horizontal curvature. Lifts with this special property are genuine
∞-connections on the ∞-bundles classified by g. The following definitions
formalize this. But it is important to note that genuine ∞-connections are
but a certain choice of gauge among all differential lifts. Notably when the
base X is not a manifold but for instance a non-trivial orbifold, then genuine
∞-connections will in general not even exist, whereas the differential lifts
always do exist, and always support the ∞-Chern–Weil homomorphism.
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Proposition 4.3.5. If g is the Lie algebra of a Lie group G, then there is
a natural commutative diagram

expΔ(g)diff
∼ �� ��

��

expΔ(g)

��
BGdiff

∼ �� �� BG

In particular, if G is (k − 1)-connected, with k ≥ 2, then the induced mor-
phism coskk (expΔ(g)diff)→ BGdiff is an acyclic fibration in the global model
structure.

Proof. We have seen in Remark 3.2.7 that there is a natural isomorphism
BGdiff

∼= BG× Codisc(Ω1(−; g), so in order to give the morphism expΔ

(g)diff → BGdiff making the above diagram commute we only need to give
a natural morphism expΔ(g)diff → Codisc(Ω1(−; g); this is evaluation of the
connection form A on the vertices of the simplex.

Assume now G is (k − 1)-connected, with k ≥ 2. Then, by Proposi-
tions 4.2.17 and 4.3.3, both coskk(expΔ(g)diff)→ coskk(expΔ(g)) and coskk

(expΔ(g))→ BG are acyclic fibrations. We have a commutative diagram

coskk (expΔ(g)diff) ∼ �� ��

��

coskk (expΔ(g))

	
����

BGdiff
∼ �� �� BG,

so, by the “two out of three” rule, also coskk (expΔ(g)diff)→ BGdiff is an
acyclic fibration. �
Definition 4.3.6. The simplicial presheaf expΔ(g)CW ⊂ expΔ(g)diff is the
sub-presheaf of expΔ(g)diff on those k-cells Ω•

si(U ×Δk) A←W(g) that make
also the bottom square in the diagram

Ω•
si(U ×Δk)vert CE(g)

Avert��

Ω•
si(U ×Δk)

��

W (g)A��

��

Ω•(U)

��

inv(g)

��

FA��

commute.
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Remark 4.3.7. A k-cell in exp(g)CW parameterized by a Cartesian space
U is a g-valued differential form A on the total space U ×Δk such that

(1) its restriction to the fibre Δk of U ×Δk → U is flat, and indeed equal
to the canonical g-valued form there as encoded by the cocycle Avert

(which, recall, is the datum in exp(g) that determines the G-bundle
itself); this we may think of as the first Ehresmann condition on a
connection;

(2) all its curvature characteristic forms 〈FA〉 descend to the base space U
of U ×Δk → U ; this we may think of as a slightly weakened version
of the second Ehresmann condition on a connection: this is the main
consequence of the second Ehresmann condition.

These are the structures that have been considered in [43,44].

Proposition 4.3.8. expΔ(g)CW is fibrant in [CartSpop, sSet]proj .

Proof. As in the proof of Proposition 4.2.10 we find horn fillers σ by pullback
along the standard retracts, which are smooth away from the loci where our
forms have sitting instants.

Ω•
si(U ×Δk)vert Ω•

si(U × Λk
i )�� CE(g)

Avert��

Ω•
si(U ×Δk)

��

Ω•
si(U × Λk

i )��

��

W(g)A��

��

: σ

Ω•(U)

��

Ω•(U)

��

�� inv(g)

��

FA��

�

We say that exp(gμ)CW is the Chern–Weil ∞-groupoid of g.

Definition 4.3.9. Write expΔ(g)conn for the simplicial sub-presheaf of expΔ

(g)diff given in degree k by those g-valued forms satisfying the following
further horizontality condition:

• for all vertical (i.e., tangent to the simplex) vector fields v on U ×Δk,
we have

ιvFA = 0.

Remark 4.3.10. This extra condition is the direct analog of the second
Ehresmann condition. For ordinary Lie algebras we have discussed this
form of the second Ehresmann condition in Section 2.2.
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Remark 4.3.11. If we decompose differential forms on the products U ×
Δk as

Ω•
si(U ×Δk) =

⊕

p,q∈N

Ωp(U) ⊗̂Ωq
si(Δ

k)

then

(1) k-simplices in expΔ(g)diff are those connection forms A : W (g)→ Ω•
si

(U ×Δk) whose curvature form has only the (p, q)-components with
p > 0;

(2) k-simplices in expΔ(g)conn are those k-simplices in expΔ(g)diff whose
curvature is furthermore constrained to have precisely only the (p, 0)-
components, with p > 0.

Proposition 4.3.12. We have a sequence of inclusions of simplicial
pre-sheaves

expΔ(g)conn ↪→ expΔ(g)CW ↪→ expΔ(g)diff .

Proof. Let 〈−〉 be an invariant polynomial on g, and A a k-cell of expΔ

(g)conn. Since dW (g)〈−〉 = 0, we have d〈FA〉 = 0, and since ιvFA = 0 we
also have ιv〈FA〉 = 0 for v tangent to the k-simplex. Therefore by Cartan’s
formula also the Lie derivatives Lv〈FA〉 are zero. This implies that the
curvature characteristic forms on expΔ(g)conn descend to U and hence that
A defines a k-cell in expΔ(g)CW. �

4.3.1 Examples

We consider the special case of the above general construction again for the
special case that g is an ordinary Lie algebra and for g of the form bn−1

R.

Proposition 4.3.13. Let G be a Lie group with Lie algebra g. Then, for
any k ∈ N there is a pullback diagram

coskk expΔ(g)conn

��

�� coskk expΔ(g)

��
BGconn

�� BG

in the category of simplicial presheaves.

Proof. The result is trivial for n = 0. For n = 1 we have to show that given
two 1-forms A0, A1 ∈ Ω1(U, g), a gauge transformation g : U → G between
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them, and any lift λ(u, t)dt of g to a 1-form in Ω1(U ×Δ1, g), there exists a
unique 1-form A ∈ Ω1(U ×Δ1, g) whose vertical part is λ, whose curvature
is of type (2,0), and such that

A
∣
∣
U×{0}= A0; A

∣
∣
U×{1}= A1.

We may decompose such A into its vertical and horizontal components

A = λ dt + AU ,

where λ ∈ C∞(U ×Δ1) and AU in the image of Ω1(U, g). Then the hori-
zontality condition ι∂tFA = 0 on A is the differential equation

∂

∂t
AU = dUλ + [AU , λ].

For the given initial condition AU (t = 0) = A0 this has a unique solution,
given by

AU (t) = g(t)−1A0g(t) + g(t)−1dtg(t),

where g(t) ∈ G is the parallel transport for the connection λ dt along the
path [0, t] in the 1-simplex Δ1. Evaluating at t = 1, and using g(1) = g, we
find

A(1) = g−1A0g + g−1dg = A1,

as required.

These computations carry on without substantial modification to higher
simplices: using that λ dt is required to be flat along the simplex, it follows
the value of AU at any point in the simplex is determined by a differential
equation as above, for parallel transport along any path from the 0-vertex
to that point. Accordingly we find unique lifts A, which concludes the
proof. �

Corollary 4.3.14. If G is a compact simply connected Lie group, there is
a weak equivalence cosk3 exp(g)conn

∼−→ BGconn in [CartSpop, sSet]proj.

Proof. By Proposition 4.2.17 we have that cosk3 expΔ(g)→ BG is an
acyclic fibration in the global model structure. Since these are preserved
under pullback, the claim follows by the above proposition. �
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Proposition 4.3.15. Integration along simplices gives a morphism of
smooth ∞-groupoids

∫ diff

Δ•
: expΔ(bn−1

R)diff → Bn
Rdiff .

Proof. By means of the DK correspondence we only need to show that inte-
gration along simplices is a morphism of complexes from the normalized
chain complex of expΔ(bn−1

R) to the cone

C∞(U) d �� Ω1(U) d �� Ω2(U) d �� · · · d �� Ωn(U)

⊕ ⊕ ⊕ ⊕
Ω1(U)

Id���

		���

d
�� Ω2(U)

����
�� · · · �� Ωn(U)

Id���

		���

�� 0

(3)

The normalized chain complex N• (
expΔ(bn−1

R)
)

has in degree −k the sub-
space of Ωn(U ×Δk) consisting of those n-forms whose (0, n)-component
ω0,n lies in C∞(U) ⊗̂Ωn

cl(Δ
k); the differential

∂ : N−k
(
expΔ(bn−1

R)
)→ N−k+1

(
expΔ(bn−1

R)
)

maps an n-form ω on U ×Δk to the alternate sum of its restrictions to the
faces of U × ∂Δk. For k �= 0, let

∫ diff
Δ• be the map

∫ diff

Δk

: N−k
(
expΔ(bn−1

R)
)→ Ωn−k(−)⊕ Ωn−k+1(−)

ω 
→
(∫

Δk

ω,

∫

Δk

ddRω

)

,

and, for k = 0 let
∫ diff
Δ0 be the identity

∫ diff

Δ0

= id : N0
(
expΔ(bn−1

R)
)→ Ωn(−).

