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Abstract

Given a smooth complex projective variety X and a smooth divisor
D on X, we prove the existence of Hermitian–Einstein connections, with
respect to a Poincaré-type metric on X \D, on polystable parabolic prin-
cipal Higgs bundles with parabolic structure over D, satisfying certain
conditions on their restriction to D.

1 Introduction

The Hitchin–Kobayashi correspondence relating the stable vector bundles
and the solutions of the Hermitian–Einstein equation has turned out to be
extremely useful and important (see [11, 19, 18]). The Hitchin–Kobayashi
correspondence has evolved into a general principle finding generalizations
to numerous contexts. Here, we consider the parabolic Higgs G-bundles
from this point of view.
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1504 INDRANIL BISWAS AND MATTHIAS STEMMLER

Parabolic vector bundles on curves were introduced by Seshadri [16]. This
was generalized to higher dimensional varieties by Maruyama and Yokogawa
[13]. Motivated by the characterization of principal bundles using Tannakian
category theory given by Nori [14], in [3], parabolic principal bundles were
defined. Later ramified principal bundles were defined in [4]; it turned out
that there is a natural bijective correspondence between ramified principal
bundles and parabolic principal bundles; cf. [4, 8]. Higgs fields on ramified
principal bundles were defined in [9].

In [5], Biquard considered vector bundles on a compact Kähler mani-
fold (X,ω0), with parabolic structure over a smooth divisor D, equipped
with a Higgs field that has a logarithmic singularity on D. He showed that
these data induce certain Higgs bundles (in an adapted sense) on D, which
he calls “spécialisés”. In the case of Higgs fields with nilpotent residue
on D, these are just the graded pieces of the parabolic filtration equipped
with an induced Higgs structure. Given a stable parabolic Higgs bundle
such that these induced bundles are polystable and satisfy an additional
condition on their slope, he proves the existence of a Hermitian–Einstein
metric on X \D with respect to a Poincaré-type Kähler metric. The
Hermitian–Einstein metric is unique up to multiplication by a constant ele-
ment of R

+.

Our aim here is to extend Biquard’s result to the case of parabolic prin-
cipal Higgs G-bundles, where G is a connected reductive linear algebraic
group defined over C. Given such a bundle (EG, θ), there is an adjoint
parabolic Higgs vector bundle (ad(EG), ad(θ)). The Higgs field ad(θ) has
a nilpotent residue on D. This ad(θ) induces Higgs fields on the graded
pieces Grα ad(EG) for the parabolic vector bundle ad(EG). The Higgs field
on Grα ad(EG) induced by θ will be denoted by ad(θ)α.

Let ψ : EG −→ X be the natural projection. The restriction of ψ to
ψ−1(D) will be denoted by ̂ψ. Let K be the trivial vector bundle over
ψ−1(D) with fiber Lie(G). The group G acts on K using the adjoint action
of G on Lie(G). Define the invariant direct image

E := ( ̂ψ∗K)G,

which is a vector bundle over D. The Higgs field θ defines a Higgs field on
E , which will be denoted by θ′.

Fix a Kähler form ω0 on X such that the corresponding class in H2(X, R)
is integral.

We obtain the following (see Theorem 4.1 and Proposition 4.1):
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Theorem 1.1. Let (EG, θ) be a parabolic Higgs G-bundle on X such that
(EG, θ) is polystable with respect to ω0, and satisfies the following two con-
ditions:

• the Higgs bundle (E , θ′) on D is polystable; and
• for the graded pieces (Grα ad(EG), ad(θ)α) of (ad(EG)|D, ad(θ)|D) the

condition

μ(Grα ad(EG)) = −α deg(N)

holds, where degrees are computed using ω0 and N is the normal bundle
to D.

Then there is a Hermitian–Einstein connection on EG over X \D with
respect to the Poincaré-type metric.

Conversely, if there is such a Hermitian–Einstein connection satisfying
the condition that the induced connection on the adjoint vector bundle
ad(EG)|X\D lies in the space A (see (3.3)), then (EG, θ) is polystable with
respect to ω0.

2 Parabolic Higgs bundles

Let X be a connected smooth complex projective variety of complex dimen-
sion n, and let D be a smooth reduced effective divisor on X. We first
recall the definition of a parabolic Higgs vector bundle on X with parabolic
structure over D.

