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Abstract

We construct explicit compact solutions with non-zero field strength,
non-flat instanton and constant dilaton to the heterotic string equations
in dimensions 7 and 8. We present a quadratic condition on the curva-
ture, which is necessary and sufficient the heterotic supersymmetry and
the anomaly cancellation to imply the heterotic equations of motion in
dimensions 7 and 8. We show that some of our examples are compact
supersymmetric solutions of the heterotic equations of motion in dimen-
sions 7 and 8.
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1 Introduction

The bosonic fields of the ten-dimensional supergravity, which arises as the
low-energy effective theory of the heterotic string are the spacetime metric g,
the NS three-form field strength H, the dilaton φ and the gauge connection
A with curvature FA. The bosonic geometry considered in this paper is of
the form R1,9−d × Md where the bosonic fields are non-trivial only on Md,
d ≤ 8. We consider the two connections

∇± = ∇g ± 1
2
H,
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where ∇g is the Levi–Civita connection of the Riemannian metric g. Both
connections preserve the metric, ∇±g = 0, and have totally skew-symmetric
torsion ±H, respectively.

The Green–Schwarz anomaly cancellation mechanism requires that the
three-form Bianchi identity receives an α′ correction of the form

dH =
α′

4
(p1(Md) − p1(E)) = 2π2α′

(
Tr(R ∧ R) − Tr(FA ∧ FA)

)
, (1.1)

where p1(Md), p1(E) are the first Pontrjagin forms of Md with respect to
a connection ∇ with curvature R, and that of the vector bundle E with
connection A, respectively.

A class of heterotic-string backgrounds for which the Bianchi identity of
the three-form H receives a correction of type (1.1) are those with (2,0)
world-volume supersymmetry. Such models were considered in [55]. The
target-space geometry of (2,0)-supersymmetric sigma models has been exten-
sively investigated in [55, 73, 52]. Recently, there is revived interest in these
models [37, 13, 38, 39, 41] as string backgrounds and in connection to heterotic-
string compactifications with fluxes [12, 1, 2, 3, 67, 34, 35, 4].

In writing (1.1) there is a subtlety to the choice of connection ∇ on Md

since anomalies can be cancelled independently of the choice [53]. Differ-
ent connections correspond to different regularization schemes in the two-
dimensional worldsheet non-linear sigma model. Hence, the background
fields given for the particular choice of ∇ must be related to those for
a different choice by a field redefinition [70]. Connections on Md pro-
posed to investigate the anomaly cancellation (1.1) are ∇g [73, 39], ∇+ [13],
∇− [5, 12, 41, 56], Chern connection ∇c when d = 6 [73, 67, 34, 35, 4].

A heterotic geometry will preserve supersymmetry if and only if, in 10
dimensions, there exists at least one Majorana–Weyl spinor ε such that the
supersymmetry variations of the fermionic fields vanish, i.e., the following
Killing spinor equations hold [73]:

δλ = ∇mε =
(
∇g

m +
1
4
HmnpΓnp

)
ε = ∇+ε = 0,

δΨ =
(

Γm∂mφ − 1
12

HmnpΓmnp

)
ε =

(
dφ − 1

2
H

)
· ε = 0, (1.2)

δξ = FA
mnΓmnε = FA · ε = 0,

where λ, Ψ and ξ are the gravitino, the dilatino and the gaugino fields,
respectively, and · means the Clifford action of forms on spinors.
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The bosonic part of the ten-dimensional supergravity action in the string
frame is [5]

S =
1

2k2

∫
d10x

√−g e−2φ
[
Scalg + 4(∇gφ)2 − 1

2
|H|2

− α′

4

(
Tr|FA|2 − Tr|R|2

)]
. (1.3)

The string frame field equations (the equations of motion induced from
the action (1.3)) of the heterotic string up to two-loops [54] in sigma model
perturbation theory are (we use the notations in [41])

Ricg
ij −

1
4
HimnHmn

j + 2∇g
i∇g

jφ − α′

4

[
(FA)imab(FA)mab

j − RimnqR
mnq
j

]
= 0,

∇g
i (e

−2φH i
jk) = 0, (1.4)

∇+
i (e−2φ(FA)i

j) = 0.

The field equation of the dilaton φ is implied from the first two equations
above.

We search for a solution to lowest non-trivial order in α′ of the equations
of motion in dimensions 7 and 8 that follow from the bosonic action, which
also preserves at least one supersymmetry.

It is known [19, 38] ([41] for dimension 6) that the equations of motion
of type I supergravity (1.4) with R = 0 are automatically satisfied if one
imposes, in addition to the preserving supersymmetry equations (1.2), the
three-form Bianchi identity (1.1) taken with respect to a flat connection
(R = 0) on TM .

A lot of effort had been done in dimension six and compact torsional
solutions for the heterotic/type I string are known to exist [18, 1, 2, 13, 39,
67, 34, 35, 4, 17, 24].

In dimension five compact supersymmetric solutions to the heterotic equa-
tions of motion with non-zero fluxes and constant dilaton have been con-
structed recently in [25].

In dimensions 7 and 8, the only known heterotic/type I solutions with non-
zero fluxes to the equations of motion preserving at least one supersymmetry
(satisfying (1.2) and (1.1) without the curvature term, R = 0) are those
constructed in [21, 36, 51] for dimension 8, and those presented in [48] for
dimension 7. All these solutions are non-compact and conformal to a flat
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space. Non-compact solutions to (1.2) and (1.1) in dimensions 7 and 8 are
presented also in [56].

The main goal of this paper is to construct explicit compact supersym-
metric valid solutions with non-zero field strength, non-flat instanton and
constant dilaton to the heterotic equations of motion (1.4) in dimensions
7 and 8.

According to no-go (vanishing) theorems (a consequence of the equations
of motion [28, 19]; a consequence of the supersymmetry [60, 59] for SU(n)-
case and [39] for the general case) there are no compact solutions with
non-zero flux and non-constant dilaton satisfying simultaneously the super-
symmetry equations (1.2) and the three-form Bianchi identity (1.1) if one
takes flat connection on TM , more precisely a connection with zero first
Pontrjagin four-form, Tr(R ∧ R) = 0.

In the compact case one necessarily has to have a non-zero term Tr(R ∧
R). However, under the presence of a non-zero curvature 4-form Tr(R ∧ R)
the solution of the supersymmetry equations (1.2) and the anomaly cancel-
lation condition (1.1) obeys the second and the third equations of motion
(the second and the third equations in (1.4)) but does not always satisfy
the Einstein equation of motion (the first equation in (1.4)). We give in
Theorem 4.1 a quadratic expression for R, which is necessary and sufficient
condition in order that (1.2) and (1.1) imply (1.4) in dimensions 7 and 8
based on the properties of the special geometric structure induced from the
first two equations in (1.2). (A similar condition in dimensions five and six
we presented in [25, 24], respectively.) In particular, if R is a G2-instanton
(resp. Spin(7)-instanton) the supersymmetry equations together with the
anomaly cancellation imply the equations of motion. The latter can also be
seen following the considerations in the appendix of [38].