The map
∫ diff
Δ• actually takes its values in the cone (3). Indeed, if k > n + 1,

then both the integral of ω and of ddRω are zero by dimensional reasons;
for k = n + 1, the only possibly non-trivial contribution to the integral over
Δn+1 comes from dΔn+1ω0,n, which is zero by hypothesis (where we have
written ddR = dΔk + dU for the decomposition of the de Rham differential
associated with the product structure of U ×Δk).
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The fact that
∫ diff
Δ• is a chain map immediately follows by the Stokes

formula:
∫

Δk−1

∂ω =
∫

∂Δk

ω =
∫

Δk

dΔkω

and by the identity ddR = dΔk + dU . �

Corollary 4.3.16. Integration along simplices induces a morphism of
smooth ∞-groupoids

∫ conn

Δ•
: expΔ(bn−1

R)conn → Bn
Rconn.

Proof. By Proposition 3.2.26, we only need to check that the image of the
composition curv ◦ ∫ diff

Δ• lies in the subcomplex (0→ 0→ · · · → Ωn+1
cl (−))

of 	dRBn+1
R, and this is trivial since by definition of expΔ(bn−1

R)conn the
curvature of ω, i.e., the de Rham differential ddRω, is 0 along the simplex. �

5 ∞-Chern–Weil homomorphism

With the constructions that we have introduced in the previous sections,
there is an evident Lie integration of a cocycle μ : g→ bn−1

R on a L∞-algebra
g to a morphism expΔ(g)→ expΔ(bn−1

R) that truncates to a characteris-
tic map BG→ Bn

R/Γ. Moreover, this has an evident lift to a morphism
expΔ(g)diff → expΔ(bn−1

R)diff between the differential refinements. Trun-
cations of this we shall now identify with the Chern–Weil homomorphism
and its higher analogues.

5.1 Characteristic maps by ∞-Lie integration

We have seen in Section 4 how L∞-algebras g, bn−1
R integrate to smooth

∞-groupoids expΔ(g), expΔ(bn−1
R) and their differential refinements expΔ

(g)diff , expΔ(bn−1
R)diff as well as to various truncations and quotients of

these. We remarked at the end of 4.1 that a degree n cocycle μ on g may
equivalently be thought of as a morphism μ : g→ bn−1

R, i.e., as a dg-algebra
morphism μ : CE(bn−1

R)→ CE(g).

Definition 5.1.1. Given an L∞-algebra cocycle μ : g→ bn−1
R as in Section

4.1, define a morphism of simplicial presheaves

expΔ(μ) : expΔ(g)→ expΔ(bn−1
R)
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by componentwise composition with μ:

expΔ(μ)k :
(
Ω•

si(U ×Δk)vert
Avert← CE(g)

)

→

(
Ω•

si(U ×Δk)vert
Avert← CE(g)

μ← CE(bn−1
R) : μ(Avert)

).

Write Bn
R/μ for the pushout

expΔ(g)
expΔ(μ)��

��

expΔ(bn−1
R)

∫

Δ•
∼ �� Bn

R

��
coskn expΔ(g) �� Bn

R/μ

.

By slight abuse of notation, we shall denote also the bottom morphism by
expΔ(μ) and refer to it as the Lie integration of the cocycle μ.

Remark 5.1.2. The object Bn
R/μ is typically equivalent to the n-fold

delooping Bn(Λμ → R) of the real modulo a lattice Λμ ⊂ R of periods of μ, as
discussed below. Moreover, as discussed in Section 4, we will be considering
weak equivalences coskn expΔ(g) ∼→ BG. Therefore expΔ(μ) defines a char-
acteristic morphism of smooth∞-groupoids BG→ Bn(Λμ → R), presented
by the span of morphisms of simplicial presheaves

coskn expΔ(g)
expΔ(μ)��

	
��

Bn
R/μ

BG

.

Proposition 5.1.3. Let G be a Lie group with Lie algebra g and μ : g→
bn−1

R a degree n Lie algebra cocycle. Then there is a smallest subgroup Λμ

of (R, +) such that we have a commuting diagram

expΔ(g)
expΔ(μ)��

��

expΔ(bn−1
R)

∫

Δ•
∼ �� Bn

R

��
coskn expΔ(g) �� Bn(Λμ → R)

.

Proof. We exhibit the commuting diagram naturally over each Cartesian
space U . The vertical map Bn

R(U)→ Bn(Λμ → R)(U) is the obvious quo-
tient map of simplicial abelian groups. Since Bn(Λμ → R) is (n− 1)-
connected and coskn expΔ(g) is n-coskeletal, it is sufficient to define the
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horizontal map coskn expΔ(g)→ Bn(Λμ → R) on n-cells. For the diagram
to commute, the bottom morphism must send a form Avert ∈ Ω1

si(U ×Δn, g)
to the image of

∫

Δn μ(Avert) ∈ R under the quotient map. For this
assignment to constitute a morphism of simplicial sets, it must be true
that for all Avert ∈ Ω1

si(U × ∂Δn−1, g) the integral
∫

∂Δn+1 Avert ∈ R lands in
Λμ ⊂ R.

Recall that we may identify flat g-valued forms on ∂Δn+1 with based
smooth maps ∂Δn+1 → G. We observe that

∫

∂Δn+1 Avert only depends on
the homotopy class of such a map: if we have two homotopic n-spheres
Avert and A′

vert then by the arguments as in the proof of Proposition 4.2.17,
using [49], there is a smooth homotopy interpolating between them, hence
a corresponding extension of Âvert. Since this is closed, the fibre integrals of
Avert and A′

vert coincide.

Therefore we have a group homomorphism
∫

∂Δn+1 : πn(G, eG)→ R. Take
Λμ to be the subgroup of R generated by its image. This is the minimal
subgroup of R for which we have a commutative diagram as stated. �

Remark 5.1.4. If G is compact and simply connected, then its homotopy
groups are finitely generated and so is Λμ.

Example 5.1.5. Let G be a compact, simple and simply connected Lie
group and μ3 the canonical 3-cocycle on its semisimple Lie algebra,
normalized such that its left-invariant extension to a differential 3-form
on G represents a generator of H3(G, Z) 	 Z in de Rham cohomology.
In this case we have Λμ3 	 Z and the diagram of morphisms discussed
above is

expΔ(g)

��

∫

Δ• expΔ(μ)
�� B3

R

��
cosk3(expΔ(g))

	
��

�� B3(Z→ R)

	
��

BG B3U(1)

This presents a morphism of smooth ∞-groupoids BG→ B3U(1). Let
X → BG be a morphism of smooth ∞-groupoids presented by a Čech-
cocycle X

∼loc←−− Č(U)→ BG as in Section 3. Then the composite X →
BG→ B3U(1) is a cocycle for a B2U(1)-principal 3-bundle presented by a
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span of simplicial presheaves

QX

	
����

ĝ �� cosk3 expΔ(g)
expΔ(μ)��

	
����

B3(Z→ R)

Č(U)

∼
lo

c

��

��

��

BG

X

.

Here the acyclic fibration QX → Č(U) is the pullback of the acyclic fibration
cosk3 expΔ(g)→ BG from Proposition 4.2.17 and Č(U)→ QX is any choice
of section, guaranteed to exist, uniquely up to homotopy, since Č(U) is
cofibrant according to Proposition 2.

This span composite encodes a morphism of 3-groupoids of Čech-cocycles

cμ : Č(U ,BG)→ Č(U ,B3(Z→ R))

given as follows

(1) it reads in a Čech-cocycle (gij) for a G-principal bundle;
(2) it forms a lift ĝ of this Čech-cocycle of the following form:

• over double intersections we have that ĝij : (Ui ∩ Uj)×Δ1 → G is
a smooth family of based paths in G, with ĝij(1) = gij ;
• over triple intersections we have that ĝijk : (Ui ∩ Uj ∩ Uk)×Δ2 →

G is a smooth family of 2-simplices in G with boundaries labelled
by the based paths on double overlaps:

gij

gij ·ĝjk

��		
		

		
		

e
ĝik

ĝij










gik

ĝijk

• on quadruple intersections we have that ĝijkl : (Ui ∩ Uj ∩ Uk ∩ Ul) :
Δ3 → G is a smooth family of 3-simplices in G, cobounding the
union of the 2-simplices corresponding to the triple intersections.

(1) The morphism expΔ(μ) : cosk3 expΔ(g)→ expΔ(b2
R) takes these

smooth families of 3-simplices and integrates over them the 3-form
μ3(θ ∧ θ ∧ θ) to obtain the Čech-cocycle

(∫

Δ3

ĝ∗ijkl μ(θ ∧ θ ∧ θ) mod Z) ∈ Č(U ,B3U(1)
)

.
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Note that μ3(θ ∧ θ ∧ θ) is the canonical 3-form representative of a gen-
erator of H3(G, Z).

