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Abstract

Using the celebrated Witten–Kontsevich theorem, we prove a recur-
sive formula of the n-point functions for intersection numbers on moduli
spaces of curves. It has been used to prove the Faber intersection number
conjecture and motivated us to find some conjectural vanishing identities
for Gromov–Witten invariants. The latter has been proved recently by
Liu and Pandharipande. We also give a combinatorial interpretation of
n-point functions in terms of summation over binary trees.

1 Introduction

Let Mg,n be the moduli space of stable n-pointed genus g complex algebraic
curves and ψi the first Chern class of the line bundle corresponding to the

e-print archive: http://lanl.arXiv.org/abs/0701319
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cotangent space of the universal curve at the ith marked point. Let E denote
the Hodge bundle. The fiber of E is the space of holomorphic one forms on
the algebraic curve. Let us denote the Chern classes by

λk = ck(E), 1 ≤ k ≤ g.

More background material about moduli spaces of curves can be found in
the paper [7, 24, 27].

We use Witten’s notation

〈τd1 · · · τdn〉g :=
∫
Mg,n

ψd1
1 · · ·ψdn

n .

These intersection numbers are the correlation functions of two dimen-
sional topological quantum gravity. Motivated by an analogy with matrix
models, Witten [28] made a remarkable conjecture (originally proved by
Kontsevich [17]) that the generating function

F (t0, t1, . . .) =
∑

g

∑
n

〈 ∞∏
i=0

τni
i

〉

g

∞∏
i=0

tni
i

ni!
(1.1)

is a τ -function for the KdV hierarchy, which also provides a recursive way to
compute all these intersection numbers. In particular, U = ∂2F/∂t20 satisfies
the classical Korteweg-de Vries (KdV) equation

∂U

∂t1
= U

∂U

∂t0
+

1
12
∂3U

∂t30
. (1.2)

Witten’s conjecture was reformulated by Dijkgraaf, Verlinde, and Verlinde
[DVV] in terms of the Virasoro algebra. Now there are several new proofs
of Witten’s conjecture [2, 13, 16, 23, 26].

Definition 1.1. We call the following generating function:

F (x1, . . . , xn) =
∞∑

g=0

∑
∑

dj=3g−3+n

〈τd1 · · · τdn〉g
n∏

j=1

x
dj

j

the n-point function.

The n-point function is an alternative way to encode all information
of intersection numbers of ψ classes. Okounkov [25] obtained an analytic
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expression of the n-point functions in terms of n-dimensional error-function-
type integrals, based on his work of random permutations. Brézin and
Hikami [1] apply correlation functions of GUE ensemble to find explicit
formulae of n-point functions. Equation (44) in their paper agrees with the
n = 2 case of our Theorem 2.1.

Consider the following “normalized” n-point function

G(x1, . . . , xn) = exp

(
−
∑n

j=1 x
3
j

24

)
F (x1, . . . , xn).

The one-point functionG(x) = 1
x2 is due to Witten, we have also Dijkgraaf’s

two-point function

G(x, y) =
1

x+ y

∑
k≥0

k!
(2k + 1)!

(
1
2
xy(x+ y)

)k

and Zagier’s three-point function [30], which we learned from Faber,

G(x, y, z) =
∑
r,s≥0

r!Sr(x, y, z)
4r(2r + 1)!! · 2 · Δs

8s(r + s+ 1)!
,

where Sr(x, y, z) and Δ are the homogeneous symmetric polynomials defined by

Sr(x, y, z) =

(xy)r(x+ y)r+1 + (yz)r(y + z)r+1

+(zx)r(z + x)r+1

x+ y + z
∈ Z[x, y, z],

Δ(x, y, z) = (x+ y)(y + z)(z + x) =
(x+ y + z)3

3
− x3 + y3 + z3

3
.

The two- and three-point functions are discovered in the early 1990s.
Faber [5] pioneered their use in the intersection theory of moduli spaces of
curves.

By studying Witten’s KdV coefficient equation, regarded as an ordi-
nary differential equation, we get a recursive formula for normalized n-point
functions.
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Theorem 1.1. For n ≥ 2,

G(x1, . . . , xn) =
∑
r,s≥0

(2r + n− 3)!!
4s(2r + 2s+ n− 1)!!

Pr(x1, . . . , xn)Δ(x1, . . . , xn)s,

where Pr and Δ are homogeneous symmetric polynomials defined by

Δ(x1, . . . , xn) =
(
∑n

j=1 xj)3 −
∑n

j=1 x
3
j

3
,

Pr(x1, . . . , xn) =

⎛
⎝ 1

2
∑n

j=1 xj

∑
n=I

∐
J

(∑
i∈I

xi

)2

×
(∑

i∈J

xi

)2

G(xI)G(xJ)

⎞
⎠

3r+n−3

=
1

2
∑n

j=1 xj

∑
n=I

∐
J

(∑
i∈I

xi

)2

×
(∑

i∈J

xi

)2 r∑
r′=0

Gr′(xI)Gr−r′(xJ),

where I, J �= ∅, n = {1, 2, . . . , n} and Gg(xI) denotes the degree
3g + |I| − 3 homogeneous component of the normalized |I|-point function
G(xk1 , . . . , xk|I|), where kj ∈ I.

Note that the degree 3r + n− 3 polynomial Pr(x1, . . . , xn) is expressible
by normalized |I|-point functions G(xI) with |I| < n. So, we can recursively
obtain an explicit formula of the n-point function

F (x1, . . . , xn) = exp

(∑n
j=1 x

3
j

24

)
G(x1, . . . , xn),

thus we have an elementary algorithm to calculate all intersection numbers
of ψ classes.

Since P0(x, y) = 1
x+y , Pr(x, y) = 0 for r > 0, we get Dijkgraaf’s two-point

function. From

Pr(x, y, z) =
r!

2r(2r + 1)!
·

(xy)r(x+ y)r+1 + (yz)r(y + z)r+1

+(zx)r(z + x)r+1

x+ y + z
,

we also get Zagier’s three-point function.
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We point out that the above recursive formula of normalized n-point
functions is essentially equivalent to the first (classical) KdV equation (1.2)
in Witten–Kontsevich theorem. See the discussion at the latter part of
Section 2 in [20].

The results of this paper have applications to the tautological ring of
moduli spaces of curves, Hodge integrals and Gromov–Witten theory.

We will give a proof of Theorem 1.1 in Section 2. Sections 3 contains some
new identities of the intersection numbers of the ψ classes derived from the
n-point functions. In Section 4, we give a combinatorial interpretation of
n-point functions in terms of summation over binary trees. In Section 5,
we prove an effective recursion formula for computing integrals of ψ classes.
In Section 6, we propose some conjectural generalization of our results to
Gromov–Witten invariants and Witten’s r-spin intersection numbers. These
conjectures have been proved recently by X. Liu and Pandharipande

2 Recursive formulae of n-point functions

Theorem 1.1 has several equivalent formulations.

Proposition 2.1. Let n ≥ 2. Then the recursion relation in Theorem 1.1
is equivalent to either one of the following statements.

(i) The normalized n-point functions satisfy the following recursion relation:

Gg(x1, . . . , xn) =
1

(2g + n− 1)
Pg(x1, . . . , xn)

+
Δ(x1, . . . , xn)
4(2g + n− 1)

Gg−1(x1, . . . , xn).

(ii) The n-point functions Fg(x1, . . . , xn) satisfy the following recursion
relation:

(2g + n− 1)

(
n∑

i=1

xi

)
Fg(x1, . . . , xn)

=
1
12

(
n∑

i=1

xi

)4

Fg−1(x1, . . . , xn)

+
1
2

g∑
g′=0

∑
n=I

∐
J

(∑
i∈I

xi

)2(∑
i∈J

xi

)2

Fg′(xI)Fg−g′(xJ).
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Proof. For Theorem 1.1 ⇒ (i), we have

Gg(x1, . . . , xn)

=
∑

r+s=g

(2r + n− 3)!!
4s(2g + n− 1)!!