In this article, we present compact nilmanifolds in dimensions seven and
eight satisfying the heterotic supersymmetry equations (1.2) with non-zero
flux H, non-flat instanton and constant dilaton obeying the three-form
Bianchi identity (1.1) with curvature term R = R+, which is of instanton
type. According to Theorem 4.1 these nilmanifolds are compact supersym-
metric solutions of the heterotic equations of motion (1.4) in dimensions 7
and 8. The solutions in dimension 7 are constructed on the seven-dimensional
generalized Heisenberg nilmanifold, which is a circle bundle over a six-torus
with curvature inside the Lie algebra su(3). The eight-dimensional compact
solutions can be described as a circle bundle over the product of a two-torus
by the total space of a circle bundle over a four-torus, or alternatively as
the total space of a circle bundle with curvature inside the Lie algebra g2

over a seven-manifold which is a circle bundle over a six-torus (see Section 5
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for details). Based on the examples we present in Section 5, as well as on
constructions proposed in [39], we outline in the last section a more general
construction of compact manifolds solving the first two equations in (1.2)
with non-constant dilaton depending on reduced number of variables.

Our solutions seem to be the first explicit compact valid supersymmet-
ric heterotic solutions with non-zero flux, non-flat instanton and constant
dilaton in dimensions 7 and 8 satisfying the equations of motion (1.4).

Our conventions: We rise and lower the indices with the metric and
use the summation convention on repeated indices. For example,

BijkC
ijk = Bjk

i Ci
jk = BijkCijk =

d∑
i,j,k=1

BijkCijk.

The connection one-forms σji of a metric connection ∇,∇g = 0, with
respect to a local basis {E1, . . . , Ed} are given by

σji(Ek) = g(∇Ek
Ej , Ei),

since we write ∇XEj = σs
j (X)Es.

The curvature two-forms Ωi
j of ∇ are given in terms of the connection

one-forms σi
j by

Ωi
j = dσi

j + σi
k ∧ σk

j , Ωji = dσji + σki ∧ σjk, Rl
ijk = Ωl

k(Ei, Ej),

Rijkl = Rs
ijkgls, (1.5)

and the first Pontrjagin class is represented by the four-form

p1(∇) =
1

8π2

∑
1≤i<j≤d

Ωi
j ∧ Ωi

j .

2 General properties of G2 and Spin(7) structures

We recall the basic properties of the geometric structures induced from
the gravitino and dilatino Killing spinor equations (the first two equations
in (1.2)) in dimensions 7 and 8.

G2-structures in d = 7. Endow R
7 with its standard orientation and inner

product. Let {E1, . . . , E7} be an oriented orthonormal basis and {e1, . . . , e7}
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its dual basis. Consider the three-form Θ on R
7 given by

Θ = e127 − e236 + e347 + e567 − e146 − e245 + e135. (2.1)

The subgroup of GL(7, R) fixing Θ is the exceptional Lie group G2. It is
a compact, connected, simply connected, simple Lie subgroup of SO(7) of
dimension 14 [7]. The Lie algebra is denoted by g2, and it is isomorphic to
the two-forms satisfying seven linear equations, namely g2

∼= Λ2
14(R

7) = {β ∈
Λ2(R7)| ∗ (β ∧ Θ) = −β}. The three-form Θ corresponds to a real spinor ε
and therefore, G2 can be identified as the isotropy group of a non-trivial real
spinor.

The Hodge star operator supplies the four-form ∗Θ given by

∗Θ = e3456 + e1457 + e1256 + e1234 + e2357 + e1367 − e2467. (2.2)

The space Λ2
14(R

7) can also be described as the subspace of 2-forms β which
annihilate ∗Θ, i.e., β ∧ ∗Θ = 0. A seven-dimensional Riemannian manifold
M is called a G2-manifold if its structure group reduces to the exceptional Lie
group G2. The existence of a G2-structure is equivalent to the existence of a
global non-degenerate three-form, which can be locally written as (2.1). The
three-form Θ is called the fundamental form of the G2-manifold [6]. From the
purely topological point of view, a seven-dimensional paracompact manifold
is a G2-manifold if and only if it is an oriented spin manifold [66]. We will
say that the pair (M, Θ) is a G2-manifold with G2-structure (determined
by) Θ.

The fundamental form of a G2-manifold determines a Riemannian metric
implicitly through gij = 1

6

∑
kl ΘiklΘjkl [47]. This is referred to as the metric

induced by Θ.

In [23], Fernández and Gray divide G2-manifolds into 16 classes according
to how the covariant derivative of the fundamental three-form behaves with
respect to its decomposition into G2 irreducible components (see also [14,
37]). If the fundamental form is parallel with respect to the Levi–Civita
connection, ∇gΘ = 0, then the Riemannian holonomy group is contained
in G2. In this case the induced metric on the G2-manifold is Ricci-flat, a
fact first observed by Bonan [6]. It was shown by Gray [47] (see also [23,
7, 71]) that a G2-manifold is parallel precisely when the fundamental form
is harmonic, i.e., dΘ = d ∗ Θ = 0. The first examples of complete parallel
G2-manifolds were constructed by Bryant and Salamon [9] and Gibbons
et al. [40]. Compact examples of parallel G2-manifolds were obtained first
by Joyce [61, 62, 63] and recently by Kovalev [65].
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The Lee form θ7 is defined by [11]

θ7 = −1
3 ∗ (∗dΘ ∧ Θ) = 1

3 ∗ (∗d ∗ Θ ∧ ∗Θ). (2.3)

If the Lee form vanishes, θ7 = 0, then the G2-structure is said to be balanced.
If the Lee form is closed, dθ7 = 0, then the G2-structure is locally confor-
mally equivalent to a balanced one [32]. If the G2-structure satisfies the
condition d ∗ Θ = θ7 ∧ ∗Θ then it is called integrable and an analog of the
Dolbeault cohomology is investigated in [27]. A cocalibrated G2-structure is
a balanced G2-structure which is also integrable.

Spin(7)-structures in d = 8. Consider R
8 endowed with an orientation

and its standard inner product. Let {E1, . . . , E8} be an oriented orthonormal
basis and {e1, . . . , e8} its dual basis. Consider the four-form Φ on R

8 given by

Φ = e1238 − e1347 + e1458 + e1678 − e1257 − e1356 + e1246

+ e4567 + e2568 + e2367 + e2345 + e3468 + e2478 − e3578.
(2.4)

The four-form Φ is self-dual ∗Φ = Φ and the 8-form Φ ∧ Φ coincides with the
volume form of R

8. The subgroup of GL(8, R), which fixes Φ is isomorphic
to the double covering Spin(7) of SO(7) [50]. Moreover, Spin(7) is a compact
simply-connected Lie group of dimension 21 [7]. The Lie algebra of Spin(7)
is denoted by spin(7) and it is isomorphic to the two-forms satisfying 7 linear
equations, namely spin(7) ∼= {β ∈ Λ2(R8)| ∗ (β ∧ Φ) = −β}. The four-form
Φ corresponds to a real spinor φ and therefore, Spin(7) can be identified as
the isotropy group of a non-trivial real spinor.

A Spin(7)-structure on an eight-manifold M is by definition a reduction of
the structure group of the tangent bundle to Spin(7); we shall also say that
M is a Spin(7)-manifold. This can be described geometrically by saying that
there exists a nowhere vanishing global differential four-form Φ on M , which
can be locally written as (2.4). The four-form Φ is called the fundamental
form of the Spin(7)-manifold M [6].

The fundamental form of a Spin(7)-manifold determines a Riemannian
metric implicitly through gij = 1

24

∑
klm ΦiklmΦjklm [47]. This is referred to

as the metric induced by Φ.