A parabolic vector bundle E∗ on X with parabolic divisor D is a holo-
morphic vector bundle E on X together with a parabolic structure on it,
which is given by a decreasing filtration {Fα(E)}0�α�1 of holomorphic sub-
bundles of the restriction E|D, which is continuous from the left, satisfying
the conditions that F0(E) = E|D and F1(E) = 0. The parabolic weights of
E∗ are the numbers 0 � α1 < · · · < αl < 1 such that Fαi+ε(E) �= Fαi(E) for
all ε > 0. For later use, we denote the graded pieces of this filtration as

GrαE := Fα(E)/Fα+ε(E), α ∈ {α1, . . . , αl}, ε > 0 sufficiently small.
(2.1)

Let ParEnd(E∗) be the sheaf of holomorphic sections of End(E) = E ⊗ E∗
which preserve the above filtration of E|D. Let Ωk

X(logD) be the vector
bundle on X defined by the sheaf of logarithmic k-forms. Note that there is
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a residue homomorphism

ResD : ParEnd(E∗) ⊗ Ω1
X(logD) −→ ParEnd(E∗)|D

defined by the natural residue homomorphism Ω1
X(logD) −→ OD.

Definition 2.1. A parabolic Higgs vector bundle with parabolic divisor D is
a pair (E∗, θ) consisting of a parabolic vector bundle E∗ on X with parabolic
divisor D and a section

θ ∈ H0(X,ParEnd(E∗) ⊗ Ω1
X(logD)),

called the Higgs field, such that the following two conditions are satisfied:

• θ
∧

θ ∈ H0(X,ParEnd(E∗) ⊗ Ω2
X(logD)) vanishes identically, where

the multiplication is defined using the Lie algebra structure of the fibers
of End(E), and the exterior product Ω1

X(logD) ⊗ Ω1
X(logD) −→ Ω2

X
(logD), and

• the residue ResD(θ) is nilpotent with respect to the parabolic filtration
in the sense that

ResD(θ)(Fα(E)) ⊂ Fα+ε(E)

for some ε > 0.

In the following, we will omit the subscript “∗” in E∗, and denote a
parabolic vector bundle by the same symbol as its underlying bundle.

Now we will recall the definitions of ramified Higgs principal bundles and
parabolic Higgs principal bundles. For this, let G be a connected reductive
linear algebraic group defined over C.

Definition 2.2. A ramified G-bundle over X with ramification over D is a
smooth complex variety EG equipped with an algebraic right action of G

f : EG ×G −→ EG

and a surjective algebraic map

ψ : EG −→ X,

such that the following conditions are satisfied:

• ψ ◦ f = ψ ◦ p1, where p1 : EG ×G→ EG denotes the natural projec-
tion;
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• for each point x ∈ X, the action of G on the reduced fiber ψ−1(x)red
is transitive;

• the restriction of ψ to ψ−1(X \D) makes ψ−1(X \D) a principal G-
bundle over X \D, meaning the map ψ is smooth over ψ−1(X \D)
and the map to the fiber product

ψ−1(X \D) ×G −→ ψ−1(X \D) ×X\D ψ−1(X \D)

given by (z, g) 
−→ (

z, f(z, g)
)

is an isomorphism;
• the reduced inverse image ψ−1(D)red is a smooth divisor on EG; and
• for each point z ∈ ψ−1(D)red, the isotropy group Gz ⊂ G for the action

of G on EG is a finite cyclic group acting faithfully on the quotient
line TzEG/Tz(ψ−1(D)red).

Parabolic principal G-bundles were defined in [3] as functors from the
category of rational G-representations to the category of parabolic vector
bundles, satisfying certain conditions; this definition was modeled on [14].
There is a natural bijective correspondence between the ramified principal
G-bundles with ramification over D and parabolic principal G-bundles on
X with D as the parabolic divisor [4, 8]. Let us briefly recall a construction
of parabolic principal G-bundles from ramified principal G-bundles.

Let EG be a ramified G-bundle on X with ramification over D. There is
a finite (ramified) Galois covering

η : Y −→ X

such that the normalizer

FG := ˜EG ×X Y (2.2)

of the fiber product EG ×X Y is smooth. Write Γ := Gal(η) for the Galois
group of η. Let

h : Γ −→ Aut(Y ) (2.3)

be the homomorphism giving the action of Γ on Y . The projection FG −→
Y yields a Γ-linearized principal G-bundle on Y in the following sense:

Definition 2.3. A Γ-linearized principal G-bundle on Y is a principal G-
bundle

ψ : F ′
G −→ Y

together with a left action of Γ on F ′
G

ρ : Γ × F ′
G −→ F ′

G
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such that the following two conditions are satisfied:

• the actions of Γ and G on F ′
G commute, and

• ψ(ρ(γ, z)) = h(γ)(ψ(z)) for all (γ, z) ∈ Γ × F ′
G, and h is defined in

(2.3).