Pr(x1, . . . , xn)Δ(x1, . . . , xn)s

=
1

2g + n− 1
Pg(x1, . . . , xn)

+
∑

r+s=g−1

(2r + n− 3)!!
4s+1(2g + n− 1)!!

Pr(x1, . . . , xn)Δ(x1, . . . , xn)s+1

=
1

(2g + n− 1)
Pg(x1, . . . , xn) +

Δ(x1, . . . , xn)
4(2g + n− 1)

Gg−1(x1, . . . , xn).

The proof that (i) implies Theorem 1.1 is also easy.

The equivalence of (i) and (ii) is the Proposition 2.3 of [20]. �
Corollary 2.1. For n ≥ 2,

F (x1, . . . , xn) =
∑
r,s≥0

(2r + n− 3)!!
12s(2r + 2s+ n− 1)!!

Sr(x1, . . . , xn)

⎛
⎝ n∑

j=1

xj

⎞
⎠

3s

,

where Sr is a homogeneous symmetric polynomial defined by

Sr(x1, . . . , xn)

=

⎛
⎝ 1

2
∑n

j=1 xj

∑
n=I

∐
J

(∑
i∈I

xi

)2(∑
i∈J

xi

)2

F (xI)F (xJ)

⎞
⎠

3r+n−3

=
1

2
∑n

j=1 xj

∑
n=I

∐
J

(∑
i∈I

xi

)2(∑
i∈J

xi

)2 r∑
r′=0

Fr′(xI)Fr−r′(xJ),

where I, J �= ∅.

Proof. This follows directly from Proposition 2.1 (ii). �
Corollary 2.2. We have

∑
n≥1

∑
n=I

∐
J

(∑
i∈J

xi

)4

F (−(x1 + · · · + xn), xI)F (xJ) = 1.
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Proof. Note that Proposition 2.1 (ii) implies that for 2g + n− 1 > 0,

g∑
g′=0

∑
n=I

∐
J

(∑
i∈J

xi

)4

Fg′(−(x1 + · · · + xn), xI)Fg−g′(xJ) = 0.

The right-hand side 1 comes from the case n = 1, g = 0. �

Recall that KdV hierarchy is captured in Witten’s KdV coefficient
equation (see [6, 28])

(2d1 + 1)

〈
τd1τ

2
0

n∏
j=2

τdj

〉
=

1
4

〈
τd1−1τ

4
0

n∏
j=2

τdj

〉

+
∑

{2,...,n}=I
∐

J

(〈
τd1−1τ0

∏
i∈I

τdi

〉〈
τ3
0

∏
i∈J

τdi

〉

+ 2

〈
τd1−1τ

2
0

∏
i∈I

τdi

〉〈
τ2
0

∏
i∈J

τdi

〉)
,

which is equivalent to the following differential equation of n-point functions
(regarded as an ODE in y).

y
∂

∂y

⎛
⎝
⎛
⎝y +

n∑
j=1

xj

⎞
⎠

2

Fg(y, x1, . . . , xn)

⎞
⎠

=
y

8

⎛
⎝y +

n∑
j=1

xj

⎞
⎠

4

Fg−1(y, x1, . . . , xn)

+
y

2

⎛
⎝y +

n∑
j=1

xj

⎞
⎠Fg(y, x1, . . . , xn)

+
y

2

∑
n=I

∐
J

⎛
⎝
(
y +

∑
i∈I

xi

)(∑
i∈J

xi

)3

+ 2

(
y +

∑
i∈I

xi

)2(∑
i∈J

xi

)2
⎞
⎠Fg′(y, xI)Fg−g′(xJ)

− 1
2

⎛
⎝y +

n∑
j=1

xj

⎞
⎠

2

Fg(y, x1, . . . , xn) (2.1)
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2.1 Proof of Theorem 1.1

By Proposition 2.1, in order to prove Theorem 1.1, it is sufficient to verify
that F (x1, . . . , xn), as recursively defined in Proposition 2.1 (ii), satisfies the
above differential equation. The verification is tedious but straightforward.
The details are in the appendix.

Moreover, we need to check the initial value condition (the string equation)

F (x1, . . . , xn, 0) =

⎛
⎝ n∑

j=1

xj

⎞
⎠F (x1, . . . , xn).

By induction, we have

⎛
⎝ n∑

j=1

xj

⎞
⎠Fg(x1, . . . , xn, 0) =

1
2g + n

⎛
⎜⎝
(∑n

j=1 xj

)4

12
Fg−1(x1, . . . , xn, 0)

+

⎛
⎝ n∑

j=1

xj

⎞
⎠

2

Fg(x1, . . . , xn) +
1
2

g∑
h=0

∑
n=I

∐
J

×
(∑

i∈I

xi

)2(∑
i∈J

xi

)2

Fh(xI , 0)Fg−h(xJ)

+
1
2

g∑
h=0

∑
n=I

∐
J

(∑
i∈I

xi

)2

×
(∑

i∈J

xi

)2

Fh(xI)Fg−h(xJ , 0)

⎞
⎠

=
1

2g + n

⎛
⎝
⎛
⎝ n∑

j=1

xj

⎞
⎠

2

Fg(x1, . . . , xn)

+ (2g + n− 1)

⎛
⎝ n∑

j=1

xj

⎞
⎠

2

Fg(x1, . . . , xn)

⎞
⎠

=

⎛
⎝ n∑

j=1

xj

⎞
⎠

2

Fg(x1, . . . , xn).
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By the uniqueness of ODE solutions, we have proved Theorem 1.1.

In the meantime, we also proved the following result, which explains why
in order to prove the Witten–Kontsevich theorem, it suffices to prove that
the generating function (1.1) satisfies the classical KdV equation (1.2), as
was done in [13].

Corollary 2.3. Under constraints of the string and dilaton equations,

(
− ∂

∂t0
+

∞∑
i=0

ti+1 +
t20
2

)
expF (ti) = 0,

(
−3

2
∂

∂t1
+

∞∑
i=0

2i+ 1
2

ti
∂

∂ti
+

1
16

)
expF (ti) = 0,

any quasi-homogeneous solution F (ti) =
∑∞

g=0 Fg(ti) to the classical KdV
equation automatically satisfies the whole KdV hierarchy.

There is another slightly different formula of n-point functions. When
n = 3, this has also been obtained by Zagier [30].

Theorem 2.1. For n ≥ 2,

F (x1, . . . , xn) = exp

(
(
∑n

j=1 xj)3

24

)

×
∑
r,s≥0

(−1)sPr(x1, . . . , xn)Δ(x1, . . . , xn)s

8s(2r + 2s+ n− 1)s!
,

where Pr and Δ are the same polynomials as defined in Theorem 1.1.

It is easy to see that Theorem 2.1 follows from Theorem 1.1 and the
following lemma.

Lemma 2.1. Let n ≥ 2 and r, s ≥ 0. Then the following identity holds,

(−1)s

8s(2r + 2s+ n− 1)s!
=

s∑
k=0

(−1)k

8kk!
· (2r + n− 3)!!
4s−k(2r + 2s− 2k + n− 1)!!
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Proof. Let p = 2r + n ≥ 2 and

f(p, s) =
s∑

k=0

(−1)k

2kk!(p+ 2s− 2k − 1)!!
.

We have

f(p, s) =
s∑

k=0

(−1)k(p+ 2s+ 1)
2kk!(p+ 2s− 2k + 1)!!

+
s∑

k=0

2k(−1)k−1

2kk!(p+ 2s− 2k + 1)!!

= (p+ 2s+ 1)
(
f(p, s+ 1) − (−1)s+1

2s+1(s+ 1)!(p− 1)!!

)

+ f(p, s) − (−1)s

2ss!(p− 1)!!
.