In general, not every 8-dimensional Riemannian spin manifold M admits a
Spin(7)-structure. We explain the precise condition [66]. Denote by p2(M),
X(M), X(S±) the second Pontrjagin class, the Euler characteristic of M
and the Euler characteristic of the positive and the negative spinor bun-
dles, respectively. It is well known [66] that a spin eight-manifold admits a
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Spin(7)-structure if and only if X(S+) = 0 or X(S−) = 0. The latter condi-
tions are equivalent to p2

1(M) − 4 p2(M) + 8 X(M) = 0, for an appropriate
choice of the orientation [66].

Let us recall that a Spin(7)-manifold (M, g, Φ) is said to be parallel
(torsion-free [62]) if the holonomy of the metric Hol(g) is a subgroup of
Spin(7). This is equivalent to saying that the fundamental form Φ is paral-
lel with respect to the Levi–Civita connection ∇g of the metric g. Moreover,
Hol(g) ⊂ Spin(7) if and only if dΦ = 0 [22] (see also [7, 71]) and any parallel
Spin(7)-manifold is Ricci flat [6]. The first known explicit example of com-
plete parallel Spin(7)-manifold with Hol(g) = Spin(7) was constructed by
Bryant and Salamon [9, 40]. The first compact examples of parallel Spin(7)-
manifolds with Hol(g) = Spin(7) were constructed by Joyce [61, 62].

There are four classes of Spin(7)-manifolds according to the Fernández
classification [22] obtained as irreducible representations of Spin(7) of the
space ∇gΦ.

The Lee form θ8 is defined by [10]

θ8 = −1
7
∗ (∗dΦ ∧ Φ) =

1
7
∗ (δΦ ∧ Φ). (2.5)

The four classes of Fernández classification can be described in terms of
the Lee form as follows [10]: W0 : dΦ = 0; W1 : θ8 = 0; W2 : dΦ = θ8 ∧
Φ; W : W = W1 ⊕ W2.

A Spin(7)-structure of the class W1 (i.e., Spin(7)-structure with zero Lee
form) is called a balanced Spin(7)-structure. If the Lee form is closed,
dθ8 = 0, then the Spin(7)-structure is locally conformally equivalent to a bal-
anced one [58]. It is shown in [10] that the Lee form of a Spin(7)-structure
in the class W2 is closed and therefore such a manifold is locally confor-
mally equivalent to a parallel Spin(7)-manifold. The compact spaces with
closed but not exact Lee form (i.e., the structure is not globally conformally
parallel) have different topology than the parallel ones [58].

Coeffective cohomology and coeffective numbers of Riemannian manifolds
with Spin(7)-structure are studied in [74].

3 The supersymmetry equations

Geometrically, the vanishing of the gravitino variation is equivalent to the
existence of a non-trivial real spinor parallel with respect to the metric
connection ∇+ with totally skew-symmetric torsion T = H. The presence of
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∇+-parallel spinor leads to restriction of the holonomy group Hol(∇+) of the
torsion connection ∇+. Namely, Hol(∇+) has to be contained in SU(3), d =
6 [73, 60, 59, 39, 49, 13, 1, 2], the exceptional group G2, d = 7 [31, 37, 39, 32],
the Lie group Spin(7), d = 8 [37, 58, 39]. A detailed analysis of the induced
geometries is carried out in [39] and all possible geometries (including non-
compact stabilizers) are investigated in [43, 45, 44, 46].

Dimension d = 7.

The precise conditions to have a solution to the gravitino Killing spinor
equation in dimension 7 were found in [31]. Namely, there exists a non-trivial
parallel spinor with respect to a G2-connection with torsion 3-form T if and
only if there exists an integrable G2-structure (Θ, g), i.e. d ∗ Θ = θ7 ∧ ∗Θ.
In this case, the torsion connection ∇+ is unique and the torsion three-form
T is given by

H = T = 1
6(dΘ, ∗Θ) Θ − ∗dΘ + ∗(θ7 ∧ Θ).

The Riemannian scalar curvature is [32] ([8] for the general case) sg =
1
18(dΘ, ∗Θ) + ||θ7||2 − 1

12 ||T ||2 + 3 δθ7.

The necessary conditions to have a solution to the system of dilatino
and gravitino Killing spinor equations were derived in [37, 31, 32], and the
sufficiency was proved in [31, 32]. The general existence result [31, 32] states
that there exists a non-trivial solution to both dilatino and gravitino Killing
spinor equations in dimension 7 if and only if there exists a G2-structure
(Θ, g) satisfying the equations

d ∗ Θ = θ7 ∧ ∗Θ, dΘ ∧ Θ = 0, θ7 = 2dφ. (3.1)

Consequently, the torsion three-form (the flux H) is given by

H = T = − ∗ dΘ + 2 ∗ (dφ ∧ Θ). (3.2)

The Riemannian scalar curvature satisfies sg = 8||dφ||2 − 1
12 ||T ||2 + 6 δdφ.

The equations (3.1) hold exactly when the G2-structure (Θ̄ = e−
3
2
φΘ,

ḡ = e−φg) obeys the equations

d∗̄Θ̄ = dΘ̄ ∧ Θ̄ = 0,

i.e., it is cocalibrated of pure type.
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Dimension d = 8.

It is shown in [58] that the gravitino Killing spinor equation always has a
solution in dimension 8. Namely, any Spin(7)-structure admits a unique
Spin(7)-connection with totally skew-symmetric torsion T satisfying

T = ∗dΦ − 7
6 ∗ (θ8 ∧ Φ).

(In fact, the converse is also true, namely if there are no obstructions to
exist a solution to the gravitino Killing spinor equation then dimension is 8
and the structure is Spin(7) [29, 68].)

The necessary conditions to have a solution to the system of dilatino and
gravitino Killing spinor equations were derived in [37, 58], and the sufficiency
was proved in [58]. The general existence result [58] states that there exists a
non-trivial solution to both dilatino and gravitino Killing spinor equations in
dimension 8 if and only if there exists a Spin(7)-structure (Φ, g) with an exact
Lee form which is equivalent to the statement that the Spin(7)-structure is
conformally balanced, i.e., the Spin(7) structure (Φ̄ = e−

12
7

φΦ, ḡ = e−
6
7
φg)

satisfies ∗̄dΦ̄ ∧ Φ̄ = 0.

The torsion three-form (the flux H) and the Lee form are given by

H = T = ∗dΦ − 2 ∗ (dφ ∧ Φ), θ8 =
12
7

dφ. (3.3)

The Riemannian scalar curvature satisfies sg = 8||dφ||2 − 1
12 ||T ||2 + 6 δdφ.

In addition to these equations, the vanishing of the gaugino variation
requires the two-form FA to be of instanton type [16, 73, 51, 69, 20, 39]:

Case d = 7: a G2-instanton, i.e., the gauge field A is a G2-connection and
its curvature 2-form FA ∈ g2. The latter can be expressed in any of the
following two equivalent ways:

FA
mnΘmn

p = 0 ⇔ FA
mn = −1

2FA
pq(∗Θ)pq

mn; (3.4)

Case d = 8: a Spin(7)-instanton, i.e., the gauge field A is a Spin(7)-
connection and its curvature 2-form FA ∈ spin(7). The latter is equiva-
lent to

FA
mn = −1

2FA
pqΦ

pq
mn. (3.5)
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4 Heterotic supersymmetry and equations of motion

It is known [19, 38] ([41] for dimension 6) that the equations of motion
of type-I supergravity (1.4) with R = 0 are automatically satisfied if one
imposes, in addition to the preserving supersymmetry equations (1.2), the
three-form Bianchi identity (1.1) taken with respect to a flat connection
on TM, R = 0. However, the no-go theorem [28, 19, 60, 59, 39] states that
if even Tr(R ∧ R) = 0 there are no compact solutions with non-zero flux H
and non-constant dilaton.