In total the composite of spans therefore encodes a map that takes a Čech-
cocycle (gij) for a G-principal bundle to a degree 3 Čech-cocycle with values
in U(1).

Remark 5.1.6. The map of Čech cocycles obtained in the above example
from a composite of spans of simplicial presheaves is seen to be the special
case of the construction considered in [5] that is discussed in Section 4 there,
where an explicit Čech cocycle for the second Chern class of a principal
SU(n)-bundle is described. See [2] for the analogous treatment of the first
Pontryagin class of a principal SO(n)-bundle and also [3, 4].

Proposition 5.1.7. For G = Spin the morphism cμ3 from Example 5.1.5 is
a smooth refinement of the first fractional Pontryagin class

expΔ(μ3) =
1
2
p1 : BSpin ∼← cosk3 expΔ(g)→ B3U(1)

in that postcomposition with this characteristic map induces the morphism

1
2
p1 : H1(X, Spin)→ H4(X, Z).

Proof. Using the identification from Example 5.1.5 of the composite of spans
with the construction in [5] this follows from the main theorem there. The
strategy there is to refine to a secondary characteristic class with values in
Deligne cocycles that provide the differential refinement of H4(X, Z). The
proof is completed by showing that the curvature 4-form of the refining
Deligne cocycle is the correct de Rham image of 1

2p1. �

Below we shall rederive this theorem as a special case of the more general
∞-Chern–Weil homomorphism. We now turn to an example that genuinely
lives in higher Lie theory and involves higher principal bundles.

Proposition 5.1.8. The canonical projection

cosk7 expΔ(soμ3)→ BString

is an acyclic fibration in the global model structure.
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Proof. The 3-cells in BString are pairs consisting of 3-cells in expΔ(so),
together with labels on their boundary, subject to a condition that guar-
antees that the boundary of a 4-cell in String never wraps a 3-cycle in
Spin. Namely, a morphism ∂Δ4 → BString is naturally identified with a
smooth map φ : S3 → Spin equipped with a 2-form ω ∈ Ω2(S3) such that
dω = φ∗μ3(θ ∧ θ ∧ θ). But since μ3(θ ∧ θ ∧ θ) is the image in de Rham coho-
mology of the generator of H3(Spin, Z) 	 Z this means that such φ must
represent the trivial element in π3(Spin).

Using this, the proof of the claim proceeds verbatim as that of Proposi-
tion 4.2.17, using that the next non-vanishing homotopy group of Spin after
π3 is π7 and that the generator of H8(BString, Z) is 1

6p2. �

Remark 5.1.9. Therefore the Lie integration of the 7-cocycle

cosk7 expΔ(soμ3)
expΔ(μ7) ��

	
��

B7(Z→ R)

BString

presents a characteristic map BString→ B7U(1).

Proposition 5.1.10. The Lie integration of μ7 : soμ3 → b6
R is a smooth

refinement

1
6
p2 : BString→ B7U(1).

of the second fractional Pontryagin class [42] in that postcomposition with
this morphism represents the top horizontal morphism in

H1(X, String)
1
6
p2 ��

��

H8(X, Z)

·6
��

H1(X, Spin)
p2 �� H8(X, Z)

.

Proof. As in the above case, we shall prove this below by refining to a
morphism of differential cocycles and showing that the corresponding cur-
vature 8-form represents the fractional Pontryagin class in de Rham coho-
mology. �
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5.2 Differential characteristic maps by ∞-Lie integration

We wish to lift the integration in Section 5.1 of Lie∞-algebra cocycles from
expΔ(g) to its differential refinement expΔ(g)diff in order to obtain differ-
ential characteristic maps with coefficients in differential cocycles such that
postcomposition with these is the ∞-Chern–Weil homomorphism. We had
obtained expΔ(μ) essentially by postcomposition of the k-cells in expΔ(g)
with the cocycle g

μ→ bn−1
R. Since the k-cells in expΔ(g)diff are diagrams, we

need to extend the morphism μ accordingly to a diagram. We had discussed
in Section 4.1 how transgressive cocycles extend to a diagram

CE(g) CE(bn−1
R)

μ��

W(g)

��

W(bn−1
R)cs��

��

inv(g)

��

inv(bn−1
R)

��

〈−〉��

,

where 〈−〉 is an invariant polynomial in transgression with μ and cs is a
Chern–Simons element witnessing that transgression.

Definition 5.2.1. Define the morphism of simplicial presheaves

expΔ(cs)diff : expΔ(g)diff → expΔ(bn−1
R)diff

degreewise by pasting composition with this diagram:

expΔ(cs)k :

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

Ω•
si(U × Δk)vert CE(g)

Avert��

Ω•
si(U × Δk)

��

W(g)

��

A��

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

�→

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

Ω•
si(U × Δk)vert CE(g)

Avert�� CE(bn−1
R)

μ�� : µ(Avert)

Ω•
si(U × Δk)

��

W(g)

��

A�� W(bn−1
R)

cs��

��

: cs(A)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠
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Write (Bn
R/cs)diff for the pushout

expΔ(g)diff
expΔ(cs)��

��

expΔ(bn−1
R)diff

∫

Δ•
∼ �� Bn

Rdiff

��
coskn expΔ(g)diff

�� (Bn
R/cs)diff

.

Remark 5.2.2. This induces a corresponding morphism on the Chern–Weil
subobjects

expΔ(cs)CW : expΔ(g)CW → expΔ(bn−1
R)CW

degreewise by pasting composition with the full transgression diagram

expΔ(cs)k :

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

Ω•
si(U × Δk)vert CE(g)

Avert��

Ω•
si(U × Δk)

��

W(g)

��

A��

Ω•(U)

��

inv(g)
FA��

��

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

�→

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

Ω•
si(U × Δk)vert CE(g)

Avert�� CE(bn−1
R)

μ�� : µ(Avert)

Ω•
si(U × Δk)

��

W(g)

��

A�� W(bn−1
R)

cs��

��

: cs(A)

Ω•(U)

��

inv(g)
FA��

��

inv(bn−1
R)

��

〈−〉�� : 〈FA〉

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

Moreover, this restricts further to a morphism of the genuine ∞-connection
subobjects

expΔ(cs)conn : expΔ(g)conn → expΔ(bn−1
R)conn.

Indeed, the commutativity of the lower part of the diagram encodes the
classical equation

dcs(A) = 〈FA〉
stating that the curvature of the connection cs(A) is the horizontal differen-
tial form 〈FA〉 in Ω(U). This shows that the image of expΔ(cs)CW is actually
contained in expΔ(bn−1

R)conn, and so the restriction to expΔ(g)conn defines
a morphism between the genuine ∞-connection subobjects.
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Remark 5.2.3. In the typical application — see the examples discussed
below — we have that (Bn

R/cs)diff is Bn(Λμ → R)diff and usually even
Bn(Z→ R)diff . The above constructions then yield a sequence of spans in
[CartSpop, sSet]:

coskn (expΔ(g)conn) Bn(Z→ R)conn
��

coskn (expΔ(g)diff) Bn(Z→ R)diff
��

coskn (expΔ(g)) Bn(Z→ R)��

BGconn BnU(1)conn
��

BGdiff BnU(1)diff
��

BG BnU(1)��

��
��

�� ��
��

��

����
�� ����

��

��
��

�� ��
��

��

����
�� ����

��

���� ����

���� ����

���� ����
c

ĉ

ĉ

∫

Δ• expΔ(μ)

∫

Δ• expΔ(μ,cs)

∫

Δ• expΔ(μ,cs)

� � � ���

Here we have

• the innermost diagram presents the morphism of smooth∞-groupoids
cμ : BG→ BnU(1) that is the characteristic map obtained by Lie inte-
gration from μ. Postcomposition with this is the morphism

cμ : H(X,BG)→ H (X,BnU(1))

that sends G-principal ∞-bundles to the corresponding circle
n-bundles. In cohomology/on equivalence classes, this is the ordinary
characteristic class

cμ : H1(X, G)→ Hn+1(X, Z).

• The middle diagram is the differential refinement of the innermost
diagram. By itself this is weakly equivalent to the innermost diagram
and hence presents the same characteristic map cμ. But the middle
diagram does support also the projection

BG
∼← BGdiff → Bn(Z→ R)diff → 	dRBn+1

R

onto the curvature characteristic classes. This is the simple version
of the ∞-Chern–Weil homomorphism that takes values in de Rham
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cohomology Hn+1
dR (X) = π0H(X, 	dRBn+1

R)

H(X,BG)→ H(X, 	dRBn+1
R).

• The outermost diagram restrict the innermost diagram to differential
refinements that are genuine ∞-connections. These map to genuine
∞-connections on circle n-bundles and hence support the map to sec-
ondary characteristic classes

H(X,BGconn)→ H (X,BnU(1)conn) .

5.3 Examples

We spell out two classes of examples of the construction of the ∞-Chern–
Weil homomorphism:

The Chern–Simons circle 3-bundle with connection. In Example 5.1.5
we had considered the canonical 3-cocycle μ3 ∈ CE(g) on the semisimple
Lie algebra g of a compact, simple and simply connected Lie group G and
discussed how its Lie integration produces a map from Čech-cocycles for
G-principal bundles to Čech-cocycles for circle 3-bundles. This map turned
out to coincide with that given in [5]. We now consider its differential refine-
ment.