So,we have the following identity:

f(p, s+ 1) =
(−1)s+1

2s+1(p+ 2s+ 1)(s+ 1)!(p− 3)!!
,

which is just the identity we want if s+ 1 is replaced by s. �

3 New properties of the n-point functions

In this section, we derive various new identities about the coefficients of the
n-point functions. An important application is a proof of the famous Faber
intersection number conjecture [5]. Recently, Zhou [31] used our results on
n-point functions in his computation of Hurwitz–Hodge integrals.

Let C
(∏n

j=1 x
dj

j , p(x1, . . . , xn)
)

denote the coefficient of
∏n

j=1 x
dj

j in a
polynomial or formal power series p(x1, . . . , xn). From the inductive struc-
ture in the definition of n-point functions, we have the following basic
properties of n-point functions.

First consider the normalized (n+ 1)-point functionG(y, x1, . . ., xn). Here
we use y to denote a distinguished point.

Theorem 3.1. Let 2g − 2 + n ≥ 0.
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(i) Let k > 2g − 2 + n, dj ≥ 0 and
∑n

j=1 dj = 3g − 2 + n− k. Then

C

⎛
⎝yk

n∏
j=1

x
dj

j , Gg(y, x1, . . . , xn)

⎞
⎠ = 0,

C

⎛
⎝yk

n∏
j=1

x
dj

j , Pg(y, x1, . . . , xn)

⎞
⎠ = 0.

(ii) Let dj ≥ 0,
∑n

j=1 dj = g and a = #{j | dj = 0}. Then

C

⎛
⎝y2g−2+n

n∏
j=1

x
dj

j , Gg(y, x1, . . . , xn)

⎞
⎠ =

1
4g
∏n

j=1(2dj + 1)!!
,

C

⎛
⎝y2g−2+n

n∏
j=1

x
dj

j , Pg(y, x1, . . . , xn)

⎞
⎠ =

a

4g
∏n

j=1(2dj + 1)!!
.

(iii) Let dj ≥ 0,
∑n

j=1 dj = g + 1, a = #{j | dj = 0} and b = #{j | dj = 1}.
Then

C

⎛
⎝y2g−3+n

n∏
j=1

x
dj

j , Gg(y, x1, . . . , xn)

⎞
⎠

=
2g2 + (2n− 1)g + n2−n

2 − 3 + 5a−a2

2

4g
∏n

j=1(2dj + 1)!!
,

C

⎛
⎝y2g−3+n

n∏
j=1

x
dj

j , Pg(y, x1, . . . , xn)

⎞
⎠

=
a(2g2 + 2ng − g + n2−n−a2+5a

2 + 3b− 3) − 3b
4g
∏n

j=1(2dj + 1)!!
.

Proof. The proof uses Proposition 2.1 (i) and proceeds by induction on g
and n. Note that

Δ(y, x1, . . . , xn) = y2

⎛
⎝ n∑

j=1

xj

⎞
⎠+ y

⎛
⎝ n∑

j=1

xj

⎞
⎠

2

+ Δ(x1, . . . , xn).
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The vanishing identities (i) are obvious. We now prove (ii) inductively.

C

⎛
⎝y2g−2+n

n∏
j=1

x
dj

j , Pg(y, x1, . . . , xn)

⎞
⎠

=
n∑

j=1

C

⎛
⎝y2g−2+n

n∏
j=1

x
dj

j , Gg(y, x1, . . . , x̂j , . . . , xn)

⎞
⎠

=
a

4g
∏n

j=1(2dj + 1)!!
,

where a = #{j | dj = 0}.

C
(
y2g−2+n, Gg(y, x1, . . . , xn)

)

=
∑

r+s=g

(2r + n− 2)!!
4s(2g + n)!!

∑
∑

dj=r

a ·
∏n

j=1 x
dj

j

4r
∏n

j=1(2dj + 1)!!

⎛
⎝ n∑

j=1

xj

⎞
⎠

s

=
1

2g + n

∑
∑

dj=g

a ·
∏n

j=1 x
dj

j

4g
∏n

j=1(2dj + 1)!!

+

∑n
j=1 xj

4(2g + n)

∑
∑

dj=g−1

∏n
j=1 x

dj

j

4g−1
∏n

j=1(2dj + 1)!!

=
1

2g + n

⎛
⎝ ∑
∑

dj=g

a ·
∏n

j=1 x
dj

j

4g
∏n

j=1(2dj + 1)!!

+
∑

∑
dj=g

(2g + n− a)
∏n

j=1 x
dj

j

4g
∏n

j=1(2dj + 1)!!

⎞
⎠

=
∑

∑
dj=g

∏n
j=1 x

dj

j

4g
∏n

j=1(2dj + 1)!!
.

The identities (iii) can be proved similarly. �
Corollary 3.1. Let 2g − 2 + n ≥ 0.

(i) Let k > 2g − 2 + n, dj ≥ 0 and
∑n

j=1 dj = 3g − 2 + n− k. Then

g∑
r=0

(−1)r

24rr!
〈τ3r

0 τkτd1 · · · τdn〉g−r = 0.
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(ii) Let dj ≥ 0 and
∑n

j=1 dj = g. Then

g∑
r=0

(−1)r

24rr!
〈τ3r

0 τ2g−2+nτd1 · · · τdn〉g−r =
(−1)g

8g
∏n

j=1 dj ! · (2dj + 1)
.

Proof. We have

exp

(
−(y +

∑n
j=1 xj)3

24

)
F (y, x1, . . . , xn)

= exp
(
−Δ(y, x1, . . . , xn)

8

)
G(y, x1, . . . , xn).

We need to extract coefficients from both sides and the corollary follows by
an induction using Theorem 3.1. �

We may regard F (y, x1, . . . , xn) and G(y, x1, . . . , xn) as formal series in
Q[x1, . . . , xn][[y, y−1]] with deg y <∞. In particular,

F0(y) = G0(y) =
1
y2
, F0(x, y) = G0(x, y) =

1
x+ y

=
∞∑

k=0

(−1)k xk

yk+1
.

(3.1)

We can again use Proposition 2.1 to prove the following proposition
inductively, which is crucial in our proof of the famous Faber intersection
number conjecture [20]. See also [10, 12, 19].

Proposition 3.1. Let a, b ∈ Z.

(i) Let k ≥ 2g − 3 + a+ b. Then

C

⎛
⎝yk,

g∑
g′=0

∑
n=I

∐
J

(
y +

∑
i∈I

xi

)a

×
(
−y +

∑
i∈J

xi

)b

Fg′(y, xI)Fg−g′(−y, xJ)

⎞
⎠ = 0.

C

⎛
⎝yk,

g∑
g′=0

∑
n=I

∐
J

(
y +

∑
i∈I

xi

)a

×
(
−y +

∑
i∈J

xi

)b

Gg′(y, xI)Gg−g′(−y, xJ)

⎞
⎠ = 0.
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(ii) Let dj ≥ 1 and
∑

j dj = g + n. Then

C

⎛
⎝y2g−4+a+b

n∏
j=1

x
dj

j ,

g∑
g′=0

∑
n=I

∐
J

(
y +

∑
i∈I

xi

)a

×
(
−y +

∑
i∈J

xi

)b

Fg′(y, xI)Fg−g′(−y, xJ)

⎞
⎠

= C

⎛
⎝y2g−4+a+b

n∏
j=1

x
dj

j ,

g∑
g′=0

∑
n=I

∐
J

(
y +

∑
i∈I

xi

)a

×
(
−y +

∑
i∈J

xi

)b

Gg′(y, xI)Gg−g′(−y, xJ)

⎞
⎠

=
(−1)b(2g − 3 + n+ a+ b)!

4g(2g − 3 + a+ b)!
∏n

j=1(2dj − 1)!!
.

When n = 2, Proposition 3.1 can be checked directly. For example, take
a = b = 2,

C

⎛
⎝y2g+2,

∑
2=I

∐
J

(
y +

∑
i∈I

xi

)2(
−y +

∑
i∈J

xi

)2

×
g∑

g′=0

Gg′(y, xI)Gg−g′(−y, xJ)

⎞
⎠

= 2
∑

r+s=g

(
(2r)!!