In the presence of a curvature term Tr(R ∧ R) 
= 0, a solution of the
supersymmetry equations (1.2) and the anomaly cancellation condition (1.1)
obeys the second and the third equations in (1.4) but does not always sat-
isfy the Einstein equation of motion (the first equation in (1.4)). However,
if the curvature R is of instanton type (1.2) and (1.1) imply (1.4). This can
be seen following the considerations in the appendix of [38]. We shall give
below an independent proof for the Einstein equation of motion (the first
equation in (1.4)) based on the properties of the special geometric structure
induced from the first two equations in (1.2).

A consequence of the gravitino and dilatino Killing spinor equations is
an expression of the Ricci tensor Ric+

mn = R+
imnjg

ij of the (+)-connection,
and therefore an expression of the Ricci tensor Ricg of the Levi–Civita con-
nection, in terms of the suitable trace of the torsion three-form T = H (the
Lee form) and the exterior derivative of the torsion form dT = dH (see [31]
in dimension 7 and [58] in dimension 8). We outline a unified proof for
dimensions 7 and 8.

Indeed, the two Ricci tensors are connected by (see, e.g., [31])

Ricg
mn = Ric+

mn + 1
4TmpqT

pq
n − 1

2∇+
s T s

mn,

Ric+
mn − Ric+

nm = ∇+
s T s

mn = ∇g
sT

s
mn, (4.1)

Ricg
mn = 1

2(Ric+
mn + Ric+

nm) + 1
4TmpqT

pq
n . (4.2)

Denote by Ψ the 4-form − ∗ Θ in dimension 7 or the Spin(7)-form −Φ in
dimension 8. Since Hol(∇+) ⊂ G2, Spin(7), we have the next sequence of
identities

2Ric+
mn = R+

mjklΨjkln =
1
3
(R+

mjkl + R+
mklj + R+

mljk)Ψjkln. (4.3)
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We apply the following identity established in [31]

R+
jklm + R+

kljm + R+
ljkm − R+

mjkl − R+
mklj − R+

mljk

=
3
2
dTjklm − TjksTlms − TklsTjms − TljsTkms. (4.4)

The first Bianchi identity for ∇+ reads (see e.g.[31])

R+
jklm + R+

kljm + R+
ljkm = dTjklm − TjksTlms − TklsTjms − TljsTkms

+ ∇+
mTjkl. (4.5)

Now, (4.5), (4.4) and (4.3) yield

Ric+
mn = 1

12dTmjklΨjkln + 1
6∇+

mTjklΨjkln. (4.6)

Using the special expression of the torsion (3.2) and (3.3) for dimensions 7
and 8, respectively, the equation (4.6) takes the form

Ric+
mn =

1
12

dTmjklΨjkln − 2∇+
mdφn =

1
12

dTmjklΨjkln − 2∇g
mdφn + dφsT

s
mn.

(4.7)

Substitute (4.7) into (4.2), insert the result into the first equation of (1.4)
and use the anomaly cancellation (1.1) to conclude

Theorem 4.1. The Einstein equation of motion (the first equation in (1.4))
in dimensions 7 and 8 is a consequence of the heterotic Killing spinor equa-
tions (1.2) and the anomaly cancellation (1.1) if and only if the next identity
holds

1
6

[
RmjabRklab + RmkabRljab + RmlabRjkab

]
Ψjkln = RmpqrR

pqr
n , (4.8)

where the 4-form Ψ is equal to − ∗ Θ in dimension 7 and to the Spin(7)-form
−Φ in dimension 8.

In particular, if R is an instanton then (4.8) holds.

It is shown in [57] that the curvature of R+ satisfies the identity R+
ijkl =

R+
klij if and only if ∇+

i Tjkl is a four-form. Now Theorem 4.1 yields

Corollary 4.1. Suppose the torsion three-form is ∇+-parallel, ∇+
i Tjkl = 0.

The equations of motion (1.4) with respect to the curvature R+ of the (+)-
connection are consequences of the heterotic Killing spinor equations (1.2)
and the anomaly cancellation (1.1).
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Manifolds with parallel torsion three-form are studied in detail in dimen-
sion 6 [72] and dimension 7 [30].

4.1 Heterotic supersymmetry equations of motion with constant
dilaton

In the case when the dilaton is constant we arrive to the following problems:

Dimension 7

We look for a compact G2-manifold (M, Θ), which satisfies the following
conditions:

(a) Gravitino and dilatino Killing spinor equations with constant dilaton:
search for a cocalibrated G2-manifold of pure type, i.e., d ∗ Θ = dΘ ∧
Θ = 0.

(b) Gaugino equation: look for a vector bundle E of rank r over M
equipped with a G2-instanton, i.e., a connection A with curvature
2-form ΩA satisfying

(ΩA)Ei,Ej (Ek, El)(∗Θ)(Em, En, Ek, El) = −2(ΩA)Ei,Ej (Em, En), (4.9)

where {E1, . . . , E7} is a G2-adapted basis on M .
(c) Anomaly cancellation condition:

dH = dT = −d ∗ dΘ = 2π2α′
(
p1(M) − p1(A)

)
, α′ > 0. (4.10)

(d) The first Pontrjagin form p1(M) satisfies equation (4.8).

Dimension 8

We look for a compact Spin(7)-manifold (M, Φ) satisfying the following
conditions:

(a) Gravitino and dilatino Killing spinor equations with constant dilaton:
(M, Φ) is balanced, i.e., ∗dΦ ∧ Φ = 0.

(b) Gaugino equation: look for a vector bundle E of rank r over M
equipped with a Spin(7)-instanton, i.e., a connection A with curva-
ture 2-form ΩA satisfying

(ΩA)Ei,Ej (Ek, El)(Φ)(Em, En, Ek, El) = −2(ΩA)Ei,Ej (Em, En), (4.11)

where {E1, . . . , E8} is a Spin(7)-adapted basis on M .
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(c) Anomaly cancellation condition:

dH = dT = d ∗ dΦ = 2π2α′
(
p1(M) − p1(A)

)
, α′ > 0. (4.12)

(d) The first Pontrjagin form p1(M) satisfies equation (4.8).

5 The Lie group setup

Let us suppose that g is a left invariant Riemannian metric on a Lie group
G of dimension m, and let {e1, . . . , em} be an orthonormal basis of left
invariant one-forms, so that g = e1 ⊗ e1 + · · · + em ⊗ em. Let

dek =
∑

1≤i<j≤m

ak
ij ei ∧ ej , k = 1, . . . , m

be the structure equations in the basis {ek}.
Let us denote by {E1, . . . , Em} the dual basis. Since dek(Ei, Ej) =

−ek([Ei, Ej ]), the Levi–Civita connection 1-forms (σg)i
j are

(σg)i
j(Ek) = −1

2
(g(Ei, [Ej , Ek]) − g(Ek, [Ei, Ej ]) + g(Ej , [Ek, Ei]))

=
1
2
(ai

jk − ak
ij + aj

ki). (5.1)

The connection one-forms (σ+)i
j for the torsion connection ∇+ are

given by

(σ+)i
j(Ek) = (σg)i

j(Ek) − 1
2T i

j (Ek), T i
j (Ek) = T (Ei, Ej , Ek). (5.2)

We shall focus on seven and eight-dimensional nilmanifolds M = Γ\G
endowed with an invariant special structure.