From Example 4.1.22 we have a Chern–Simons element cs3 for μ3 whose
invariant polynomial is the Killing form 〈−,−〉 on g. By Definition 5.2.1
this induces a differential Lie integration expΔ(cs) of μ.

As a consequence of all the discussion so far, we now simply read off the
following corollary.

Corollary 5.3.1. Let

cosk3 expΔ(g)conn

∫

Δ• expΔ(cs3)
��

	
����

B3(Z→ R)conn

BGconn

be the span of simplicial presheaves obtained from the Lie integration of the
differential refinement of the cocycle from Example 5.1.5. Composition with
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this span

QX
(ĝ,∇̂) ��

	
����

cosk3 expΔ(g)conn

∫

Δ• expΔ(cs3)
��

	
����

B3(Z→ R)conn

Č(U)
(g,∇) ��

∼
lo

c

��

��

BGconn

X

(where QX → Č(U) is the pullback acyclic fibration and Č(U)→ QX any
choice of section from the cofibrant Č(U) through this acyclic fibration) pro-
duces a map from Čech cocycles for smooth G-principal bundles with con-
nection to degree 4 Čech–Deligne cocycles

ĉcs : Č(U ,BGconn)→ Č(U ,B3U(1)conn)

on a paracompact smooth manifold X as follows:

• the input is a set of transition functions and local connection data
(gij , Ai) on a differentiably good open cover {Ui → X} as in
Section 2.2; (notice that there is a G-principal bundle P → X with
Ehresmann connection 1-form A ∈ Ω1(P, g) and local sections {σi :
Ui → P |Ui} such that σi|Uij = σj |Uijgij and Ai = σ∗

i A)
• the span composition produces a lift of this data:

— on double intersections a smooth family ĝij : (Ui ∩ Uj)×Δ1 → G
of based paths in G, together with a 1-form Aij := ĝ∗ijAi ∈ Ω1(Uij ×
Δ1, g);

— on triple intersections a smooth family ĝijk : (Ui ∩ Uj ∩ Uk)×Δ2 →
G of based 2-simplices in G, together with a 1-form Aijk := ĝ∗ijkAi ∈
Ω1(Uijk ×Δ1, g);

— on quadruple intersections a smooth family ĝijkl : (Ui ∩ Uj ∩ Uk ∩
Ul)×Δ3 → G of based 2-simplices in G, together with a 1-form
Aijkl := ĝ∗ijklAi ∈ Ω1(Uijkl ×Δ1, g);

• this lifted cocycle data is sent to the Čech–Deligne cocycle

(

cs(Ai),
∫

Δ1

cs(Âij),
∫

Δ2

cs(Âijk),
∫

Δ3

μ(Âijkl)
)

=
(

cs(Ai),
∫

Δ1

ĝ∗ijcs(A),
∫

Δ2

ĝ∗ijkcs(A),
∫

Δ3

ĝ∗ijklμ(A)
)

,
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where cs(A) is the Chern–Simons 3-form obtained by evaluating a
g-valued 1-form in the chosen Chern–Simons element cs.

Proof. That we obtain Čech–Deligne data as indicated is a straightforward
matter of inserting the definitions of the various morphisms. That the data
indeed satisfies the Čech-cocycle condition follows from the very fact that by
construction these are components of a morphism Č(U)→ B3(Z→ R)conn,
as discussed in Section 3. The curvature 4-form of the resulting Čech–
Deligne cocycle is (up to a scalar factor) the Pontryagin form 〈FA ∧ FA〉.
By the general properties of Deligne cohomology this represents in de Rham
cohomology the integral class in H4(X, Z) of the cocycle, so that we find
that this is a multiple of the class of the G-bundle P → X corresponding to
the Killing form invariant polynomial.

In the case that G = Spin, we have that H3(G, Z) 	 Z. By Proposi-
tion 5.1.3 it follows that the above construction produces a generator of this
cohomology group: there cannot be a natural number ≥ 2 by which this
R/Z-cocycle is divisible, since that would mean that μ3(θ ∧ θ ∧ θ) had a
period greater than 1 around the generator of π3(G), which by construction
it does not. But this generator is the fractional Pontryagin class 1

2p1 (see
the review in [42] for instance). �

Definition 5.3.2. We write

1
2
p̂1 : BSpinconn → B3U(1)conn

in H for the morphism of smooth∞-groupoids given by the above corollary
and call this the differential first fractional Pontryagin map.

Remark 5.3.3. The Čech–Deligne cocycles produced by the span compo-
sition in the above corollary are again those considered in Section 4 of [5].
We may regard the above corollary as explaining the deeper origin of that
construction. But the full impact of the construction in the above corollary
is that it applies more generally in cases where standard Chern–Weil the-
ory is not applicable, as discussed in the introduction. We now turn to the
first non-trivial example for the ∞-Chern–Weil homomorphism beyond the
traditional Chern–Weil homomorphism.

The Chern–Simons circle 7-bundle with connection. Recall from
Proposition 5.1.10 the integration of the 7-cocycle μ7 on the String 2-group.
We find a Chern–Simons element cs7 ∈W (soμ3) and use this to obtain the
differential refinement of this characteristic map.
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Corollary 5.3.4. Let

cosk7 expΔ(soμ3)conn

∫

Δ• expΔ(cs7)
��

	
����

B7(Z→ R)conn

BStringconn

be the span of simplicial presheaves obtained from the Lie integration of the
differential refinement of the cocycle from Proposition 5.1.10. Composition
with this span

QX
(ĝ,∇̂) ��

	
����

cosk7 expΔ(soμ3)conn

∫

Δ• expΔ(cs7)
��

	
����

B7(Z→ R)conn

Č(U)
(g,∇) ��

∼
lo

c

��

��

BStringconn

X

(where QX → Č(U) is the pullback acyclic fibration and Č(U)→ QX any
choice of section from the cofibrant Č(U) through this acyclic fibration) pro-
duces a map from Čech cocycles for smooth principal String 2-bundles with
connection to degree 8 Čech–Deligne cocycles

ĉcs7 : Č(U ,BStringconn)→ Č(U ,B7U(1)conn)

on a paracompact smooth manifold X. For P → X a principal Spin bundle
with String structure, i.e., with a trivialization of 1

2p1(P ), the integral part
of ĉcs7(P ) is the second fractional Pontryagin class 1

6p2(P ).

Proof. As above.

This completes the proof of theorem 1.0.1. �

Definition 5.3.5. We write

1
6
p̂2 : BStringconn → B7U(1)conn

in H for the morphism of smooth ∞-groupoids presented by the above con-
struction, and speak of the differential second fractional Pontryagin map.
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Remark 5.3.6. Notice how the fractional differential class 1
6 p̂2 comes out

as compared to the construction in [5], where a Čech cocycle representing
−2p2 is obtained . There, in order to be able to fill the simplices in the
7-coskeleton one works with chains in the Stiefel manifold SO(n)/SO(q) and
multiplies these with the cardinalities of the torsion homology groups in
order to ensure that they they become chain boundaries that may be filled.

On the other hand, in the construction above the lift to the Čech cocycle
of a String 2-bundle ensures that all the simplices of the cocycle in Spin(n)
can already be filled genuinely, without passing to multiples. Therefore the
cocycle constructed here is a fraction of the cocycle constructed there by
these integer factors.

6 Homotopy fibres of Chern–Weil: twisted differential
structures

Above we have shown how to construct refined secondary characteristic maps
as morphisms of smooth ∞-groupoids of differential cocycles. This homo-
topical refinement of secondary characteristic classes gives access to their
homotopy fibres. Here we discuss general properties of these and indicate
how the resulting twisted differential structures have applications in string
physics.

Some of the computations necessary for the following go beyond the scope
of this paper and will not be spelled out. Details on these can be found in
Section 5.2 of [41].

In Section 6.1 below we consider some basic concepts of obstruction theory
in order to set the scene for the its differential refinement further below in
Section 6.2. Before we get to that, it may be worthwhile to note the following
subtlety.

There are two different roles played by topological spaces in the homotopy
theory of higher bundles:

(1) they serve as a model for discrete∞-groupoids via the standard Quillen
equivalence

Top
Sing

��
�� |−|

sSet 	 ∞Grpd,

where the ∞-groupoids on the right are “discrete” in direct
generalization to the sense in which a discrete group is discrete,
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(2) and they also serve to model actual geometric structure in the sense of
“continuous cohesion”, that for instance distinguishes a non-discrete
topological group from the underlying discrete group.

Therefore a topological group and more generally a simplicial topological
group is a model for something that pairs these two aspects of topological
spaces.

To make this precise, let Top be a small category of suitably nice topolog-
ical spaces and continuous maps between them, equipped with the standard
Grothendieck topology of open covers. Then we can consider the the ∞-
topos of ∞-sheaves over Top, presented by simplicial presheaves over Top,
and this is the context that contains topological ∞-groupoids in direct anal-
ogy to the smooth∞-groupoids that we considered in the bulk of the paper.