4s(2g + 2)!!
1

4r(2r + 1)!!
(xr

1 + xr
2)(x1 + x2)s

− 1
4r(2r + 1)!!

1
4s(2s+ 1)!!

xr
1x

s
2

)

= 0.

We can extract coefficients of n-point functions to get identities for
intersection numbers of ψ classes. A detailed discussion can be found in
[20]. We record two such identities here.

Corollary 3.2. We have

(i) Let dj ≥ 0, #{j | dj = 0} ≤ 1 and
∑n

j=1(dj − 1) = g − 1. Then

2g∑
j=0

(−1)j

〈
τ2g−jτj

n∏
i=1

τdi

〉

g

=
(2g + n− 1)!

4g(2g + 1)!
∏n

j=1(2dj − 1)!!
.
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If #{j | dj = 0} = 2 and a = #{j | dj = 1}, then the right hand side
becomes

(2g + n− 1)!
4g(2g + 1)!

∏n
j=1(2dj − 1)!!

· 2g + n− a

2g + n− 1 − a
.

(ii) Let dj ≥ 1 and
∑n

j=1(dj − 1) = g. Then

(2g − 3 + n)!
22g+1(2g − 3)!

∏n
j=1(2dj − 1)!!

= 〈τ2g−2

n∏
j=1

τdj 〉g −
n∑

j=1

〈τdj+2g−3

∏
i�=j

τdi〉g

+
1
2

∑
n=I

∐
J

2g−4∑
j=0

(−1)j〈τj
∏
i∈I

τdi〉g′〈τ2g−4−j

∏
i∈J

τdi〉g−g′ .

If #{j | dj = 0} = 1 and a = #{j | dj = 1}, then the left hand side
becomes

(2g − 3 + n)!
22g+1(2g − 3)!

∏n
j=1(2dj − 1)!!

· 2g + n+ 1 − a

2g + n− 3 − a
.

4 n-point function as summation over binary trees

Recall that in graph theory, a “tree” is defined to be a graph without cycles.
A “binary tree” T is a tree such that each node v ∈ V (T ) either has no
children (v ∈ L(T ) is a leaf) or has two children (v /∈ L(T )), so we must
have |V (T )| = 2|L(T )| − 1.

Denote by rT the unique root of T . For each v ∈ V (T ), define D(v) ⊂
V (T ) to be the set of all descendants of v and define L(v) = D(v) ∩ L(T ). In
particular, if v is a leaf, then D(v) = L(v) = {v}; if v = rT , then
D(v) = V (T ) and L(v) = L(T ).

Definition 4.1. Let T be a binary tree. Let n = |L(T )| be the num-
ber of leaves. We assign an integer g(v) ≥ 0 to each node v ∈ V (T ) and
label the n leaves with distinct values �(v) ∈ {1, . . . , n}. Then we call such
T a “weighted marked binary tree” (abbreviated “WMB tree”) and call
g(T ) =

∑
v∈V (T ) g(v) the total weight of T .

Now we can state our main result in this section.
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Theorem 4.1. Let g ≥ 0, n ≥ 1. Denote by WMB(g, n) the set of isomor-
phism classes of all WMB trees with total weight g and n leaves. Then we
have the following expression of n-point functions:

12g

⎛
⎝ n∏

j=1

xj

⎞
⎠ · (x1 + · · · + xn)2Fg(x1, . . . , xn)

=
∑

T∈ WMB(g,n)

∏
v∈V (T )

⎛
⎜⎝|L(v)| − 3 +

∑
w∈D(v)

w �=v

2g(w)

⎞
⎟⎠!!

(
|L(v)| − 1 +

∑
w∈D(v)

2g(w)

)
!!

×

⎛
⎝ ∑

w∈L(v)

x�(w)

⎞
⎠

3g(v)+1

.

Note that (−2)!! = (−1)!! = 0!! = 1 by definition.

Proof. When n = 1, the identity holds obviously.

By noting that bipartition of indices corresponds to siblings in binary
trees and applying Corollary 2.1 recursively, we may get

(x1 + · · · + xn)2Fg(x1, . . . , xn)

=
∑

T∈ WMB(g,n)

∏
v∈L(T )

x
3g(v)
�(v)

24g(v)g(v)!

×
∏

v/∈L(T )

⎛
⎜⎝|L(v)| − 3 +

∑
w∈D(v)

w �=v

2g(w)

⎞
⎟⎠!!

( ∑
w∈L(v)

x�(w)

)3g(v)+1

12g(v)

(
|L(v)| − 1 +

∑
w∈D(v)

2g(w)

)
!!

=
1

12g

∑
T∈ WMB(g,n)

∏
v∈L(T )

x
3g(v)
�(v)

(2g(v))!!
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×
∏

v/∈L(T )

⎛
⎜⎝|L(v)| − 3 +

∑
w∈D(v)

w �=v

2g(w)

⎞
⎟⎠!!

( ∑
w∈L(v)

x�(w)

)3g(v)+1

(
|L(v)| − 1 +

∑
w∈D(v)

2g(w)

)
!!

. (4.1)

So we get the desired identity. The details are left to the interested
readers. �

We now illustrate the above theorem by two examples. We will compute
the right-hand side of the slightly simpler identity (4.1), which avoids the
factor

∏n
j=1 xj .

Example 4.2. Take (g, n) = (1, 3). In the following WMB trees, the number
in the circle denotes the label of a leaf, while the number beside each node
represents its weight.

1
•

��
��

�
��

��
0

•

��
��
�

��
��

� �������	3

0

�������	1 �������	2

0 0

1
•

��
��

�
��

��
0

•

��
��
�

��
��

� �������	2

0

�������	1 �������	3

0 0

1
•

��
��

�
��

��
0

•

��
��
�

��
��

� �������	1

0

�������	2 �������	3

0 0

I1 = (x1 + x2 + x3)4((x1 + x2) + (x1 + x3) + (x2 + x3))/96.

0
•

��
��

�
��

��
1

•

��
��
�

��
��

� �������	3

0

�������	1 �������	2

0 0

0
•

��
��

�
��

��
1

•

��
��
�

��
��

� �������	2

0

�������	1 �������	3

0 0

0
•

��
��

�
��

��
1

•

��
��
�

��
��

� �������	1

0

�������	2 �������	3

0 0

I2 = (x1 + x2 + x3)((x1 + x2)4 + (x1 + x3)4 + (x2 + x3)4)/144.

0
•

��
��

�
��

��
0

•

��
��
�

��
��

� �������	1

1

�������	2 �������	3

0 0

0
•

��
��

�
��

��
0

•

��
��
�

��
��

� �������	2

1

�������	1 �������	3

0 0

0
•

��
��

�
��

��
0

•

��
��
�

��
��

� �������	3

1

�������	1 �������	2

0 0
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I3 = (x1 + x2 + x3)(x3
1(x2 + x3) + x3

2(x1 + x3) + x3
3(x1 + x2)4)/96.

0
•

��
��
�

��
��

0

•

��
��
�

��
��

� �������	3

0

�������	1 �������	2

1 0

0
•

��
��
�

��
��

0

•

��
��
�

��
��

� �������	2

0

�������	1 �������	3

1 0

0
•

��
��
�

��
��

0

•

��
��
�

��
��

� �������	3

0

�������	2 �������	1

1 0

1
•

��
��
�

��
��

0

•

��
��
�

��
��

� �������	1

0

�������	2 �������	3

1 0

0
•

��
��
�

��
��

0

•

��
��
�

��
��

� �������	2

0

�������	3 �������	1

1 0

1
•

��
��
�

��
��

0

•

��
��
�

��
��

� �������	1

0

�������	3 �������	2

1 0

I4 = (x1 + x2 + x3)(x3
1(2x1 + x2 + x3) + x3

2(2x2 + x1 + x3)

+ x3
3(2x3 + x1 + x2))/288.