5.1 Explicit solutions in dimension 7

We consider cocalibrated G2-structures of pure type. From (3.2) we have
that the torsion 3-form in this case is given by

∇+ = ∇g + 1
2 T, H = T = − ∗ dΘ. (5.3)
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Starting from a balanced SU(3)-structure (F, Ψ+, Ψ−) on a manifold M6

it is easy to see that the G2-structure given by Θ = F ∧ e7 + Ψ+ on the
product M7 = M6 × S1 is cocalibrated of pure type, where e7 denotes the
standard one-form on the circle S1. Moreover, following the argument given
in [56, Theorem 4.6] we conclude that the natural extension of an SU(3)-
instanton on M6 gives rise to a G2-instanton on M7, and if the torsion
connection of the SU(3)-structure satisfies the modified Bianchi identity
then the corresponding ∇+ given in (5.3) also satisfies (4.10). We can apply
this to the compact six-dimensional explicit solutions given in [24] to get
compact solutions in dimension 7:

Corollary 5.1. Let (M6, F, Ψ+, Ψ−) be a compact balanced SU(3)-nilmani-
fold with an SU(3)-instanton solving the modified Bianchi identity for ∇ =
∇+ or ∇g. Then, the G2-manifold M7 = M6 × S1 with the structure Θ =
F ∧ e7 + Ψ+, the G2-instanton obtained as an extension of the SU(3)-insta-
nton and ∇ being the Levi–Civita connection ∇g or the torsion connection
∇+ given in (5.3), provides a compact valid solution to the supersymmetry
equations in dimension 7.

Our goal next is to find more compact G2-solutions to the supersymmetry
equations with non-zero flux and constant dilaton on non-trivial extensions
of the balanced Hermitian structures on the Lie algebra h3 given in [24].
We also provide a new solution to the equations of motion based on the
seven-dimensional generalized Heisenberg compact nilmanifold.

Seven-dimensional extensions of h3: For any t 
= 0, the structure equa-
tions {

de1 = de2 = de3 = de4 = de5 = 0,

de6 = −2t e12 + 2t e34,
(5.4)

correspond to the nilpotent Lie algebra h3 = (0, 0, 0, 0, 0, 12 + 34). As it is
shown in [24], the SU(3)-structure given by

F = e12 + e34 + e56, Ψ = Ψ+ + i Ψ− = (e1 + i e2) ∧ (e3 + i e4) ∧ (e5 + i e6),

is balanced for all the values of the parameter t. Consider any nilpotent
seven-dimensional extension h7 = h3 ⊕ 〈E7〉 such that the G2-structure

Θ = F ∧ e7 + Ψ+ (5.5)

is cocalibrated of pure type on h7, where e7 denotes the dual of E7.
Using (2.1) and (2.2) it is easy to check that de7 = c0(e12 − e34) + c1(e13 +
e24) + c2(e14 − e23), where c0, c1, c2 ∈ R. Since t 
= 0 in (5.4), we can consider
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c0 = 0. Therefore, the nilpotent Lie algebra h7 must be given by the
structure equations

⎧
⎪⎨
⎪⎩

de1 = de2 = de3 = de4 = de5 = 0,

de6 = −2t(e12 − e34),

de7 = c1(e13 + e24) + c2(e14 − e23),

(5.6)

where c1, c2 ∈ R. Moreover, a direct calculation shows that the torsion is
given by

T = − ∗ dΘ = −2t(e12 − e34) ∧ e6 + c1(e13 + e24) ∧ e7 + c2(e14 − e23) ∧ e7.

Hence, dT = −2(4t2 + c2
1 + c2

2)e
1234. It is easy to prove that T is parallel

with respect to the torsion connection ∇+ if and only if c1 = c2 = 0, which
corresponds to the situation described in Theorem 5.1.

From (1.5), (5.1) and (5.2), it follows that the non-zero curvature forms
(Ω+)i

j of the torsion connection ∇+ are

(Ω+)12 = −(Ω+)34 = −4t2(e12 − e34),

(Ω+)13 = (Ω+)24 = −c2
1(e

13 + e24) − c1c2(e14 − e23) + 4tc2 e67,

(Ω+)14 = −(Ω+)23 = −c1c2(e13 + e24) − c2
2(e

14 − e23) − 4tc1 e67,

which implies that the first Pontrjagin form of ∇+ is

p1(∇+) = − 1
2π2

(
16t4 + (c2

1 + c2
2)

2
)
e1234.

Let us consider (c1, c2) ∈ Q
2 − {(0, 0)}. The well-known Malcev theorem

asserts that the simply connected nilpotent Lie group H7 corresponding to
the Lie algebra h7 has a lattice Γ of maximal rank. We denote by M7 the
compact nilmanifold Γ\H7.

Lemma 5.1. Let Aλ be the linear connection preserving the metric on M7

defined by the connection forms

(σAλ)i
j = λ e7, (σAλ)67 = e1 + e2 + e3 + e4 + e5 + λ e6 + λ e7,

for (i, j) = (1, 2), (1, 3), (1, 4), (1, 5), (2, 3), (2, 4), (2, 5), (3, 4), (3, 5), (4, 5),
where λ ∈ R. Then, Aλ is a G2-instanton with respect to the structure
(5.5), and

p1(Aλ) = − λ2

4π2

(
4t2 + 11(c2

1 + c2
2)

)
e1234.
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Proof. A direct calculation shows that the non-zero curvature forms (ΩAλ)i
j

of the connection Aλ are given by:

(ΩAλ)i
j = λc1(e13 + e24) + λc2(e14 − e23),

(ΩAλ)67 = −2λt(e12 − e34) + λc1(e13 + e24) + λc2(e14 − e23).

for (i, j) = (1, 2), (1, 3), (1, 4), (1, 5), (2, 3), (2, 4), (2, 5), (3, 4), (3, 5), (4, 5). On
the other hand, since the Lie algebra of G2 can be identified with the sub-
space of 2-forms which annihilate ∗Θ and (e12 − e34) ∧ ∗Θ = (e13 + e24) ∧
∗Θ = (e14 − e23) ∧ ∗Θ = 0, the connection Aλ is a G2-instanton. �

As a consequence we get the following compact seven-dimensional
solutions.

Theorem 5.1. Let Aλ be the G2-instanton on M7 given above. If λ2 <
min{8t2, 2(c2

1 + c2
2)/11}, then

dT = 2π2α′ (p1(∇+) − p1(Aλ)),

with α′ > 0 and (M7, Θ,∇+, Aλ) is a compact solution to the heterotic
Killing spinor equations (1.2) satisfying the anomaly cancellation condi-
tion (1.1).