∞Grpd 	 Sh∞(∗) 	 (sSet)op

Top∞Grpd 	 Sh∞(Top) 	 ([Topop, sSet]loc)op

H := Smooth∞Grpd 	 Sh∞(CartSp) 	 ([CartSpop, sSet]loc)op

We have geometric realization functors (see Section 4 in [41])

Π : Top∞Grpd→∞Grpd

and

Π : Smooth∞Grpd→∞Grpd,

which on objects represented by simplicial topological spaces are given by
the traditional geometric realization operation. For G a topological group or
topological ∞-group, we write BG for its delooping in Top∞Grpd. Under
geometric realization this becomes the standard classifying space BG :=
Π(BG), which, while naturally presented by a topological space, is really to
be regarded as a presentation for a discrete ∞-groupoid.

6.1 Topological and smooth c-structures

An important fact about the geometric realization of topological
∞-groupoids is Milnor’s theorem [37]:

Theorem 6.1.1. For every connected∞-groupoid (for instance presented by
a connected homotopy type modelled on a topological space) there is a topo-
logical group such that its topological delooping groupoid BG has a geometric
realization weakly equivalent to it.
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This has the following simple, but important consequence. Let G be a
topological group and consider some characteristic map c : BG→ K(Z, n +
1), representing a characteristic class [c] ∈ Hn+1(BG, Z). Then consider the
homotopy fibre

BGc ��

��

∗

��
BG

c �� K(Z, n + 1)

formed in ∞Grpd. While this homotopy pullback takes place in discrete
∞-groupoids, Milnor’s theorem ensures that there is in fact a topological
group Gc such that BGc is indeed its classifying space.

For X ∈ Topsm, the set of homotopy classes [X, BG] is in natural bijection
with equivalence classes of G-principal topological bundles P → X. One says
that P has c-structure if it is in the image of [X, BGc]→ [X, BG].

Remark 6.1.2. By the defining universal property of homotopy fibres, the
datum of a (equivalence class of a) principal Gc-bundle over X is equivalent
to the datum of a principal G-bundle P over X whose characteristic class
[c(P )] vanishes.

Example 6.1.3. Classical examples of this construction are Ow1 = SO and
U c1 = SU . Indeed is well known that the structure group of an O-bundle can
be reduced to SO if and only if its first Stiefel–Withney class vanishes. More
precisely, an principal SO-bundle can be seen as a principal O-bundle with a
trivializiation of the associated orientation Z/2Z-bundle. Similarly, an SU -
bundle is a U bundles with a trivialization of the associated determinant
bundle, and such a trivialization exists if and only if the first Chern class of
the given U(n)-bundle vanishes.

A more advanced example is the one described in Section 5: Spin
1
2
p1 =

String, i.e., String-bundles are Spin-bundles with a trivialization of the asso-
ciated 2-gerbe.

For a more refined description of c-structures, we need to consider not just
the set of equivalence classes of bundles, but the full cocycle ∞-groupoids:
whose objects are such bundles, whose morphisms are equivalences between
such bundles, whose 2-morphisms are equivalences between such equiva-
lences, and so on. But for this purposes it matters whether we form homo-
topy fibres in discrete or in topological ∞-groupoids. We shall be interested
in homotopy fibres of topological ∞-groupoids.
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Definition 6.1.4. Let G be a simplicial topological group and c : BG→
BnU(1) a classifying map. Write BGc for the homotopy fibre

BGc ��

��

∗

��
BG

c �� BnU(1)

of topological ∞-groupoids. Then for X a paracompact topological space,
we say that the ∞-groupoid

cStruc(X) := Top∞Grpd(X,BGc)

is the ∞-groupoid of topological c-structures on X.

Analogously, for G a smooth∞-group and c : BG→ BnU(1) a morphism
of smooth∞-groupoids as in Section 3, we write BGc for its homotopy fibre
in H = Smooth∞Grpd and says that

cStruc(X) := H(X,BGc)

is the ∞-groupoid of smooth c-structures on X.

Among the first non-trivial examples for these notions is the following

Definition 6.1.5. Let

1
2
p1 : BSpin→ B3U(1)

be the smooth refinement of the first fractional Pontryagin class, from Corol-
lary 5.3.1. We write

BString := BSpin
1
2
p1 ,

and call String the smooth String 2-group.

By Proposition 4.2.24 the smooth 2-groupoid BString is presented by the
simplicial presheaf cosk3 exp(soμ3).

Proposition 6.1.6. Under geometric realization the delooping of the smooth
String 2-group yields the classifying space of the topological string group

ΠBString 	 BString.

Moreover, in cohomology smooth 1
2p1-structures on a manifold X are equiv-

alent to ordinary String structures, hence 1
2p1-structures.
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Proof. The first statement is proven in Section 5.2 of [41]. The second
statement follows with Proposition 4.2.26 from Proposition 4.1 in [39]. �

6.2 Twisted differential c-structures

By the universal property of the homotopy pullback, the ∞-groupoid of
topological c-structures on X, Definition 6.1.4, can be equivalently described
as the homotopy pullback

cStruc(X) ��

��

∗

��
Top∞Grpd(X,BG) c �� Top∞Grpd(X,BnU(1))

of ∞-groupoids of cocycles over X, where the right vertical morphism picks
any cocycle representing the trivial class. From this point of view, there is
no reason to restrict one’s attention to the fibre of

Top∞Grpd(X,BG) c−→ Top∞Grpd(X,BnU(1))

over the distinguished point in Top∞Grpd(X,BnU(1) corresponding to the
trivial BnU(1)-bundle over X. Rather, it is more natural and convenient to
look at all homotopy fibres at once, i.e., to consider all possible (isomorphism
classes of) BnU(1)-bundles over X.

Definition 6.2.1. For c : BG→ BnU(1) a characteristic map in either H =
Top∞Grpd or H = Smooth∞Grpd, and for X a paracompact topological
space or paracompact smooth manifold, respectively, let cStructw(X) be the
∞-groupoid defined by the homotopy pullback

cStructw(X) tw ��

χ

��

Hn+1(X; Z),

��
H(X,BG) c �� H (X,BnU(1))

where the right vertical morphism from the cohomology set into the cocycle
n-groupoid picks one basepoint in each connected component, i.e., picks a
representative U(1)-(n− 1)-gerbe for each degree n + 1 integral cohomology
class.

We call cStructw(X) the ∞-groupoid of (topological or smooth) twisted
c-structures. For τ ∈ cStructw(X) we say tw(τ) ∈ Hn+1(X; Z) is its twist
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and χ(τ) ∈ Top∞Grpd(X,BG) is the (topological or smooth) underlying
G-principal ∞-bundle of τ , or that τ is a tw(τ)-twisted lift of χ(τ).

For [ω] ∈ Hn+1(X; Z) a cohomology class, cStructw=[ω](X) is the full sub-
∞-groupoid of cStructw(X) on those twisted structures with twist [ω].

The following list basic properties of cStructw(X) that follow directly on
general abstract grounds.

Proposition 6.2.2. (1) The definition of cStructw(X) is independent, up
to equivalence, of the choice of the right vertical morphism. Indeed, all
choices of such are (non-canonically) equivalent as ∞-functors.

(2) For BG a topological k-groupoid for k ≤ n− 1, the ∞-groupoid
cStructw(X) is an (n− 1)-groupoid.

(3) The following pasting diagram of homotopy pullbacks shows how
cStructw=[ω](X) can be equivalently seen as the homotopy fibre of
Top∞Grpd(X,BG) c−→ Top∞Grpd (X,BnU(1)) over a representative
U(1)-(n− 1)-gerbe for the cohomology class [ω]:

cStructw=[ω](X) ��

��

∗
[ω]

��
cStructw(X) tw ��

χ

��

Hn+1(X; Z)

��
Top∞Grpd(X,BG) c �� Top∞Grpd(X,BnU(1)

,

In particular one has

cStructw=0(X) ∼= cStruc(X).

We consider the following two examples, being the direct differential
refinement of those of Definition 6.2:

Definition 6.2.3. For 1
2p1 : BSpin→ B3U(1) the smooth first fractional

Pontryagin class from Proposition 5.1.7, we call

1
2
p1Structw(X)

the 2-groupoid of smooth twisted String structures on X. For 1
6p2 :

BSpin→ B7U(1) the smooth second fractional Pontryagin class from
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Proposition 5.1.10, we call

1
6
p2Structw(X)

the 6-groupoid of twisted differential fivebrane structures on X.

The terminology here arises from the applications in string theory that
originally motivated these constructions, as described in [42].

In order to explicitly compute simplicial sets modelling ∞-groupoids of
smooth twisted c-structures, the usual recipe for computing homotopy fibres
applies: it is sufficient to present the smooth cocycle c by a fibration of sim-
plicial presheaves and then form an ordinary pullback of simplicial
presheaves. We shall discuss now how to obtain such fibrations by Lie inte-
gration of factorizations of the L∞-cocycles μ3 : so→ b2

R and μ7 : soμ3 →
b6

R. These factorizations at the L∞-algebra level are due to [44]. A detailed
proof that their Lie integration produces the desired fibration can be found
in Section 5.2 of [41].