Consider FG constructed in (2.2). Given a finite-dimensional complex
G-module V , there is the associated Γ-linearized vector bundle FG(V ) =
FG ×G V on Y with fibers isomorphic to V . This FG(V ) in turn corresponds
to a parabolic vector bundle on X with D as the parabolic divisor, cf. [7];
this parabolic vector bundle will be denoted by EG(V ).

The earlier mentioned functor, from the category of rational
G-representations to the category of parabolic vector bundles, associated
to the ramified G-bundle EG sends any G-module V to the parabolic vector
bundle EG(V ) constructed above.

In the following, we will identify the notions of parabolic and ramified
G-bundles.

Let g be the Lie algebra of G; it is equipped with the adjoint action of
G. Setting V = g, the parabolic vector bundle EG(g) constructed as above
is called the adjoint parabolic vector bundle of EG, and it is denoted by
ad(EG).

Let EG be a ramified G-bundle over X with ramification over D. Let

K ⊂ TEG (2.4)

be the holomorphic subbundle defined by the tangent space of the orbits of
the action of G on EG; since all the isotropies, for the action of G on EG,
are finite groups, K is indeed a subbundle. Note that K is identified with
the trivial vector bundle over EG with fiber g. Let

Q := TEG/K

be the quotient vector bundle. The action of G on EG induces an action of
G on the tangent bundle TEG, which preserves the subbundle K. Therefore,
there is an induced action of G on the quotient bundle Q. These actions
in turn induce a linear action of G on H0(EG,K ⊗Q∗). Combining the
exterior algebra structure of ΛQ∗ and the Lie algebra structure on the fibers
of K = EG × g, one obtains a homomorphism

τ : (K ⊗Q∗) ⊗ (K ⊗Q∗) −→ K⊗ Λ2Q∗.
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For y ∈ EG, and a, b ∈ (K ⊗Q∗)y, the image τ(a⊗ b) will also be denoted
by a

∧

b.

Definition 2.4. (1) A Higgs field on EG is a section

θ ∈ H0(EG,K ⊗Q∗)

such that
• θ is invariant under the action of G on H0(EG,K ⊗Q∗), and
• θ

∧

θ = 0.
(2) A parabolic Higgs G-bundle is a pair (EG, θ) consisting of a parabolic

G-bundle EG and a Higgs field θ on EG.

Now let H ⊂ G be a Zariski closed subgroup, and let U ⊂ X be a Zariski
open subset. The inverse image ψ−1(U) ⊂ EG will be denoted by EG|U ; as
before, ψ is the projection of EG to X.

Definition 2.5. A reduction of structure group of EG to H over U is a
subvariety

EH ⊂ EG|U
satisfying the following conditions:

• EH is preserved by the action of H on EG;
• for each point x ∈ U , the action of H on ψ−1(x)

⋂

EH is transitive;
and

• for each point z ∈ EH , the isotropy subgroup Gz, for the action of G
on EG, is contained in H.

Clearly, such an EH is a ramified H-bundle over U . Let

ι : EH −→ EG|U (2.5)

be a reduction of structure group of EG to H over U . Define the bundles
KH and QH as before with respect to EH (in place of EG). Then by [9,
(3.8)],

Hom(QH ,KH) ⊂ ι∗ Hom(Q,K) .

Let θ ∈ H0(EG,Hom(Q,K)) be a Higgs field on EG.

Definition 2.6. The reduction EH in (2.5) is said to be compatible with
the Higgs field θ if

θ|EH
∈ H0(EH ,Hom(QH ,KH)) ⊂ H0(EH , ι

∗ Hom(Q,K)).
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Fix a very ample line bundle ζ on X. Define the degree degF (respec-
tively, the parabolic degree par-degE∗) of a torsion-free coherent sheaf F
(respectively, a parabolic vector bundle E∗) on X with respect to this polar-
ization ζ.

Fix a basis of H0(X, ζ). Using this basis we get an embedding of X in
CP

N−1, where N = dimH0(X, ζ). Let ω0 be the restriction to X of the
Fubini–Study metric on CP

N−1.