Proof. Note that p1(∇+) − p1(Aλ) = 1
4π2 [4t2(λ2 − 8t2) + (c2

1 + c2
2)(11λ2 −

2(c2
1 + c2

2))]e
1234. Therefore, if λ2 < min{8t2, 2(c2

1 + c2
2)/11} then p1(∇+) −

p1(Aλ) is a negative multiple of e1234. Since dT = −2(4t2 + c2
1 + c2

2)e
1234,

the result follows. �

Remark 5.1. The first Pontrjagin form of the Levi–Civita connection is
given by

p1(∇g) = − 1
16π2

[
3(4t2 − c2

1 − c2
2)

2 + 16t2(c2
1 + c2

2)
]
e1234,

so there is λ 
= 0 sufficiently small such that dT = 2π2α′ (p1(∇g) − p1(Aλ)),
with α′ > 0.

The seven-dimensional generalized Heisenberg group: Next we con-
struct a seven-dimensional compact solution to the equations of motion
which is not an extension of the six-dimensional nilmanifolds given in [24].
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Let H(3, 1) be the seven-dimensional generalized Heisenberg group, i.e., the
nilpotent Lie group consisting of the matrices of real numbers of the form

H(3, 1) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎝

1 x1 x2 x3 z
0 1 0 0 y1

0 0 1 0 y2

0 0 0 1 y3

0 0 0 0 1

⎞
⎟⎟⎟⎟⎠

| xi, yi, z ∈ R, 1 ≤ i ≤ 3

⎫
⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

.

We consider the basis for the left invariant one-forms on H(3, 1) given by

e1 =
1
a
dx1, e2 = dy1, e3 =

1
b
dx2, e4 = dy2, e5 =

1
c
dx3, e6 = dy3,

e7 = x1dy1 + x2dy2 + x3dy3 − dz,

where a, b, c ∈ R − {0}, so that the structure equations become

{
de1 = de2 = de3 = de4 = de5 = de6 = 0,

de7 = a e12 + b e34 + c e56.
(5.7)

Lemma 5.2. The G2-structure given by

Θ = (e12 + e34 + e56) ∧ e7 + e135 − e146 − e236 − e245

is cocalibrated for each a, b, c ∈ R − {0}. Moreover, Θ is of pure type if and
only if c = −a − b or, equivalently, de7 ∈ su(3).

Proof. A direct simple calculation shows that d ∗ Θ = 0 and Θ ∧ dΘ =
2(a + b + c)e1234567. �

From now on, let us consider c = −a − b 
= 0 in equations (5.7). The
torsion three-form for the cocalibrated G2-structure of pure type is given by

T = − ∗ dΘ = (de7) ∧ e7 = a e127 + b e347 − (a + b)e567.

Hence

dT = 2ab e1234 − 2a(a + b)e1256 − 2b(a + b)e3456. (5.8)

Moreover, it is forward to check that T is parallel with respect to the torsion
connection ∇+, i.e.,

Lemma 5.3. For any a, b ∈ R − {0} such that b 
= −a, we have ∇+T = 0.
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On the other hand, by (1.5), (5.1) and (5.2) we have that the non-zero
curvature forms (Ω+)i

j of the torsion connection ∇+ are

(Ω+)12 = −a
(
a e12 + b e34 − (a + b)e56

)
,

(Ω+)34 = −b
(
a e12 + b e34 − (a + b)e56

)
,

(Ω+)56 = −(Ω+)12 − (Ω+)34 = (a + b)
(
a e12 + b e34 − (a + b)e56

)
. (5.9)

Let Γ(3, 1) denote the subgroup of matrices of H(3, 1) with integer entries
and consider the compact nilmanifold N(3, 1) = Γ(3, 1)\H(3, 1). We can
describe N(3, 1) as a principal circle bundle over a 6-torus

S1 ↪→ N(3, 1) → T
6,

whose connection 1-form η = e7 has curvature dη = a(e12 − e56) + b(e34 −
e56) in su(3).

Next we show a three-parametric family of G2-instantons on the nilman-
ifold N(3, 1).

Proposition 5.1. Let Aλ,μ,τ be the linear connection on N(3, 1) defined by
the connection forms

(σAλ,μ,τ )12 = −(σAλ,μ,τ )21 = λ e7, (σAλ,μ,τ )34 = −(σAλ,μ,τ )43 = μ e7,

(σAλ,μ,τ )56 = −(σAλ,μ,τ )65 = τ e7,

and (σAλ,μ,τ )i
j = 0 for the remaining (i, j), where λ, μ, τ ∈ R. Then, Aλ,μ,τ

is a G2-instanton with respect to the cocalibrated G2-structure of pure type
given in Lemma 5.2 for any a, b, Aλ,μ,τ preserves the metric, and its first
Pontrjagin form is given by

p1(Aλ,μ,τ ) =
λ2 + μ2 + τ2

4π2

(
ab e1234 − a(a + b) e1256 − b(a + b) e3456

)
.

Proof. A direct calculation shows that the non-zero curvature forms
(ΩAλ,μ,τ )i

j of the connection Aλ,μ,τ are:

(ΩAλ,μ,τ )12 = λ
(
a e12 + b e34 − (a + b)e56

)
,

(ΩAλ,μ,τ )34 = μ
(
a e12 + b e34 − (a + b)e56

)
,

(ΩAλ,μ,τ )56 = τ
(
a e12 + b e34 − (a + b)e56

)
.
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On the other hand, the Lie algebra of G2 can be identified with the subspace
of 2-forms which annihilate ∗Θ. Since (a e12 + b e34 − (a + b)e56) ∧ ∗Θ = 0,
the connection Aλ,μ,τ is a G2-instanton. �

The next result gives explicit compact valid solutions on N(3, 1) to the
heterotic supersymmetry equations with non-zero flux and constant dilaton
satisfying the anomaly cancellation condition which also solve the equations
of motion (1.4) due to Lemma 5.3 and Theorem 4.1.

Theorem 5.2. Let N(3, 1) be the compact cocalibrated of pure type G2-
nilmanifold, ∇+ the torsion connection and Aλ,μ,τ the G2-instanton given
in Proposition 5.1. If (λ, μ, τ) 
= (0, 0, 0) are small enough so that λ2 + μ2 +
τ2 < 2(a2 + ab + b2), then

dT = 2π2α′ (p1(∇+) − p1(Aλ,μ,τ )),

where α′ = 4(2(a2 + ab + b2) − λ2 − μ2 − τ2)−1 > 0.

Therefore, the manifold (N(3, 1), Θ,∇+, Aλ,μ,τ ) is a compact solution to
the supersymmetry equations (1.2) obeying the anomaly cancellation (1.1)
and solving the equations of motion (1.4).

The Riemannian metric is locally given by

g =
1
a2

dx2
1 + dy2

1 +
1
b2

dx2
2 + dy2

2 +
1

a2 + b2
dx2

3

+ dy2
3 + (x1dy1 + x2dy2 + x3dy3 − dz)2.

Proof. The non-zero curvature forms of the torsion connection ∇+
a,b are

given by (5.9), which implies that its first Pontrjagin form is

p1(∇+) =
a2 + ab + b2

2π2

(
ab e1234 − a(a + b)e1256 − b(a + b)e3456

)
.