From the above computation, we get

F1(x1, x2, x3) =
I1 + I2 + I3 + I4
(x1 + x2 + x3)2

=
x3

1 + x3
2 + x3

3

24

+
x2

1x2 + x2
1x3 + x1x

2
2 + x1x

2
3 + x2

2x3 + x2x
2
3

12
+
x1x2x3

12
,

which is easily seen to be correct.

Example 4.3. Take (g, n) = (2, 2).

2
•

			
	 






�������	1 �������	2

0 0

1
•

			
	 






�������	1 �������	2

1 0

1
•

			
	 






�������	1 �������	2

0 1

I1 =
(x1 + x2)7

122 × 15
+
x3

1(x1 + x2)4

122 × 2 × 15
+
x3

2(x1 + x2)4

122 × 2 × 15
.

0
•

			
	 






�������	1 �������	2

2 0

0
•

			
	 






�������	1 �������	2

1 1

0
•

			
	 






�������	1 �������	2

0 2
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I2 =
3!!

122 × 8 × 5!!
x6

1(x1 + x2) +
3!!

122 × 4 × 5!!
x3

1x
3
2(x1 + x2)

+
3!!

122 × 8 × 5!!
x6

2(x1 + x2).

From the above computation, we get

F1(x1, x2, x3) =
I1 + I2 + I3 + I4
(x1 + x2 + x3)2

=
x5

1 + x5
2

1152
+
x4

1x2 + x1x
4
2

384

+
29x3

1x
2
2 + 29x2

1x
3
2

5760
,

which is also correct.

Let T ∈ WMB(g, n) and �u = (u1, . . . , un) is an n-vector of nonnegative
integers with |u| = u1 + · · · + un = 3g − 2 + n. Since WMB(g, 1) contains
only one element, in the following discussion, we assume n ≥ 2 with obvious
modifications for the case n = 1.

We define PT (�u) to be the set of maps p from V (T )\L(T ) to the set
of n-vector of nonnegative integers with additional requirements |�prT | =
3g(rT ), where �pv denotes the image of v under p and

�prT +
∑

v/∈L(T )
v �=rT

�pv = �u− (3g(�−1(1)), . . . , 3g(�−1(n))),

where � is the bijective labeling map from L(T ) to {1, . . . , n}. An obvious
necessary condition for PT (�u) to be nonempty is that ui ≥ 3g(�−1(i)) for all
1 ≤ i ≤ n.

Corollary 4.1. Let n ≥ 2, di ≥ 0,
∑n

i=1 di = 3g − 3 + n. Then

〈τd1 · · · τdn〉g =
1

12g

∑
m≥0

(−1)m
∑

(d2,··· ,dn)=�s+�t
|�s|=m

(
m

�s

)

×
∑

T∈ WMB(g,n)

(n− 3 + 2g − 2g(rT ))!!
(n− 1 + 2g)!!
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×
∏

v∈L(T )
v �=rT

1
(2g(v))!!

∏
v/∈L(T )
v �=rT

⎛
⎜⎝|L(v)| − 3 +

∑
w∈D(v)

w �=v

2g(w)

⎞
⎟⎠!!

(
|L(v)| − 1 +

∑
w∈D(v)

2g(w)

)
!!

×
∑

p∈PT (m+1+d1,�t)

(
3g(rT )
�prT

) ∏
v/∈L(T )
v �=rT

(
3g(v) + 1

�pv

)
. (4.2)

Proof. From the proof of Theorem 4.1, we have

(x1 + · · · + xn)Fg(x1, . . . , xn)

=
1

12g

∑
T∈ WMB(g,n)

(n− 3 + 2g − 2g(rT ))!!
(n− 1 + 2g)!!

× (x1 + · · · + xn)3g(rT )
∏

v∈L(T )
v �=rT

x
3g(v)
�(v)

(2g(v))!!

×
∏

v/∈L(T )
v �=rT

⎛
⎜⎝|L(v)| − 3 +

∑
w∈D(v)

w �=v

2g(w)

⎞
⎟⎠!!

( ∑
w∈L(v)

x�(w)

)3g(v)+1

(
|L(v)| − 1 +

∑
w∈D(v)

2g(w)

)
!!

. (4.3)

We may multiply

1
x1 + · · · + xn

=
∑
m≥0

(−1)m (x2 + · · · + xn)m

xm+1
1

to the right-hand side of equation (4.3). Comparing coefficients of both sides
gives the desired identity. �

Example 4.4. Let us compute 〈τ3τ2〉2 using Corollary 4.1. The common
factor 1/12g will be counted at last.

(1) When m = 0, t = 2. The following two trees have PT (4, 2) �= ∅:
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2
•

			
	 






�������	1 �������	2

0 0

�prT = (4, 2)

1
•

			
	 






�������	1 �������	2

1 0

�prT = (1, 2)

I1 =
1
5!!

(
6
4

)
+

1
5!! · 2

(
3
1

)
=

11
10
.

(2) When m = 1, t = 1. The following two trees have PT (5, 1) �= ∅:

2
•

			
	 






�������	1 �������	2

0 0

�prT = (5, 1)

1
•

			
	 






�������	1 �������	2

1 0

�prT = (2, 1)

I2 = − 1
5!!

(
6
5

)
− 1

5!! · 2

(
3
2

)
= −1

2
.

(3) When m = 2, t = 0. The following three trees have PT (6, 0) �= ∅:

2
•

��
� ��
�

�������	1 �������	2

0 0

�prT = (6, 0)

1
•

��
� ��
�

�������	1 �������	2

1 0

�prT = (3, 0)

0
•

��
� ��
�

�������	1 �������	2

2 0

�prT = (0, 0)

I3 =
1
5!!

+
1

5!! · 2 +
3!!

5!! · 4!!
=

1
8
.

Summing up, we get the desired result

〈τ3τ2〉2 =
I1 + I2 + I3

122
=

29
5760

.

The authors of the paper [15] proved an explicit formula of higher
Weil–Petersson volumes of moduli spaces of curves in terms of integrals
of ψ classes. For example, in the case of classical Weil–Petersson volumes,
their formula reads

∫
Mg

κ3g−3
1 =

3g−3∑
k=1

(−1)3g−3−k

k!

∑
a1+···+ak=3g−3

ai>0

(
3g − 3

a1, . . . , ak

)
〈τa1+1 · · · τak+1〉g.

So via Kaufmann–Manin–Zagier’s formula, Corollary 4.1 also gives a
closed formula of higher Weil–Petersson volumes in terms of summation
over WMB trees.



1222 KEFENG LIU AND HAO XU

Recall the famous formula of Kontsevich [17] expressing intersection num-
bers in terms of summation over ribbon graphs

∑
∑

di=3g−3+n

〈τd1 . . . τdn〉
n∏

i=1

(2di − 1)!

λ2di+1
i

=
∑

Γ∈G3
g,n

2−(4g−4+2n)

|Aut(Γ)|
∏

e∈e(Γ)

2
λ1,e + λ2,e

,

where the summation is over all trivalent ribbon graphs Γ of genus g with
n cells, the product is over all edges e of Γ, λ1,e and λ2,e are the λi’s corre-
sponding to the two sides of an edge e.

While the enumeration of ribbon graphs is very difficult, the enumeration
of binary trees is much easier.

Kazarian and Lando [13] derived from ELSV formula [4] a closed formula
of ψ class integrals in terms of Hurwitz numbers. Zvonkine [32] has an
interesting interpretation of the string and dilaton equations as operations
on graphs with marked vertices.

5 Other applications of n-point functions

We now prove an effective recursion formula that explicitly expresses
intersection indices in terms of intersection indices with strictly lower genus.