Let H be a parabolic subgroup of G. Then G/H is a complete variety,
and the quotient map G −→ G/H defines a principal H-bundle over G/H.
For any character χ of H, let

Lχ −→ G/H

be the line bundle associated to this principal H-bundle for the character χ.
Let Ru(H) be the unipotent radical of H (it is the unique maximal normal
unipotent subgroup). The group H/Ru(H) is called the Levi quotient of
H. There are subgroups L(H) ⊂ H such that the composition L(H) ↪→
H −→ H/Ru(H) is an isomorphism. Such a subgroup L(H) is called a Levi
subgroup of H. Any two Levi subgroups of H are conjugate by some element
of H.

Let Z0(G) ⊂ G be the connected component, containing the identity ele-
ment, of the center of G. It is known that Z0(G) ⊂ H. A character χ of H,
which is trivial on Z0(G), is called strictly antidominant if the corresponding
line bundle Lχ over G/H (defined above) is ample.

Definition 2.7. A parabolic Higgs G-bundle (EG, θ) is called stable if for
every quadruple (H,χ,U,EH), where

• H ⊂ G is a proper parabolic subgroup;
• χ is a strictly antidominant character of H;
• U ⊂ X is a non-empty Zariski open subset such that the codimension

of X \ U is at least two; and
• EH ⊂ EG|U is a reduction of structure group of EG to H over U com-

patible with θ,

the following holds:

par-deg(EH(χ)) > 0,

where EH(χ) is the parabolic line bundle over U associated to the parabolic
H-bundle EH for the one-dimensional representation χ of H.
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Let EG be a parabolic G-bundle over X. A reduction of structure group
EH ⊂ EG to some parabolic subgroup H ⊂ G is called admissible if for each
character χ of H which is trivial on Z0(G), the associated parabolic line
bundle EH(χ) over X satisfies the following condition:

par-deg(EH(χ)) = 0.

Definition 2.8. A parabolic Higgs G-bundle (EG, θ) is called polystable if
either (EG, θ) is stable, or there is a proper parabolic subgroup H ⊂ G and
a reduction of structure group

EL(H) ⊂ EG

of EG to a Levi subgroup L(H) ⊂ H over X such that the following condi-
tions are satisfied:

• the reduction EL(H) ⊂ EG is compatible with θ;
• the parabolic Higgs L(H)-bundle (EL(H), θ|EL(H)

) is stable (from the
first condition it follows that θ|EL(H)

is a Higgs field on EL(H)); and
• the reduction of structure group of EG to H, obtained by extending

the structure group of EL(H) using the inclusion of L(H) in H, is
admissible.

3 Hermitian–Einstein connection on a parabolic Higgs
G-bundle

Let EG be a parabolic G-bundle over X. Let

0 −→ ad(EG) −→ At(EG) −→ TX −→ 0 (3.1)

be the Atiyah exact sequence for the G-bundle EG over X \D. Recall that
a complex connection on EG over X \D is a C∞ splitting of this exact
sequence. Fix a maximal compact subgroup K ⊂ G. A complex connection
on EG over X \D is called unitary if it is induced by a connection on a
smooth reduction of structure group EK of EG to K over X \D. Note that
(3.1) is a short exact sequence of sheaves of Lie algebras. For a complex
unitary connection ∇ on EG over X \D, its curvature form

F ∈ H0(X \D,Λ1,1T ∗X ⊗ ad(EG))

measures the obstruction of the splitting of (3.1) defining ∇ to be Lie algebra
structure preserving; see [2] for the details.
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For a parabolic Higgs G-bundle (EG, θ) on X, its restriction to X \D is
a Higgs G-bundle in the usual sense. Given a smooth reduction of structure
group EK of EG to a maximal compact subgroup K ⊂ G over X \D, the
Cartan involution of g with respect to K induces an involution of the adjoint
vector bundle ad(EG) over X \D; this involution of ad(EG) will be denoted
by φ. Writing θ =

∑

i θidz
i in local holomorphic coordinates z1, . . . , zn on

X around a point x ∈ X \D, define

θ∗ := −
∑

i

φ(θi)dz̄i.

This definition is clearly independent of the choice of local coordinates.

Let z be the center of the Lie algebra g of G. Since the adjoint action of
G on z is trivial, an element λ ∈ z defines a smooth section of ad(EG) over
X \D, which will also be denoted by λ.

Definition 3.1. Let (EG, θ) be a parabolic Higgs G-bundle on X. A com-
plex unitary connection on EG over X \D is called a Hermitian–Einstein
connection with respect to a Kähler metric ω on X \D and the Higgs field
θ, if its curvature form F satisfies the equation

Λω(F + [θ, θ∗]) = λ

for some λ ∈ z, where the operation [·, ·] is defined using the exterior product
on forms and the Lie algebra structure of the fibers of ad(EG).