Definition 6.2.4. Let string := soμ3 be the string Lie 2-algebra from Defi-
nition 4.2.22, and let (bR→ string) be the Lie 3-algebra defined by the fact
that its Chevalley–Eilenberg algebra is that of so with two additional gen-
erators, b in degree 2 and c in degree 3, and with the differential extended
to these as

dCEb = c− μ3,

dCEc = 0.

There is an evident sequence of morphisms of L∞-algebras

so→ (bR→ string)→ b2
R

factoring the 3-cocycle μ3 : so→ b2
R.

Proposition 6.2.5. The Lie integration, according to Definition 4.2.8, of
this sequence of L∞-algebra morphisms is a factorization

1
2
p1 : cosk3 exp(so) ∼→ cosk3 exp(bR→ string) �� �� B3U(1)

of the smooth refinement of the first fractional Pontryagin class from
Proposition 5.1.7 into a weak equivalence followed by a fibration in [CartSpop,
sSet]proj.
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Corollary 6.2.6. The 2-groupoid of twisted string structures on a smooth
manifold X is presented by the ordinary fibres of

[CartSpop, sSet]
(
Č(U), cosk3 exp(bR→ soμ3)

)

→ [CartSpop, sSet]
(
Č(U)

)
, B3U(1)).

We spell out the explicit presentation for 1
2p1Structw(X) further below,

after passing to the following differential refinement.

Recall that when an L∞-algebra cocycle μ : g→ bn
R can be transgressed

to an invariant polynomial by a Chern–Simons element, as in Section 5.2,
then the smooth characteristic map c = exp(μ) refines to a differential char-
acteristic map

ĉ : BGconn → BnU(1)conn,

where

BGconn := coskn+1 expΔ(g)conn.

In terms of this there is a straightforward refinement of 6.2.1:

Definition 6.2.7. For X a smooth manifold, let ĉStructw(X) be the ∞-
groupoid defined by the homotopy pullback

ĉStructw(X) tw ��

χ

��

Ĥn+1
diff (X; Z)

��
H(X,BGconn)

ĉ �� H (X,BnU(1)conn)

,

where the right vertical morphism from the cohomology set into the cocycle
n-groupoid picks one basepoint in each connected component.

We call ĉStructw(X) the ∞-groupoid of twisted differential ĉ-structures
on X.

Such twisted differential structures enjoy the analogous properties listed
in Proposition 6.2.2. In particular, also for differential refinements one
has a natural interpretation of untwisted ĉ-structures: the component of
ĉStruc(X) over the 0-twist is the ∞-groupoid of Ĝ-∞-connections

ĉStructw=0(X) 	 Smooth∞Grpd(X,BĜconn),

where Bn−2U(1)→ Ĝ→ G is the extension of ∞-groups classified by c :
BG→ BnU(1). This is shown in detail in Section 5.2 of [41].
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6.3 Examples

We consider the following two examples:

Definition 6.3.1. For 1
2 p̂1 : BSpinconn → B3U(1)conn the differential first

fractional Pontryagin class from Definition 5.3.2 and 1
6 p̂2 : BStringconn →

B7U(1)conn the differential second fractional Pontryagin class from Defini-
tion 5.3.5, we call

1
2
p̂1Structw(X),

the 2-groupoid of twisted differential String structures on X and

1
6
p̂2Structw(X),

the 6-groupoid of twisted differential Fivebrane structures on X.

We indicate now explicit constructions of these higher groupoids of twisted
structures.

Twisted differential string-structures. The factorization

1
2
p1 : cosk3 exp(so) ∼→ cosk3 exp(bR→ string) �� �� B3U(1)

of the smooth first fractional Pontryagin class from Proposition 6.2.5 has a
differential refinement, from which we can compute the 2-groupoid of twisted
differential string structures by an ordinary pullback of simplicial sets. This
is achieved by factoring the commutative diagram

CE(so) CE(b2
R)

μ��

W(so)

��

W(b2
R)

��

cs��

inv(so)

��

inv(b2
R)

��

〈− 〉��
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as a commutative diagram

CE(so) CE(bR→ string)∼�� CE(b2
R)��

W(so)

��

W̃(bR→ string)

��

∼�� W(b2
R)

��

��

inv(so)

��

inv(bR→ string)

��

=�� inv(b2
R)

��

��

as in [44]. In the above diagram, the Weil algebra W(bR→ string) is replaced
by the modified Weil algebra W̃(bR→ string) presented by

dta = −1
2
Ca

bct
b ∧ tc + ra,

db = c− cs3 + h,

dc = g,

dra = −Ca
bct

b ∧ rc,

dh = 〈−,−〉 − g,

dg = 0.

Here {ta} are the coordinates on so relative to a basis {ea}, Ca
bc are the

structure constants of the Lie brackets of so with respect to this basis,
b and c are the additional generators of the Chevalley–Eilenberg algebra
CE(bR→ string), the generators ra, h, g are the images of of ta, b, c via
the shift isomorphism, and cs3 is a Chern–Simons element transgressing
the cocycle μ3 to the Killing form 〈−,−〉. The modified Weil algebra
W̃(bR→ string) is isomorphic (via a distinguished isomorphism) to the Weil
algebra W(bR→ string) as a dgca, but the isomorphism between the two
does not preserves the graded subspaces of polynomials in the shifted genera-
tors. In particular, the modified algebra takes care of realizing the horizontal
homotopy between 〈−,−〉 and g as a polynomial in the shifted generators,
see the third item in Example 4.1.22. Since the notion of curvature forms
depends on the splitting of the generators of the Weil algebra into shifted
and unshifted generators (see Remark 4.1.9), the modified Weil algebra will
lead to a modified version of exp(bR→ string)conn, which we will denote by
exp(bR→ string)c̃onn. This is a resolution of exp(so)conn that is naturally
adapted to the computation of the homotopy fibre of 1

2p1. As we will show
below, it is precisely this resolution that is the relevant one for applications
to the Green–Schwarz mechanism.
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Proposition 6.3.2. Lie integration of the above diagram of differential L∞-
algebra cocycles provides a factorization

1
2
p̂1 : cosk3 exp(so)conn

∼→ cosk3 exp(bR→ string)c̃onn
�� �� B3U(1)conn

of the differential first fractional Pontryagin class from Definition 5.3.2 into
a weak equivalence followed by a fibration in [CartSpop, sSet]proj.

A detailed proof can be found in Section 5.2 of [41].

Corollary 6.3.3. The 2-groupoid of twisted differential string structures on
a smooth manifold X with respect to a differentiably good open cover U =
{Ui → X} is presented by the ordinary fibres of the morphism of simplicial
sets

[CartSpop, sSet]
(
Č(U), cosk3 expΔ(bR→ string)c̃onn

)

→ [CartSpop, sSet]
(
Č(U),B3U(1)conn

)
.

A k-simplex for k ≤ 3 in the simplicial set of local differential forms data
describing a differential twisted string structure consists, for any k-fold inter-
section UI := Ui0,...,ik in the cover U , of a triple (ω, B, C)I of connection data
such the corresponding curvature data (Fω, H,G)I are horizontal. Here

ωI ∈ Ω1
si(UI ×Δk; so), BI ∈ Ω2

si(UI ×Δk; R), CI ∈ Ω3
si(UI ×Δk; R)

and

FωI = dωI +
1
2
[ωI , ωI ], HI = dBI + cs(ωI)− CI , GI = dCI .

Remark 6.3.4. The curvature forms of a twisted string structure obey the
Bianchi identities

dFωI = −[ωI , FωI ], dHI = 〈FωI ∧ FωI 〉 − GI , dGI = 0.

Twisted differential String structures and the Green–Schwarz
mechanism. The above is the local differential form data governing what
in string theory is called the Green–Schwarz mechanism. We briefly indicate
what this means and how it is formalized by the notion of twisted differential
String structures (for background and references on the physics story see for
instance [42]).
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The standard action functionals of higher-dimensional supergravity the-
ories are generically anomalous in that instead of being functions on the
space of field configurations, they are just sections of a line bundle over
these spaces. In order to get a well defined action principle as input for a
path-integral quantization to obtain the corresponding quantum field the-
ories, one needs to prescribe in addition the data of a quantum integrand.
This is a choice of trivialization of these line bundles, together with a choice
of flat connection. For this to be possible, the line bundle has to be trivi-
alizable and flat in the first place. Its failure to be tivializable — its Chern
class — is called the global anomaly, and its failure to be flat — its curvature
2-form — is called its local anomaly.

But moreover, the line bundle in question is the tensor product of two
different line bundles with connection. One is a Pfaffian line bundle induced
from the fermionic degrees of freedom of the theory, the other is a line bun-
dle induced from the higher form fields of the theory in the presence of
higher electric and magnetic charge. The Pfaffian line bundle is fixed by the
requirement of supersymmetry, but there is freedom in choosing the back-
ground higher electric and magnetic charge. Choosing these appropriately
such as to ensure that the tensor product of the two anomaly line bundles
produces a flat trivializable line bundle is called an anomaly cancellation by
a Green–Schwarz mechanism.