Proposition 5.1. Let dj ≥ 0 and
∑n

j=1 dj = 3g + n− 3. Then

(2g + n− 1)(2g + n− 2)

〈
n∏

j=1

τdj

〉

g

=
2d1 + 3

12

〈
τ4
0 τd1+1

n∏
j=2

τdj

〉

g−1

− 2g + n− 1
6

〈
τ3
0

n∏
j=1

τdj

〉

g−1

+
∑

{2,...,n}=I
∐

J

(2d1 + 3)

〈
τd1+1τ

2
0

∏
i∈I

τdi

〉

g′

〈
τ2
0

∏
i∈J

τdi

〉

g−g′

−
∑

{2,...,n}=I
∐

J

(2g + n− 1)

〈
τd1τ0

∏
i∈I

τdi

〉

g′

〈
τ2
0

∏
i∈J

τdi

〉

g−g′

.

It is not difficult to see that when indices dj ≥ 1, all nonzero intesection
indices on the right-hand side have genera strictly less than g.
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Proof. First note that Proposition 1.1 (ii) is precisely

(2g + n− 1)

〈
τ0

n∏
j=1

τdj

〉

g

=
1
12

〈
τ4
0

n∏
j=1

τdj

〉

g−1

+
1
2

∑
n=I

∐
J

〈
τ2
0

∏
i∈I

τdi

〉

g′

〈
τ2
0

∏
i∈J

τdi

〉

g−g′

.

Applying this, we can group the first- and third terms on the right-hand side
of Proposition 5.1 and further simplify to the following recursion relation:

(2g + n− 1)

〈
τr

n∏
j=1

τdj

〉

g

= (2r + 3)

〈
τ0τr+1

n∏
j=1

τdj

〉

g

− 1
6

〈
τ3
0 τr

n∏
j=1

τdj

〉

g−1

−
∑

n=I
∐

J

〈
τ0τr

∏
i∈I

τdi

〉

g′

〈
τ2
0

∏
i∈J

τdi

〉

g−g′

.

So we need only prove the following equivalent statement of Proposition 5.1:

y

∞∑
g=0

(2g + n− 1)Fg(y, x1, . . . , xn) = 2y
∂

∂y

⎛
⎝
⎛
⎝ n∑

j=1

y + xj

⎞
⎠F (y, x1, . . . , xn)

⎞
⎠

+

⎛
⎝
⎛
⎝y +

n∑
j=1

xj

⎞
⎠− y

6

⎛
⎝y +

n∑
j=1

xj

⎞
⎠

3⎞
⎠F (y, x1, . . . , xn)

− y
∑

n=I
∐

J
J �=∅

(
y +

∑
i∈I

xi

)(∑
i∈J

xi

)2

F (y, xI)F (xJ). (5.1)

From Witten’s ordinary differential equation (ODE) (2.1) in Section 2, it
is not difficult to get the following equation.

2y

⎛
⎝y +

n∑
j=1

xj

⎞
⎠ ∂

∂y

⎛
⎝
⎛
⎝y +

n∑
j=1

xj

⎞
⎠F (y, x1, . . . , xn)

⎞
⎠

=

⎛
⎝y

4

⎛
⎝y +

n∑
j=1

xj

⎞
⎠

4

− y

⎛
⎝y +

n∑
j=1

xj

⎞
⎠−

⎛
⎝y +

n∑
j=1

xj

⎞
⎠

2⎞
⎠
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× F (y, x1, . . . , xn) + y
∑

n=I
∐

J
J �=∅

⎛
⎝
(
y +

∑
i∈I

xi

)(∑
i∈J

xi

)3

+ 2

(
y +

∑
i∈I

xi

)2(∑
i∈J

xi

)2
⎞
⎠F (y, xI)F (xJ). (5.2)

Multiply each side of equation (5.1) by y +
∑n

j=1 xj and substitute the
differential part using the above equation (5.2), we get

y
∞∑

g=0

(2g + n− 1)

(
y +

n∑
i=1

xi

)
Fg(y, x1, . . . , xn)

=

⎛
⎝ y

12

⎛
⎝y +

n∑
j=1

xj

⎞
⎠

4

− y

⎛
⎝y +

n∑
j=1

xj

⎞
⎠
⎞
⎠F (y, x1, . . . , xn)

+ y
∑

n=I
∐

J
J �=∅

(
y +

∑
i∈I

xi

)2(∑
i∈J

xi

)2

F (y, xI)F (xJ).

Add to each side with the term

y

⎛
⎝y +

n∑
j=1

xj

⎞
⎠F (y, x1, . . . , xn),

we get the desired equation (5.1). So we conclude the proof of Proposition 5.1.
�

The recursion formula in Proposition 5.1, together with the string and
dilaton equations, provides an effective algorithm for computing intersection
indices on moduli spaces of curves.

Now we prove two interesting combinatorial identities. As pointed out to
us by Lando, these kind of formulae are usually called Abel identities and
they arise naturally in enumeration of various kinds of marked trees.

Lemma 5.1. Let n ≥ 2.
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(i) Assume that if I = ∅, then (
∑

i∈I xi)|I| = 1. We have

∑
{2,...,n}=I

∐
J

(
x1 +

∑
i∈I

xi

)|I|(
−x1 +

∑
i∈J

xi

)|J |

=
∑

{2,...,n}=I
∐

J

(∑
i∈I

xi

)|I|(∑
i∈J

xi

)|J |
.

(ii) We have

∑
n=I

∐
J

I,J �=∅

(∑
i∈I

xi

)|I|−1(∑
i∈J

xi

)|J |−1

= 2(n− 1)

⎛
⎝ n∑

j=1

xj

⎞
⎠

n−2

.

Proof. Let
∏n

j=1 x
dj

j be any monomial of

∑
{2,...,n}=I

∐
J

(
x1 +

∑
i∈I

xi

)|I|(
−x1 +

∑
i∈J

xi

)|J |
. (5.3)

Since
∑n

j=1 dj = n− 1, so if d1 > 0, then their must exist some j > 1 such
that dj = 0.

The statement (i) means that the polynomial (5.3) does not contain x1,
so we need only prove that after substitute xn = 0 in (5.3), the resulting
polynomial does not contain x1.

∑
{2,...,n−1}=I

∐
J

⎛
⎝
(
x1 +

∑
i∈I

xi

)|I|+1(
−x1 +

∑
i∈J

xi

)|J |

+

(
x1 +

∑
i∈I

xi

)|I|(
−x1 +

∑
i∈J

xi

)|J |+1
⎞
⎠

=

⎛
⎝n−1∑

j=2

xj

⎞
⎠ ∑

{2,...,n−1}=I
∐

J

(
x1 +

∑
i∈I

xi

)|I|(
−x1 +

∑
i∈J

xi

)|J |
.

So (i) follows by induction.
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We prove statement (ii) by induction. Regard the LHS and RHS of (ii) as
polynomials in xn with degree n− 2, we need to prove (ii) when substitute
xn = −xi for i = 1, . . . , n− 1. It is sufficient to check the case xn = −xn−1.

LHS = 2
∑

{1,...,n−2}=I
∐

J

⎛
⎝
(
xn−1 +

∑
i∈I

xi

)|I|(
−xn−1 +

∑
i∈J

xi

)|J |

+

(∑
i∈I

xi

)|I|+1(∑
i∈J

xi

)|J |−1
⎞
⎠

= 2
∑

{1,...,n−2}=I
∐

J

⎛
⎝
(∑

i∈I

xi

)|I|(∑
i∈J

xi

)|J |

+

(∑
i∈I

xi

)|I|+1(∑
i∈J

xi

)|J |−1
⎞
⎠

= 4

⎛
⎝n−2∑

j=1

xj

⎞
⎠

n−2

+

⎛
⎝n−2∑

j=1

xj

⎞
⎠

2 ∑
{1,...,n−2}=I

∐
J

I,J �=∅

×
(∑

i∈I

xi

)|I|−1(∑
i∈J

xi

)|J |−1

= 2(n− 1)

⎛
⎝n−2∑

j=1

xj

⎞
⎠

n−2

= RHS.

Note that if a term has power |J | − 1, then J �= ∅ is assumed. �

As an interesting exercise we give a proof of the following well-known
formula.