Note that λ in Definition 3.1 lies in z
⋂

Lie(K).

In [5], Biquard introduces a Poincaré-type metric on X \D as follows: let
σ be the canonical section of the line bundle OX(D) on X associated to the
divisor D, meaning D is the zero divisor of σ. Let ω0 be the Kähler form
on X that we fixed earlier. Choose a Hermitian metric ‖·‖ on the fibers of
OX(D). Then

ω := Tω0 −
√−1∂∂̄ log log2 ‖σ‖2 (3.2)

defines a Kähler metric on X \D for T ∈ R
+ large enough.

In [5], Biquard proves the existence of Hermitian–Einstein metrics on
stable parabolic Higgs vector bundles under certain additional conditions
(see [5, Théorème 8.1]). In his definition of parabolic Higgs vector bundles
he does not require the residue of the Higgs field to be nilpotent.
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Let (E, θ) be a parabolic Higgs vector bundle. Consider the graded pieces
GrαE in (2.1). Let

θα := θ|D : GrαE −→ (GrαE) ⊗ (Ω1
X(logD)|D)

be the homomorphism given by θ. Since the residue of θ is nilpotent with
respect to the quasi-parabolic filtration of E|D, the composition

GrαE
θα−→ (GrαE) ⊗ (Ω1

X(logD)|D) id⊗Res−→ GrαE ⊗OD = GrαE

vanishes identically. Therefore, θα ∈ H0(D, End(GrαE) ⊗ Ω1
D). The inte-

grability condition θ
∧

θ = 0 immediately implies that θα
∧

θα = 0. There-
fore, (GrαE, θα) is a Higgs vector bundle on D.

In [5, pp. 47–48], Biquard uses the parabolic structure of E to construct
a background metric on E over X \D. Let ∇ be the corresponding Chern
connection. He then restricts his attention to connections lying in the space

A := {∇ + a : a ∈ ̂C1+ϑ
δ (Ω1

X ⊗ End(E))} (3.3)

(see [5, p. 58 and p. 70]), where the Hölder space ̂C1+ϑ
δ (Ω1

X ⊗ End(E)) is
defined in [5, pp. 53–54]. Let

N −→ D

be the normal line bundle of the divisor D.

With these definitions, Biquard’s theorem can be formulated as follows:

Theorem 3.1. Let (E, θ) be a stable parabolic Higgs vector bundle on X with
parabolic divisor D. Assume that all the graded Higgs bundles (GrαE, θα)
are polystable and satisfy the condition

μ(GrαE) = par-μ(E) − α deg(N) (3.4)

with respect to ω0. Then there is a Hermitian metric h on E over X \D,
with Chern connection in A, which is Hermitian–Einstein with respect to
the Poincaré-type metric ω, meaning its Chern curvature form F satisfies

√−1Λω(F + [θ, θ∗]) = λ · idE

for some λ ∈ R.

Such a Hermitian metric is unique up to a constant scalar multiple.
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4 Existence of Hermitian–Einstein connection

Let (EG, θ) be a ramified Higgs G-bundle. Let

ψ : EG −→ X

be the natural projection. The reduced divisor ψ−1(D)red will be denoted
by ˜D. Let

̂ψ := ψ|
˜D

: ˜D −→ D

be the restriction. Consider the subbundle K defined in (2.4). The action of
the group G on ˜D produces an action of G on the direct image ̂ψ∗K −→ D.
Define the invariant part

E := ( ̂ψ∗K)G −→ D; (4.1)

it is a vector bundle over D.

We will give an explicit description of the vector bundle E . As before, the
isotropy subgroup of any z ∈ ˜D, for the action of G on ˜D, will be denoted
by Gz. Let

gz := gGz ⊂ g

be the space of invariants for the adjoint action of Gz. This gz is clearly a
subalgebra of g. The elements of Gz are semisimple because Gz is a finite
group. Since Gz is cyclic, the Lie subalgebra gz is reductive (see [12, p. 26,
Theorem]). Let S be the subbundle of the trivial vector bundle ˜D × g −→ ˜D

whose fiber over any z ∈ ˜D is the subalgebra gz. The action of G on ˜D and
the adjoint action of G on g combine together to define an action of G on
˜D × g; the identification between K|

˜D
and ˜D × g commutes with the actions

of G . The action of G on ˜D × g clearly preserves the subbundle S. We
have

D = ˜D/G and E = S/G. (4.2)

That S/G is a vector bundle over ˜D/G follows from the fact that the isotropy
subgroups act trivially on the fibers of S.