Now the proof follows directly from (5.8) and Proposition 5.1. The final
assertion in the theorem follows from Lemma 5.3 and Theorem 4.1. �

Remark 5.2. The first Pontrjagin form of the Levi–Civita connection is
given by

p1(∇g) =
1

32π2
[ab(5a2 + 4ab + 5b2)e1234 − a(a + b)(6a2 + 6ab + 5b2)e1256

− b(a + b)(5a2 + 6ab + 6b2)e3456 ].
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It is easy to see that there is no solution to the heterotic supersymmetry
equations for ∇ = ∇g using the instantons of Lemma 5.1.

5.2 Explicit solutions in dimension 8

We consider balanced Spin(7)-structures, i.e., θ8 = 0. From (3.3) we have
that the torsion three-form in this case is given by

∇+ = ∇g + 1
2 T, H = T = ∗8dΦ. (5.10)

Starting from a cocalibrated G2-structure of pure type Θ on a seven-manifold
M7 it is easy to see that the Spin(7)-structure given by Φ = e1 ∧ Θ + ∗7Θ
on the product M8 = M7 × S1 is balanced, where e1 denotes the standard
1-form on the circle S1. Moreover, following the argument given in [56,
Theorem 5.1] we conclude that the natural extension of a G2-instanton on
M7 gives rise to a Spin(7)-instanton on M8, and if the torsion connection
of the G2-structure satisfies the Bianchi identity then the corresponding ∇+

given in (5.10) also satisfies (4.12). We can apply this to the compact seven-
dimensional explicit solutions given in the preceding section to get compact
solutions in dimension 8:

Corollary 5.2. Let (M7, Θ) be a compact cocalibrated G2-nilmanifold of
pure type with a G2-instanton solving the modified Bianchi identity for ∇ =
∇+ or ∇g. Then, the Spin(7)-manifold M8 = M7 × S1 with the structure
Φ = e1 ∧ Θ + ∗7Θ, the Spin(7)-instanton obtained as an extension of the
G2-instanton and ∇ being the Levi–Civita connection ∇g or the torsion
connection ∇+ given in (5.10), provides a compact valid solution to the
supersymmetry equations in dimension 8. In particular, starting with the
solutions on the generalized Heisenberg compact nilmanifold N(3, 1) given
in Theorem 5.2 one obtains solutions to the equations of motion in dimen-
sion 8 for ∇ = ∇+.

Next, we find more compact Spin(7)-solutions to the supersymmetry
equations with non-zero flux and constant dilaton on non-trivial exten-
sions of the cocalibrated G2-structures of pure type given on the seven-
dimensional generalized Heisenberg group. Moreover, we also provide new
eight-dimensional solutions to the equations of motion on some of these
non-trivial Spin(7)-extensions.

Non-trivial Spin(7) extension of the seven-dimensional general-
ized Heisenberg group: Let us consider the eight-dimensional extension
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of (5.7) given by:

⎧
⎪⎨
⎪⎩

de1 = c (e24 + e25 − e34 + e35),

de2 = de3 = de4 = de5 = de6 = de7 = 0,

de8 = a e23 + b e45 − (a + b)e67.

(5.11)

These equations correspond to the structure equations of an eight-dimen-
sional nilpotent Lie algebra, which we denote by h8. Let us consider the
Spin(7)-structure defined by (2.4). A direct calculation shows that the tor-
sion is given by

T = ∗dΦ = c e124 + c e125 − c e134 + c e135 + a e238 + b e458 − (a + b) e678.

The torsion satisfies T ∧ Φ = 0 and

dT = 2(ab − 2c2) e2345 − 2a(a + b) e2367 − 2b(a + b) e4567. (5.12)

There are some special cases for which T is parallel with respect to the
torsion connection, more concretely:

Lemma 5.4. ∇+T = 0 if and only if (a − b)c = 0.

Using again (1.5), (5.1) and (5.2), the non-zero curvature forms (Ω+)i
j of

the torsion connection ∇+ are given by

(Ω+)23 = −a2 e23 − ab e45 + a(a + b) e67,

(Ω+)24 = (Ω+)35 = (a − b)c e18 − c2 e24 − c2 e25 + c2 e34 − c2 e35,

(Ω+)25 = −(Ω+)34 = −(a − b)c e18 − c2 e24 − c2 e25 + c2 e34 − c2 e35,

(Ω+)45 = −ab e23 − b2 e45 + b(a + b) e67,

(Ω+)67 = a(a + b) e23 + b(a + b) e45 − (a + b)2 e67,

which implies that the first Pontrjagin form p1(∇+) is given by

2π2 p1(∇+) = (ab(a2 + ab + b2) − 4c4) e2345 − a(a + b)(a2 + ab + b2) e2367

− b(a + b)(a2 + ab + b2) e4567.

Let us denote by H8 the simply connected nilpotent Lie group corre-
sponding to the Lie algebra h8. From the explicit description of the Lie
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group H(3, 1) and from (2.4), it follows that the left invariant metric g on
H8 determined by the Spin(7)-structure Φ can be expressed globally as

g =
(
dw +

c

b

(x1

a
− y1

)
dx2 + c

(x1

a
+ y1

)
dy2

)2
+

(
1
a
dx1

)2

+ (dy1)2

+
(

1
b
dx2

)2

+ (dy2)2 +
( −1

a + b
dx3

)2

+ (dy3)2

+ (x1dy1 + x2dy2 + x3dy3 − dz)2, (5.13)

where (w, x1, y1, x2, y2, x3, y3, z) denote the (global) coordinates of H8, and
the w-coordinate of the left translation L(w0,x0

1,y0
1 ,x0

2,y0
2 ,x0

3,y0
3 ,z0) by an element

(w0, x0
1, y

0
1, x

0
2, y

0
2, x

0
3, y

0
3, z

0) of H8 is given by

w ◦ L(w0,x0
1,y0

1 ,x0
2,y0

2 ,x0
3,y0

3 ,z0) = w − c

b

(
x0

1

a
− y0

1

)
x2 − c

(
x0

1

a
+ y0

1

)
y2 + w0.

Notice that the remaining coordinates of L(w0,x0
1,y0

1 ,x0
2,y0

2 ,x0
3,y0

3 ,z0) come easily
from the matrix description of H(3, 1).

Let Γ be a lattice of maximal rank of H8 and denote by M8 the compact
nilmanifold Γ\H8. Clearly, M8 can be described as a circle bundle over the
compact seven-manifold N(3, 1) (defined by (5.7))

S1 ↪→ M8 → N(3, 1),

with connection 1-form η = e1 such that the curvature form dη = c (e24 +
e25 − e34 + e35) ∈ g2.

Alternatively, the manifold M8 may be viewed as the total space of a
circle bundle over the product of a two-torus by a five-manifold M5, which
is also the total space of a principal circle bundle over a four-torus, i.e.,
S1 ↪→ M5 → T

4. In fact, let {e2, . . . , e5} be a basis for the closed one-forms
on T

4. Then, M5 is the circle bundle over T
4 with connection one-form

η = e1 such that the curvature form is dη = c (e24 + e25 − e34 + e35). Now,
let e6 and e7 be a basis for the closed one-forms on T

2. Take the product
manifold M5 × T

2. Then, M8 is the circle bundle over M5 × T
2

S1 ↪→ M8 → M5 × T
2,

with connection form ν = e8 such that dν = a e23 + b e45 − (a + b) e67.
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Proposition 5.2. For each λ, μ ∈ R, let Aλ,μ be the linear connection on
M8 defined by the connection forms:

(σAλ,μ)23 = −(σAλ,μ)32 = (σAλ,μ)45 = −(σAλ,μ)54 = λ e8,

(σAλ,μ)24 = (σAλ,μ)25 = (σAλ,μ)35 = (σAλ,μ)43 = −μ e1,

(σAλ,μ)34 = (σAλ,μ)42 = (σAλ,μ)52 = (σAλ,μ)53 = μ e1,

(σAλ,μ)67 = −(σAλ,μ)76 = −2λ e8,

and (σAλ,μ)i
j = 0 for the remaining (i, j). Then, Aλ,μ is a Spin(7)-instanton

with respect to the Spin(7)-structure (2.4) for any a, b, c, Aλ,μ preserves the
metric, and its first Pontrjagin form is given by

2π2 p1(Aλ,μ) = (3abλ2 − 4c2μ2)e2345 − 3a(a + b)λ2 e2367 − 3b(a + b)λ2 e4567.