Corollary 5.1. Let n ≥ 3, dj ≥ 0 and
∑n

j=1 dj = n− 3. Then

〈τd1 · · · τdn〉0 =
(

n− 3
d1, . . . , dn

)
.
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Proof. It is equivalent to prove that for n ≥ 3

⎛
⎝ n∑

j=1

xj

⎞
⎠

n−3

= G0(x1, . . . , xn)

=
1

2(n− 1)
∑n

j=1 xj

∑
n=I

∐
J

(∑
i∈I

xi

)2

×
(∑

i∈J

xi

)2

G0(xI)G0(xJ)

=
1

2(n− 1)
∑n

j=1 xj

∑
n=I

∐
J

(∑
i∈I

xi

)|I|−1(∑
i∈J

xi

)|J |−1

.

This is just Lemma 5.1 (ii). �

Finally in this section, we make a remark about the following DVV
formula.

〈τk+1τd1 · · · τdn〉g =
1

(2k + 3)!!

⎡
⎣ n∑

j=1

(2k + 2dj + 1)!!
(2dj − 1)!!

〈τd1 · · · τdj+k · · · τdn〉g

+
1
2

∑
r+s=k−1

(2r + 1)!!(2s+ 1)!!〈τrτsτd1 · · · τdn〉g−1

+
1
2

∑
r+s=k−1

(2r + 1)!!(2s+ 1)!!

×
∑

n=I
∐

J

〈τr
∏
i∈I

τdi〉g′〈τs
∏
i∈J

τdi〉g−g′

⎤
⎦ .

In fact, when adopting the conventions (3.1) for F0(x) and F0(x, y), DVV
formula can be written concisely as following:

∑
j∈Z

[
j − k +

1
2

]k

0

⎛
⎝C

⎛
⎝yk−1−jzj , F (y,−z, x1, . . . , xn)

+
∑

n=I
∐

J

F (y, xI)F (−z, xJ)

⎞
⎠
⎞
⎠ = 0,
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where for any integers m and k ≥ −1,

[m+
1
2
]k0 =

(
m+

1
2

)(
m+ 1 +

1
2

)
· · ·
(
m+ k +

1
2

)
=

Γ(m+ k + 3
2)

Γ(m+ 1
2)

.

Gathmann [8] noticed this fact for the more general Virasoro constraints
for Gromov–Witten invariants.

We know there are several proofs that Witten’s KdV conjecture implies
DVV formula [3, 11, 14, 18]. See also [9]. However,we still pose the following
problem, which we are not able to solve for now.

Problem 5.1. Give a direct proof of the above reformulated DVV using
the recursion formula of n-point function in Proposition 2.1 (ii).

6 Vanishing identities

In fact, the vanishing identities in Proposition 3.1 (ii) can be generalized to
universal equations for Gromov–Witten invariants [20].

Conjecture 6.1. Let X be a smooth projective variety. Given a basis {γa}
for H∗(X,Q), let xi, yi ∈ H∗(X) and k ≥ 2g − 3 + r + s. Then the Gromov–
Witten potential function satisfies

g∑
g′=0

∑
j∈Z

(−1)j

〈〈
τj(γa)

r∏
i=1

τpi(xi)

〉〉X

g′

〈〈
τk−j(γa)

s∏
i=1

τqi(yi)

〉〉X

g−g′
= 0.

Note that j runs over all integers and Gathmann’s convention [8] is used

〈τ−2(pt)〉X0,0 = 1

and

〈τm(γ1)τ−1−m(γ2)〉X0,0 = (−1)max(m,−1−m)

∫
X
γ1 · γ2, m ∈ Z.

All other Gromov–Witten invariants containing a negative power of cotangent
line classes are defined to be zero.

Conjecture 6.2. Let k > g. Then

2k∑
j=0

(−1)j〈〈τj(γa)τ2k−j(γa)〉〉Xg = 0.
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Recently, Liu and Pandharipande [21, 22] give a proof of the above
conjectures. Their proof uses virtual localization to get topological recur-
sion relations (TRRs) in the tautological ring of moduli spaces of curves,
which are pulled back, via the forgetful morphism π : Mg,n(X, d) → Mg,n,
to universal equations for Gromov–Witten invariants. Note that the Ψi class
on Mg,n(X, d) differ from π∗(ψi) by a cycle containing generic elements
whose domain curves consist of one genus-g and one genus-0 components,
with the ith marked point lying on the genus-0 component.

For example, one of TRRs proved by Liu and Pandharipande [22] is the
following:

Proposition 6.1. (Liu–Pandharipande) For k ≥ 2g − 1, there is the follow-
ing topological relation in Ak+1(Mg,2):

−ψk+1
1 + (−1)k+1ψk+1

2 +
∑

g1+g2=g
i+j=k

(−1)iι∗(ψi
∗1ψ

j
∗2 ∩ [Δ1,2(g1, g2)]) = 0, (6.1)

where ι : Δ1,2 → Mg,2 denotes the boundary divisor parameterizing reducible
curves C = C1 ∪ C2 with markings p1 ∈ C1, p2 ∈ C2 and C1 ∩ C2 = p∗, the
cotangent line classes of p∗ along C1 and C2 are denoted by ψ∗1, ψ∗2
respectively.

The above TRR (6.1) corresponds to the case r = s = 1 of Conjecture
6.1, namely for k ≥ 2g − 1

(−1)k+1〈〈τk+q+1(y)τp(x)〉〉g − 〈〈τk+p+1(x)τq(y)〉〉g

+
g∑

g′=0

k∑
j=0

(−1)j〈〈τj(γa)τp(x)〉〉g′〈〈τk−j(γa)τq(y)〉〉g−g′ = 0.

Similarly TRR also leads to universal relations for Hodge integrals and
Witten’s r-spin intersection numbers [29].

Let Σ be a Riemann surface of genus g with marked points x1, x2, . . . , xs.
Fix an integer r ≥ 2. Label each marked point xi by an integer mi, 0 ≤ mi ≤
r − 1. Consider the line bundle S = K ⊗ (⊗s

i=1O(xi)−mi) over Σ, where K
denotes the canonical line bundle. If 2g − 2 −

∑s
i=1mi is divisible by r, then

there are r2g isomorphism classes of line bundles T such that T ⊗r ∼= S. The
choice of an isomorphism class of T determines a moduli space M1/r

g,s with
compactification M1/r

g,s .
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Let V be a vector bundle over M1/r
g,s whose fiber is the dual space to

H1(Σ, T ). The top Chern class cD(V) of this bundle has degree D = (g −
1)(r − 2)/r +

∑s
i=1mi/r.

We associate with each marked point xi an integer ni ≥ 0. Witten’s r-spin
intersection numbers are defined by

〈τn1,m1 . . . τns,ms〉g =
1
rg

∫
M1/r

g,s

s∏
i=1

ψ(xi)ni · cD(V),

which is nonzero only if (r + 1)(2g − 2) + rs = r
∑s

j=1 nj +
∑s

j=1mj .

Consider the formal series F in variables tn,m, n ≥ 0 and 0 ≤ m ≤ r − 1,

F (t0,0, t0,1, . . . ) =
∑
dn,m

〈∏
n,m

τ
dn,m
n,m

〉∏
n,m

t
dn,m
n,m

dn,m!
.

Let ηij = δi+j,r−2 and

〈〈τn1,m1 . . . τns,ms〉〉 =
∂

∂tn1,m1

. . .
∂

∂tns,ms

F (t0,0, t0,1, . . . ).

Proposition 6.2. Let k ≥ 2g − 3 + u+ v and 0 ≤ �i,mi ≤ r − 2. Then

g∑
g′=0

∑
j∈Z

(−1)j

〈〈
τj,m′

u∏
i=1

τpi,mi

〉〉

g′
ηm′m′′

〈〈
τk−j,m′′

v∏
i=1

τqi,�i

〉〉

g−g′
= 0.

Note that j runs over all integers and we define

〈τ−2,r−2〉0 = 1

and for 0 ≤ m ≤ r − 2,

〈τn,mτ−1−n,r−2−m〉0 = (−1)max(n,−1−n), n ∈ Z.