Let h be any G-invariant nondegenerate symmetric bilinear form on g.
The restriction of h to the centralizer, in g, of any semisimple element of G
is known to be nondegenerate. From this it follows that the bilinear form
induced by h on the vector bundle S in (4.2) is nondegenerate. Since h is
G-invariant, from (4.2) we conclude that this nondegenerate bilinear form
on S descends to a nondegenerate bilinear form on E . This implies that
E∗ = E , in particular, deg(E) = 0 with respect to any polarization on D.
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Recall that the fibers of K are identified with g. Using this Lie algebra
structure of the fibers of K, the Higgs field θ defines a homomorphism

K −→ K⊗Q∗ −→ 0

of vector bundles. On the other hand, over ˜D, we have a natural restriction
homomorphism

Q∗|
˜D
−→ Ω1

˜D

of vector bundles. Combining these two homomorphisms, we have a homo-
morphism of vector bundles

β : K|
˜D
−→ K|

˜D
⊗ Ω1

˜D
.

The group G acts on both K|
˜D

and Ω1
˜D
. The above homomorphism β

commutes with the actions of G. Therefore, β produces a homomorphism

θ′ : E = ( ̂ψ∗K)G −→ (K|
˜D
⊗ Ω1

˜D
)G = E ⊗ Ω1

D, (4.3)

where E is defined in (4.1). From the condition θ
∧

θ = 0 (see Definition
2.4) it follows that θ′ is a Higgs field on the vector bundle E .

Consider the adjoint parabolic vector bundle ad(EG) for the ramified G-
bundle EG. The Higgs field θ produces a Higgs field on the parabolic vector
bundle ad(EG). This induced Higgs field on ad(EG) will be denoted by
ad(θ).

Theorem 4.1. Let (EG, θ) be a parabolic Higgs G-bundle on X such that
(EG, θ) is polystable with respect to the Kähler form ω0 (see (3.2)), and
satisfies the following two conditions:

• the Higgs bundle (E , θ′) constructed in (4.1) and (4.3) is polystable,
and

• for the graded pieces (Grα ad(EG), ad(θ)α) of (ad(EG)|D, ad(θ)|D), the
condition

μ(Grα ad(EG)) = −α deg(N) (4.4)
holds, where degrees are computed using ω0 and N is the normal bundle
of D.

Then there is a Hermitian–Einstein connection on EG over X \D with
respect to the Poincaré-type metric described in Section 3.

Proof. We first note that it is enough to prove the theorem under the
stronger assumption that the parabolic Higgs G-bundle (EG, θ) is stable.
Indeed, a polystable parabolic Higgs G-bundle (EG, θ) admits a reduction
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of structure group EL(P ) ⊂ EG to a Levi subgroup L(P ) of some parabolic
subgroup P of G such that the corresponding parabolic Higgs L(P )-bundle
(EL(P ), θ) is stable (see Definition 2.8). The connection on EG induced
by a Hermitian–Einstein connection on EL(P ) is again Hermitian–Einstein.
Hence it suffices to prove the theorem for (EG, θ) stable.

Henceforth, in the proof we assume that (EG, θ) is stable.

We will now show that it is enough to prove the theorem under the
assumption that G is semisimple.

As before, Z0(G) ⊂ G is the connected component, containing the identity
element, of the center of G. The normal subgroup [G,G] ⊂ G is semisimple,
because G is reductive. We have natural homomorphisms

Z0(G) × [G,G] −→ G −→ (G/Z0(G)) × (G/[G,G]).

Both the homomorphisms are surjective with finite kernel. In particular,
both the homomorphisms of Lie algebras are isomorphisms. Let ρ : A −→ B
be a homomorphism of Lie groups such that the corresponding homomor-
phism of Lie algebras is an isomorphism, let EA be a principal A-bundle,
and let EB := EA ×ρ B be the principal B-bundle obtained by extending
the structure group of EA using ρ. Then there is a natural bijective corre-
spondence between the connections on EA and the connections on EB. The
curvature of a connection on EB is given by the curvature of the correspond-
ing connection on EA using the homomorphism of Lie algebras associated
to ρ. Therefore, to prove the theorem for G, it is enough to prove it for
G/Z0(G) and G/[G,G] separately. But G/[G,G] is a product of copies of
C
∗, hence in this case the theorem follows immediately from Theorem 3.1.

The group G/Z0(G) is semisimple. Hence, it is enough to prove the theorem
under the assumption that G is semisimple.

Henceforth, in the proof we assume that G is semisimple.