Concretely, the higher gauge background field of ten-dimensional heterotic
supergravity is the Kalb–Ramond field, which in the absence of fivebrane
magnetic charge is modelled by a circle 2-bundle (a bundle gerbe) with
connection and curvature 3-form H ∈ Ω3(X), satisfying the higher Maxwell
equation

dH = 0.

In order to cancel the relevant quantum anomaly it turns out that a
magnetic background charge density is to be added to the system, whose
differential form representative is the difference jmag := 〈F∇Spin

∧ F∇Spin
〉 −

〈F∇SU
∧ F∇SU

〉 between the Pontryagin forms of the Spin-tangent bundle and
of a given SU-gauge bundle (here we leave normalization constants implicit
in the definition of the invariant polynomials 〈−,−〉). This modifies the
above Maxwell equation locally, on a patch Ui ⊆ X to

dHi = 〈Fωi ∧ Fωi〉 − 〈FAi ∧ FAi〉.

Comparing with Proposition 6.3.3 we see that, while such Hi is no longer
be the local curvature 3-forms of a circle 2-bundle (2-gerbe), they are that
of a twisted circle 3-bundle – a Čech–Deligne 2-cochain that trivializes the
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difference of the two Chern–Simons Čech–Deligne 3-cocycles — that is part
of the data of a twisted differential string-structure with Gi = 〈FAi ∧ FAi〉.
Note that the above differential form equation exhibits a de Rham homotopy
between the two Pontryagin forms. This is the local differential aspect of the
very definition of a twisted differential string-structure: a homotopy from the
Chern–Simons circle 3-bundle of the Spin-tangent bundle to a given twisting
circle 3-bundle, which here is itself a Chern–Simons 3-bundle, coming from
an SU-bundle.

This anomaly cancellation has been known in the physics literature since
the seminal article [31]. Recently, Bunke [9] has given a rigorous proof in the
special case that underlying topological class of the twisting gauge bundle
is trivial. This proof used the model of twisted differential string structures
with topologically trivial twist given in [48]. This model is constructed in
terms of bundle 2-gerbes and does not exhibit the homotopy pullback prop-
erty of Definition 6.2.7 explicitly. However, the author shows that his model
satisfies the properties 6.2.2 satisfied by the abstract homotopy pullback.

Twisted differential fivebrane structures. The construction of an
explicit Kan complex model for the 6-groupoid of twisted differential five-
brane structures proceeds in close analogy to the above discussion for twisted
differential string structures, by adding throughout one more layer of gen-
erators in the CE-algebra.

Definition 6.3.5. Write

fivebrane := (soμ3)μ7

for the L∞-algebra extension of the string Lie 2-algebra (Definition 4.2.22)
by the 7-cocycle μ7 : soμ3 → b6

R (remark 4.2.23) according to
Proposition 4.1.23. Following [43], we call this the fivebrane Lie 6-algebra.

Remark 6.3.6. The Chevelley–Eilenberg algebra CE(fivebrane) is given by

dta = −1
2
Ca

bct
b ∧ tc,

db2 = −μ3 := −1
2
〈−, [−,−]〉,

db6 = −μ7 := −1
8
〈−, [−,−], [−,−], [−,−]〉

for {ta} and b2 generators of degree 1 and 2, respectively, as for the string
Lie 2-algebra, and b6 a new generator in degree 6.
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Definition 6.3.7. Let (b5
R→ fivebrane) be the Lie 7-algebra defined by

having CE-algebra given by

dta = −1
2
Ca

bct
b ∧ tc,

db2 = c3 − μ3,

db6 = c7 − μ7,

dc3 = 0,

dc7 = 0.

Proposition 6.3.8. In the evident factorization

μ7 : CE(string) �� ∼ CE(b5 → fivebrane) �� CE(b6
R)

of the 7-cocycle μ7, the first morphism is a quasi-isomorphism.

As before, it is convenient to lift this factorization to the differential
refinement by using a slightly modified Weil algebra to collect horizontal
generators

W̃ (b5 → fivebrane) 	W (b5 → fivebrane)

given by

dta = −1
2
Ca

bct
b ∧ tc + ra,

db2 = c3 − cs3 + h3,

db6 = c7 − cs7 + h7,

dc3 = g4,

dc7 = g8,

dh3 = 〈−,−〉 − g4,

dh7 = 〈−,−,−,−〉 − g8,
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where 〈−,−,−,−〉 is the second Pontryagin polynomial for so, to obtain a
factorization

CE(string) CE(b5
R→ fivebrane)∼�� CE(b6

R)��

W(string)

��

W̃(b5
R→ fivebrane)

��

∼�� W(b6
R)

��

��

inv(string)

��

inv(b5
R→ fivebrane)

��

=�� inv(b6
R)

��

��

.

This is the second of the big diagrams in [44]. Using this and following
through the same steps as for twisted differential string-structures above,
one finds that the 6-groupoid of twisted differential fivebrane structures
over some X with respect to a diffrentiably good open cover U has k-cells
for k ≤ 7 given by differential form data

ωI ∈ Ω1
si(UI ×Δk; so), (B2)I ∈ Ω2

si(UI ×Δk; R), (B6)I ∈ Ω6
si(UI ×Δk; R),

(C3)I ∈ Ω3
si(UI ×Δk; R), (C7)I ∈ Ω7

si(UI ×Δk; R)

with horizontal curvature forms

FωI = dωI +
1
2
[ωI , ωI ],

(H3)I = d(B2)I + cs3(ωI)− (C3)I , (H7)I = d(B6)I + cs7(ωI)− (C7)I ,

(G4)I = d(C4)I , (G8)I = d(C8)I .

And Bianchi identities

dFωI = −[ωI , FωI ],

d(H3)I = 〈FωI ∧ FωI 〉 − (G4)I , d(H7)I = 〈FωI ∧ FωI ∧ FωI ∧ FωI 〉 − (G8)I ,

d(G4)I = 0, d(G8)I = 0

Twisted differential fivebrane structures and the dual Green–
Schwarz mechanism. On a ten-dimensional smooth manifold X a
(twisted) circle 2-bundle with local connection form {(B2)I} and (local)
curvature forms {(H3)I} is the electric/magnetic dual of a (twisted) circle
6-bundle with local connection 6-forms {(B2)I} and (local) curvature forms
{(H7)I}. It is expected (see the references in [42]) that there is a mag-
netic dual quantum heterotic string theory where the string — electrically
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charged under B2 — is replaced by the fundamental fivebrane — magnet-
ically charged under B6. While the understanding of the six-dimensional
fivebrane sigma model is rudimentary, its fermionic worldvolume quantum
anomaly can and has been computed and the corresponding anomaly can-
celling Green–Schwarz mechanism has been written down (all reviewed in
[42]). If X does have differential string structure then its local differential
expression is the relation

d(H7)I = 〈FωI ∧ FωI ∧ FωI ∧ FωI 〉 − 〈FAI
∧ FAI

∧ FAI
∧ FAI

〉

for some normalization of invariant polynomials, where the second term is
the curvature characteristic form of the next higher Chern class of the back-
ground SU-principal gauge bundle. Comparing with the above formula, we
find that this is indeed modelled by twisted differential fivebrane structures.

Appendix A ∞-Stacks over the site of Cartesian spaces

Here, we give a formal description of simplicial presheaves over the site of
Cartesian spaces and prove several statements mentioned in Section 3.

Definition A.1. For X a d-dimensional paracompact smooth manifold, a
differentiably good open cover is an open cover U = {Ui → X}i∈I such that
for all n ∈ N every n-fold intersection Ui1 ∩ · · · ∩ Uin is either empty or dif-
feomorphic to R

d.

Note that this is asking a little more than that the intersections are con-
tractible, as for ordinary good open covers.

Proposition A.1. Differentiably good open covers always exist.

Proof. By Greene [24], every paracompact manifold admits a Riemannian
metric with positive convexity radius rconv ∈ R. Choose such a metric and
choose an open cover consisting for each point p ∈ X of the geodesically
convex open subset Up := Bp(rconv) given by the geodesic rconv-ball at p.
Since the injectivity radius of any metric is at least 2rconv [1] it follows
from the minimality of the geodesics in a geodesically convex region that
inside every finite non-empty intersection Up1 ∩ · · · ∩ Upn the geodesic flow
around any point u is of radius less than or equal the injectivity radius and
is therefore a diffeomorphism onto its image. Moreover, the preimage of the
intersection region under the geometric flow is a star-shaped region in the
tangent space TuX: the intersection of geodesically convex regions is itself
geodesically convex, so that for any v ∈ TuX with exp(v) ∈ Up1 ∩ · · · ∩ Upn
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the whole geodesic segment t 
→ exp(tv) for t ∈ [0, 1] is also in the region. So
we have that every finite non-empty intersection of the Up is diffeomorphic
to a star-shaped region in a Euclidean space. It is then a folk theorem that
every star-shaped region is diffeomorphic to an R

n; an explicit proof of this
fact is in theorem 237 of [17]. �

Recall the following notions [29].