Proposition 6.3. Let k > g. Then

2k∑
j=0

(−1)jηm′m′′〈〈τj,m′τ2k−j,m′′〉〉g = 0.

These results were also conjectured by us before and follows from Liu and
Pandharipande’s TRRs [22].
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Appendix A Verification of Witten’s ODE

We will verify that the functions Fg(y, x1, . . . , xn) recursively defined in
Proposition 2.1 (ii) satisfy Witten’s ODE. The proof goes by inducting on g
and n, namely we assume Fh(y, x1, . . . , xk) satisfies Witten’s ODE if either
h < g or k < n.

Let LHS and RHS denote the left-hand side and right-hand side of the
Witten’s ODE. We have

(2g + n)LHS =
y
(
y +

∑n
j=1 xj

)4

4
Fg−1(y, x1, . . . , xn)

+

(
y +

∑n
j=1 xj

)3

12
∂

∂y

⎛
⎝
⎛
⎝y +

n∑
j=1

xj

⎞
⎠

2

Fg−1(y, x1, . . . , xn)

⎞
⎠

+ y
∑

n=I
∐

J

(
y +

∑
i∈I

xi

)2(∑
i∈J

xi

)2

Fh(y, xI)Fg−h(xJ)

+

⎛
⎝y +

n∑
j=1

xj

⎞
⎠ y

∑
n=I

∐
J

∂

∂y

⎛
⎝
(
y +

∑
i∈I

xi

)2

Fh(y, xi)

⎞
⎠

×
(∑

i∈J

xi

)2

Fg−h(xJ).

By induction, we substitute the differential terms using Witten’s ODE
and get

(2g + n)LHS =
y
(
y +

∑n
j=1 xj

)4

4
Fg−1(y, xn)

+

(
y +

∑n
j=1 xj

)3

12

⎛
⎝y

8

⎛
⎝y +

n∑
j=1

xj

⎞
⎠

4

Fg−2(y, xn)
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+
y

2

⎛
⎝y +

n∑
j=1

xj

⎞
⎠Fg−1(y, x1, . . . , xn)

+
y

2

∑
n=I

∐
J

⎛
⎝
(
y +

∑
i∈I

xi

)(∑
i∈J

xi

)3

+ 2

(
y +

∑
i∈I

xi

)2(∑
i∈J

xi

)2
⎞
⎠Fh(y, xI)Fg−1−h(xJ)

− 1
2

⎛
⎝y +

n∑
j=1

xj

⎞
⎠

2

Fg−1(y, x1, . . . , xn)

⎞
⎠

+ y
∑

n=I
∐

J

(
y +

∑
i∈I

xi

)2(∑
i∈J

xi

)2

Fh(y, xI)Fg−h(xj)

+

⎛
⎝y +

n∑
j=1

xi

⎞
⎠ ∑

n=I
∐

J

⎛
⎝y

8

(
y +

∑
i∈I

xi

)4

Fh−1(y, xI)

+
y

2

(
y +

∑
i∈I

xi

)
Fh(y, xI)

+
y

2

∑
I=I′

∐
I′′

⎛
⎝
(
y +

∑
i∈I′

xi

)(∑
i∈I′′

xi

)3

+ 2

(
y +

∑
i∈I′

xi

)2(∑
i∈I′′

xi

)2
⎞
⎠F (y, x′I)F (x′′I )

− 1
2

(
y +

∑
i∈I

xi

)2

Fh(y, xI)

⎞
⎠Fg−h(xJ)

(∑
i∈J

xi

)2

.

Let’s introduce some symbols to simplify notations

Aa,b
g =

g∑
h=0

∑
n=I

∐
J

(
y +

∑
i∈I

xi

)a(∑
i∈J

xi

)b

Fh(y, xI)Fg−h(xJ),
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Ba,b,c
g =

g∑
h=0

∑
n=I

∐
J
∐

K

(
y +

∑
i∈I

xi

)a

×
(∑

i∈J

xi

)b(∑
i∈K

xi

)c

Fh(y, xI)Fg−h(xJ).

Note that Ba,b,c
g = Ba,c,b

g .

After carefully collecting terms, we arrive at

(2g + n)LHS =

⎛
⎜⎝
y
(
y +

∑n
j=1 xj

)4

4

−

(
y +

∑n
j=1 xj

)4 (∑n
j=1 xj

)

24

⎞
⎟⎠Fg−1(y, x1, . . . , xn)

+
y
(
y +

∑n
j=1 xj

)7

96
Fg−2(y, x1, . . . , xn)

+

(
y −

∑n
j=1 xj

2

)
A2,2

g +
y

2
A1,3

g

+
y

24
A1,6

g−1 +
5y
24
A2,5

g−1 +
3y
8
A3,4

g−1 +
5y
12
A4,3

g−1 +
5y
24
A5,2

g−1

+
y

2
B1,2,4

g +
y

2
B1,3,3

g +
5y
2
B2,2,3

g + yB3,2,2
g . (*)

Substitute the recursion formula for Fg(x1, . . . , xn) to the right-hand side.
We have

(2g + n)RHS =
y

8

⎛
⎝y +

n∑
j=1

xj

⎞
⎠

4
⎛
⎜⎝
(
y +

∑n
j=1 xj

)3

12
Fg−2(y, x1, . . . , xn)

+
1

y +
∑n

j=1 xj

∑
n=I

∐
J

(
y +

∑
i∈J

xi

)2(∑
i∈J

xi

)2

Fh(y, xI)Fg−1−h(xJ)

⎞
⎠

+
y

4

⎛
⎝y +

n∑
j=1

xj

⎞
⎠

4

Fg−1(y, x1, . . . , xn)
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+
y

2

⎛
⎝y +

n∑
j=1

xj

⎞
⎠
⎛
⎜⎝
(
y +

∑n
j=1 xj

)3

12
Fg−1(y, x1, . . . , xn)

+
1

y +
∑n

j+1 xj

g∑
h=0

∑
n=I

∐
J

(
y +

∑
i∈I

xi

)2(∑
i∈J

xi

)2

Fh(y, xI)Fg−h(xJ)

⎞
⎠

+
y

2

g∑
h=0

∑
n=I

∐
J

⎛
⎝
(
y +

∑
i∈I

xi

)(∑
i∈J

xi

)3

+ 2

(
y +

∑
i∈I

xi

)2(∑
i∈J

xi

)2
⎞
⎠

×
g∑

h=0

(2h+ |I|)Fh(y, xI)Fg−h(xJ)

(apply Proposition 2.1 (ii) to expand)

+
y

2

g∑
h=0

∑
n=I

∐
J

⎛
⎝
(
y +

∑
i∈I

xi

)(∑
i∈J

xi

)3

+ 2

(
y +

∑
i∈I

xi

)2(∑
i∈J

xi

)2
⎞
⎠

×
g∑

h=0

Fh(y, xI)(2g − 2h+ |J | − 1)Fg−h(xJ)

(apply Proposition 2.1 (ii) to expand)

+
y

2

g∑
h=0

∑
n=I

∐
J

⎛
⎝
(
y +

∑
i∈I

xi

)(∑
i∈J

xi

)3

+ 2

(
y +

∑
i∈I

xi

)2(∑
i∈J

xi

)2
⎞
⎠Fh(y, xI)Fg−h(xJ)

− 1
2

⎛
⎝y +

n∑
j=1

xj

⎞
⎠

2
⎛
⎜⎝
(
y +

∑n
j=1 xj

)3

12
Fg−1(y, x1, . . . , xn)

+
1

y +
∑n

j=1 xj

g∑
h=0

∑
n=I

∐
J

(
y +

∑
i∈I

xi

)2(∑
i∈J

xi

)2

Fh(y, xI)Fg−h(xJ)

⎞
⎠ .

After carefully collecting terms, we exactly arrive at

(2g + n)RHS = right-hand side of (∗).

So, we have verified LHS=RHS.
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