Denote by η : Y −→ X the Galois covering with Galois group Γ := Gal(η)
and by FG the Γ-linearized G-bundle on Y corresponding to EG as described
in Section 2. According to [9, Proposition 4.1], the Higgs field θ on EG

corresponds to a Γ-invariant Higgs field ˜θ on FG. This induces a Γ-invariant
Higgs field ad(˜θ) on the Γ-linearized vector bundle ad(FG). By [6, Theorem
5.5], this in turn corresponds to a Higgs field ad(θ) on the parabolic vector
bundle ad(EG). This way we construct the parabolic Higgs vector bundle
(ad(EG), ad(θ)) on X defined earlier.

The strategy of the proof is to show that the hypotheses of Biquard’s
Theorem 3.1 are satisfied for (ad(EG), ad(θ)) and that the resulting
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Hermitian–Einstein connection on ad(EG)|X\D is induced by a Hermitian–
Einstein connection on EG|X\D.

First, we show that (ad(EG), ad(θ)) is parabolic polystable. Since (EG, θ)
is stable by hypothesis, it follows as in [9, Lemma 4.2] that (FG, ˜θ) is Γ-stable.
In [1] it was shown that if a principal G-bundle E1

G is stable, then its adjoint
vector bundle ad(E1

G) is polystable (see [1, p. 212, Theorem 2.6]). The proof
in [1] goes through if (E1

G, θ
1) is Γ-stable, and gives that (ad(E1

G), ad(θ1)) is
Γ-polystable. Since the proof goes through verbatim with obvious modifica-
tions due to the Higgs field, we refrain from repeating the proof. Therefore,
we have (ad(FG), ad(˜θ)) to be Γ-polystable.

Since (ad(FG), ad(˜θ)) is Γ-polystable, the parabolic Higgs vector bundle

(ad(EG), ad(θ))

is parabolic polystable (see [6, p. 611, Theorem 5.5]).

LetM be a reductive complex linear algebraic group. The connected com-
ponent, containing the identity element, of the center of M will be denoted
by Z0(M). Let (EM , θM ) be a polystable principal Higgs M -bundle on
a connected complex projective manifold. If V is a complex M -module
such that Z0(M) acts on V as scalar multiplications through a charac-
ter of Z0(M), then it is known that the associated Higgs vector bundle
(EM ×M V, θV ) is polystable, where θV is the Higgs field on the associated
vector bundle EM ×M V defined by θM . Indeed, this follows immediately
from the fact that (EM , θM ) has a Hermitian–Einstein connection; note that
the connection on (EM ×M V, θV ) induced by a Hermitian–Einstein connec-
tion on (EM , θM ) is also Hermitian–Einstein, provided the above condition
for the action of Z0(M) on V holds. (See [1, p. 227, Theorem 4.10] for the
Hermitian–Einstein connection on (EM , θM ).)

Since the Higgs bundle (E , θ′) constructed in (4.1) and (4.3) is given to
be polystable, from the above observation it follows that each of the graded
pieces (Grα ad(EG), ad(θ)α) of (ad(EG), ad(θ)) is polystable.

Since G is semisimple, the Killing form on its Lie algebra g is nondegener-
ate and thus induces an isomorphism ad(FG) � ad(FG)∗. This implies that
deg(ad(FG)) = 0. By [7, p. 318, (3.12)], we have

#Γ · par-deg(ad(EG)) = deg(ad(FG)),

and thus par-deg(ad(EG)) = 0, or equivalently, par-μ(ad(EG)) = 0. Conse-
quently, the hypothesis (4.4) on the slopes of the graded pieces implies that
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the condition (3.4) in Theorem 3.1 holds for the bundle ad(EG). Therefore,
we obtain from Theorem 3.1 a Hermitian–Einstein metric on ad(EG) over
X \D with respect to the Poincaré-type metric.

Finally, we have to show that the corresponding Hermitian–Einstein con-
nection on ad(EG) is induced by a connection on the principal Higgs G-
bundle EG|X\D; we note that if ∇ is a connection on EG|X\D inducing
the Hermitian–Einstein connection on ad(EG), then ∇ is automatically
Hermitian–Einstein.

Let
Φ ∈ H0(X \D, (ad(EG) ⊗ ad(EG))∗ ⊗ ad(EG))

be the section defining the Lie bracket operation on ad(EG). It can be
shown that a connection ∇ad on ad(EG)|X\D is induced by a connection
of EG|X\D if and only if Φ is parallel with respect to the connection on
(ad(EG) ⊗ ad(EG))∗ ⊗ ad(EG) induced by ∇ad. Indeed, this follows from
the fact that G being semisimple the Lie algebra of the group of Lie algebra
preserving automorphisms of g coincides with g (see proof of Theorem 3.7
of [1]).