Definition A.2. A coverage on a small category C is for each object U ∈ C
a choice of collections of morphisms U = {Ui → U} — called covering fami-
lies — such that whenever U is a covering family and V → U any morphism
in C there exists a covering family {Vj → V } such that all diagrams

Vj

��

∃ �� Ui

��
V �� U

exist as indicated. The covering sieve corresponding to a covering family U
is the colimit

S(U) = lim→ [k]∈Δ
Č(U)k ∈ [Cop, Set]

of the Čech-nerve, formed after Yoneda embedding in the category of pre-
sheaves on C.
Definition A.3. A site is a small category C equipped with a coverage. A
sheaf on a site is a presheaf A : Cop → Set such that for each covering sieve
S(U)→ U the morphism

A(U) 	 [Cop, Set](U, A)→ [Cop, Set](S(U), A)

is an isomorphism.

Remark A.1. Often this is formulated in terms of Grothendieck topologies
instead of coverages. But every coverage induces a unique Gorthendieck
topology such that the corresponding notions of sheaf coincide. An advan-
tage of using coverages is that there are fewer morphisms to check the sheaf
condition against.

In the language of left exact reflective localizations: the coverage sieve
projections of a covering family form a small set such that localizing the
presheaf category at this set produces the category of sheaves. This local-
ization however inverts more morphisms than just the coverage sieves. This
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saturated class of inverted morphisms contains also the sieve projections of
the corresponding Grothendieck topology.

Below we use this for obtaining the∞-stacks/∞-sheaves by left Bousfield
localization just at a coverage.

Corollary A.1. Differentiably good open covers form a coverage on the
category CartSp.

Proof. The pullback of a differentiably good open cover always exists in the
category of manifolds, where it is an open cover. By the above, this may
always be refined again by a differentiably good open cover. �

Definition A.4. We consider CartSp as a site by equipping it with this
differentiably-good-open-cover coverage.

Definition A.5. Write [CartSpop, sSet]proj for the global projective model
category structure on simplicial presheaves whose weak equivalences and
fibrations are objectwise those of simplicial sets. Write [CartSpop, sSet]proj,loc

for the left Bousfield localization of [CartSpop, sSet]proj at at the set of cover-
age Čech-nerve projections Č(U)→ U . This is a simplicial model category
with respect to the canonical simplicial enrichment of simplicial presheaves,
see [15]. For X, A two objects, we write [CartSpop, sSet](X, A) ∈ sSet for
the simplicial hom-complex of morphisms between them.

Proposition A.2. In [CartSpop, sSet]proj,loc the Čech-nerve Č(U)→ X of
a differentiably good open cover over a paracompact smooth manifold X is
a cofibrant resolution of X.

Proof. By assumption Č(U) is degreewise a coproduct of representables (this
is what the definition of differentiably good open cover formulates). Clearly
its degeneracies split off as a direct summand in each degree (the summand
of intersections Ui0 ∩ · · ·Uin where at least one index repeats). With this it
follows from corollary 9.4 in [15] that Č(U) is cofibrant in the global projec-
tive model structure. Since left Bousfield localization keeps the cofibrations
unchanged, it follows that it is also cofibrant in the local structure. That the
projection Č(U)→ X is a weak equivalence in the local structure follows by
using our theorem A.1 below in Proposition A.4 of [13]. �

Corollary A.2. The fibrant objects of [CartSpop, sSet]proj,loc are precisely
those simplicial presheaves A that are objectwise Kan complexes and such
that for all differentiably good open covers U of a Cartesian space U the
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induced morphism

A(U) �→ [CartSpop, sSet](U, A)→ [CartSpop, sSet](Č(U), A)

is a weak equivalence of Kan complexes.

This is the descent condition or ∞-sheaf/∞-stack condition on A.

Proof. By standard facts about left Bousfield localizations we have that the
fibrant objects are the degreewise fibrant object such that the morphisms

RHom(U, A)→ RHom(Č(U), A)

are weak equivalences of Kan complexes, where RHom denotes the right
derived simplicial hom-complex in the global projective model structure.
Since every representable U is cofibrant and since Č(U) is cofibrant by
the above proposition, these hom-complexes are equivalent to the hom-
complexes in [CartSpop, sSet] as indicated. �

Finally we establish the equivalence of the localization at a coverage that
we are using to the localization at the corresponding Grothendieck topology,
which is the one commonly found discussed in the literature.

Theorem A.1. Let C be any small category equipped with a coverage given
by covering families {Ui → U}.

Then the ∞-topos presented by the left Bousfield localization of [Cop,
CartSp]proj at the coverage covering families is equivalent to that presented
by the left Bousfield localization at the covers for the corresponding
Grothendieck topology.

We prove this for the injective model structure on simplicial presheaves.
The result then follows since that is Quillen equivalent to the projective one
and so presents the same ∞-topos.

Write S(U)→ j(U) for the sieve corresponding to a covering family,
regarded as a subfunctor of the representable functor j(U) (the Yoneda
embedding of U), which we both regard as simplicially discrete objects in
[Cop, sSet]. Write [Cop, sSet]inj,cov for the left Bousfield localization of the
injective model structure at the morphisms S(U)→ j(U) corresponding to
covering families.

Lemma A.1. A subfunctor inclusion S̃ ↪→ j(U) corresponding to a sieve
that contains a covering sieve S(U) is a weak equivalence in [Cop, sSet]inj,cov
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Proof. Let J be the set of morphisms in the bigger sieve that are not in the
smaller sieve. By assumption we can find for each j ∈ J a covering family
{Vj,k → Vj} such that for all j, i the diagrams

Vj,k ��

��

Ui

��
Vj

f �� U

commute. Consider then the commuting diagram
∐

j S ({Vj,k}) � � ��

	
��

S ({Ui} ∪ {Vj,i}) .

��∐
j j(Vj) �� S ({Ui} ∪ {Vj}) = S̃

Observe that this is a pushout in [Cop, sSet], that the top morphism is a cofi-
bration in [Cop, sSet]inj and hence in [Cop, sSet]inj,cov, that the left morphism a
weak equivalence in the local structure and that by general properties of left
Bousfield localization the localization is left proper. Therefore the pushout
morphism S ({Ui} ∪ {Vj,k})→ S ({Ui} ∪ {Vj}) = S̃ is a weak equivalence.

Then observe that from the horizontal morphisms of the above commuting
diagrams that defined the covers {Vj,k → Vj} we have an induced morphism
S ({Ui} ∪ {Vj,k})→ S ({Ui}) that exhibit S ({Ui}) as a retract

S ({Ui})

��

�� S ({Ui} ∪ {Vj,k})

��

�� S ({Ui})

��
S̃

= �� S̃
= �� S̃

.

By closure of weak equivalences under retracts, this shows that the inclusion
S ({Ui})→ S̃ is a weak equivalence. By 2-out-of-3 this finally means that
S̃ ↪→ j(U) is a weak equivalence. �
Corollary A.3. For S ({Ui})→ j(U) a covering sieve, its pullback f∗S
({Ui})→ j(V ) in [C, sSet] along any morphism j(f) : j(V )→ j(U)

f∗S ({Ui}) ��

��

S ({Ui})

��
j(V )

j(f) �� j(U)

is also a weak equivalence.
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Lemma A. 2. If S ({Ui})→ j(U) is the sieve of a covering family and
S̃ ↪→ j(U) is any sieve such that for every fi : Ui → U the pullback f∗S̃ is a
weak equivalence, then S̃ → j(U) becomes an isomorphism in the homotopy
category.

Proof. First note that if f∗
i S̃ is a weak equivalence for every i, then the

pullback of S̃ to any element of the sieve S ({Ui}) is a weak equivalence.
Use the Yoneda lemma to write

S ({Ui}) 	 lim→
V →Ui→U

j(V ).

Then consider these objects in the ∞-category of ∞-presheaves that is pre-
sented by [Cop, sSet]inj [34]. Since that has universal colimits we have the
pullback square

i∗ lim→ j(V ) ∼ �� lim→ f∗
V S̃ ��

��

S̃

i

��
S ({Ui}) ∼ �� lim→

fV :V →Ui→U

j(V ) (fV )�� j(U)

and the left vertical morphism is a colimit over morphisms that are weak
equivalences in [Cop, sSet]inj,loc. By the general properties of reflective sub-
∞-categories this means that the total left vertical morphism becomes an
isomorphism in the homotopy category of [Cop, sSet]inj,cov. Also the bottom
morphism is an isomorphism there, and hence the right vertical one is. �

Proof of the theorem. The two lemmas show that all morphisms S ({Vj})→
j(V ) for covering sieves of the Grothendieck topology that is generated by
the coverage are also weak equivalences in the left Bousfield localization just
at the coverage sieves. It follows that this coincides with the localization at
the full Grothendieck topology. �
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