Therefore, to complete the proof of the theorem it suffices to show that Φ
is parallel with respect to the connection on (ad(EG) ⊗ ad(EG))∗ ⊗ ad(EG)
induced by a Hermitian–Einstein connection on ad(EG).

Since par-deg(ad(EG)) = 0, it follows that

par-deg((ad(EG) ⊗ ad(EG))∗ ⊗ ad(EG)) = 0.

The connection on (ad(EG) ⊗ ad(EG))∗ ⊗ ad(EG) induced by the
Hermitian–Einstein connection on ad(EG) is also a Hermitian–Einstein con-
nection. Since the Higgs field ad(θ) is induced by the Higgs field θ on
EG, it follows that Φ is annihilated by the induced Higgs field on (ad(EG) ⊗
ad(EG))∗ ⊗ ad(EG). Thus the proof of Theorem 4.1 is completed by
Lemma 4.1. �
Lemma 4.1. Let (E, θ) be a parabolic Higgs vector bundle on X \D admit-
ting a Hermitian–Einstein connection ∇ with respect to the Poincaré-type
metric. Assume that (E, θ) is polystable, and par-degE = 0. Let s be a
holomorphic section of E such that θ(s) = 0. Then s is parallel with respect
to ∇.

Proof. Fix a Galois covering η : Y −→ X such that there is a Γ-linearized
Higgs vector bundle (V, ϕ) on Y that corresponds to (E, θ), where Γ =
Gal(η). Fix the polarization η∗ζ on Y , where ζ is the polarization on X.
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We know that (V, ϕ) is Γ-polystable because (E, θ) is polystable.
Therefore, (V, ϕ) admits a Hermitian–Einstein connection [17, p. 978,
Theorem 1].

Let s̃ be the holomorphic section of V over Y given by s. We note that
ϕ(s̃) = 0 because θ(s) = 0. We have deg V = 0 because par-degE = 0 [7,
p. 318, (3.12)]. Since (V, ϕ) admits a Hermitian–Einstein connection with
deg V = 0, and ϕ(s̃) = 0, it follows that the holomorphic section s̃ is flat
with respect to the Hermitian–Einstein connection on (V, ϕ) [10, p. 548,
Lemma 3.4].

If s vanishes identically, then the lemma is obvious. Assume that s does
not vanish identically. Since s̃ is flat with respect to the Hermitian–Einstein
connection on (V, ϕ), the section s̃ does not vanish at any point of Y . Let
Ls̃ ⊂ V be the holomorphic line subbundle generated by s̃. The action of
Γ on V clearly preserves Ls̃. Since (V, ϕ) is Γ-polystable, this implies that
there is a Γ-polystable Higgs vector bundle (V ′, ϕ′) such that

(V, ϕ) = (V ′, ϕ′) ⊕ (Ls̃, 0)

as Γ-linearized Higgs vector bundles.

The above decomposition of the Γ-linearized Higgs vector bundle (V, ϕ)
produces a decomposition

(E, θ) = (E′, θ′) ⊕ (Ls, 0)

of the parabolic Higgs vector bundle; the line subbundle Ls of E is generated
by s.

The direct sum of the Hermitian–Einstein connections on (E′, θ′) and
(Ls, 0) is a Hermitian–Einstein connection on (E, θ). Therefore, from the
uniqueness of the Hermitian–Einstein connection (see the second part of
Theorem 3.1) it follows immediately that s is parallel with respect to the
Hermitian–Einstein connection ∇. �

There is also a converse to Theorem 4.1:

Proposition 4.1. Let (EG, θ) be a parabolic Higgs G-bundle on X. Suppose
there is a Hermitian–Einstein connection on EG over X \D with respect to
the Poincaré-type metric ω such that the induced connection on the adjoint
vector bundle ad(EG)|X\D lies in the space A (see (3.3)). Then (EG, θ) is
polystable with respect to ω0.
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Proof. By [5, Proposition 7.2] we know that the parabolic degree of a para-
bolic sheaf onX with respect to ω0 coincides with the degree of its restriction
to X \D with respect to ω, computed using a Hermitian metric with Chern
connection in A. Thus, the proof in [15, pp. 28–29] of the proposition for
ordinary principal bundles generalizes to our situation of parabolic Higgs
G-bundles. �
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