Proof. The non-zero curvature forms (ΩAλ,μ)i
j of the connection Aλ,μ are:

(ΩAλ,μ)23 = (ΩAλ,μ)45 = λ
(
a e23 + b e45 − (a + b)e67

)
,

(ΩAλ,μ)24 = (ΩAλ,μ)25 = −(ΩAλ,μ)34 = (ΩAλ,μ)35 = −μ c(e24 + e25 − e34 + e35),

(ΩAλ,μ)67 = −(ΩAλ,μ)23 − (ΩAλ,μ)45 = −2λ
(
a e23 + b e45 − (a + b)e67

)
.

Since the Lie algebra of Spin(7) can be identified with the subspace Λ2
21 of

two-forms β such that ∗(β ∧ Φ) = −β, and since a e23 + b e45 − (a + b)e67,
e24 + e25 − e34 + e35 ∈ Λ2

21 the connection Aλ,μ is a Spin(7)-instanton for
any λ, μ. �

Theorem 5.3. Let (M8, Φ) be the compact balanced Spin(7)-nilmanifold,
∇+ the torsion connection and Aλ,μ the Spin(7)-instanton given in Proposi-
tion 5.1. If (λ, μ) 
= (0, 0) satisfy 3λ2 < a2 + ab + b2 and 3λ2 − 2μ2 = a2 +
ab + b2 − 2c2, then

dT = 2π2α′ (p1(∇+) − p1(Aλ,μ)),

where α′ = 2(a2 + ab + b2 − 3λ2)−1 > 0.

Therefore, the manifold (M8, Φ,∇+, Aλ,μ) is a compact solution to the
supersymmetry equations (1.2) satisfying the anomaly cancellation (1.1).
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If a = b then the manifold (M8, Φ,∇+, Aλ,μ) with (λ, μ) 
= (0, 0) satisfying

λ2 < a2, 3λ2 − 2μ2 = 3a2 − 2c2

is a compact supersymmetric solution to the heterotic equations of
motion (1.4) in dimension 8.

The Riemannian metric is locally given by (5.13) with a = b.

Proof. The proof follows directly from (5.12), the expression of the first Pon-
trjagin form of ∇+ and Proposition 5.2. The final assertion in the theorem
follows from Lemma 5.4 and Theorem 4.1. �

Remark 5.3. There are also solutions on M8 to the supersymmetry equa-
tions taking ∇ as the Levi–Civita connection ∇g. For example, if a = b =
c = 1 in (5.11) then a direct computation shows that the first Pontrjagin
form of ∇g is given by

16π2 p1(∇g) = −5 e2345 − 19 e2367 − 19 e4567.

From Proposition 5.2 for a = b = c = 1 we get

2π2 p1(Aλ,μ) = (3λ2 − 4μ2)e2345 − 6λ2 e2367 − 6λ2 e4567.

Since dT = −2 e2345 − 4 e2367 − 4 e4567, if we choose the Spin(7)-instanton
Aλ,μ such that 48λ2 < 19 and 64μ2 = 96λ2 − 9, then

dT = 2π2 α′ (p1(∇g) − p1(Aλ,μ)),

where α′ = 32(19 − 48λ2)−1 > 0.

6 Geometric models

The structure of the examples that we have presented as well as construc-
tions proposed in [39] suggest a more general construction. In this section,
we describe how to derive compact solutions to the system of gravitino and
dilatino Killing spinor equations (the first two equations in (1.2)) in dimen-
sions seven and eight starting with a solution of these equations in low
dimensions. The construction is a T

k-bundle with curvature of instanton
type over a compact low-dimensional solution. The benefit of this construc-
tion is the obtained reduction of the dilaton variables, i.e., the non-constant
dilaton depend on reduced number of variables.
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First, we recall the dimensions 5 and 6.

D=5 The gravitino and dilatino Killing spinor equations in dimension 5
define a reduction of the structure group SO(5) to SU(2) which is
described in terms of differential forms by Conti and Salamon in [15]
as follows: an SU(2)-structure on a five-dimensional manifold M is
the quadruplet (η, ω1, ω2, ω3), where η is a one-form with a dual vector
field ξ and ωi, i = 1, 2, 3, are two-forms on M satisfying

ωi ∧ ωj = δijv, v ∧ η 
= 0,

for some 4-form v, and X�ω1 = Y �ω2 ⇒ ω3(X, Y ) ≥ 0, where �
denotes the interior multiplication.

Let H = Kerη. The two-forms ωi, i = 1, 2, 3, can be chosen to form
a basis of the H-self-dual two-forms [15], i.e., ∗Hωi = ωi, where ∗H

denotes the Hodge operator on the four-dimensional distribution H.
Based on analysis done in [31, 33] it is shown in [25] that:
The first two equations in (1.2) admit a solution in dimension five:

exactly when there exists a five dimensional manifold M endowed with
an SU(2)-structure (η, ω1, ω2, ω3) satisfying the structure equations:

dωi = 2df ∧ ωi, ∗Hdη = −dη (6.1)

where f is a smooth function, which does not depend on ξ, df(ξ) = 0.
The flux H is given by H = T = η ∧ dη − 2 ∗4 df and the dilaton φ

is equal to φ = f + cons.
Therefore, if the dilaton is constant then the structure equations are

dωi = 0, ∗Hdη = −dη (6.2)

and the flux H is given by H = T = η ∧ dη.
If the SU(2) structure is regular, i.e., the orbit space N = M/ξ is

a smooth manifold then M is an S1-bundle over a Calabi-Yau 4-fold
(flat torus or K3 surface) with H-anti-self-dual curvature form equal
to dη. The metric has the form

g = e2fgcy + η ⊗ η,

where gcy is the metric on the Calabi–Yau base and f is a smooth
function on the base.

We do not know whether there exist non-regular SU(2)-structures
(the integral curves of ξ are not closed) on a compact 5-manifold.

D=6 The gravitino and dilatino Killing spinor equations in dimension 6
define a reduction of the structure group SO(6) to SU(3) which is
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described in terms of forms by Chiossi and Salamon in [14] as fol-
lows: an SU(3)-structure is (F, Ψ = Ψ+ + iΨ−) with Kähler form F
and complex volume form Ψ which satisfy the compatibility relations

F ∧ Ψ± = 0, Ψ+ ∧ Ψ− =
2
3
F ∧ F ∧ F.

The necessary and sufficient condition for the existence of solu-
tions to the first two equations in (1.2) in dimension 6 was derived
by Strominger [73], namely the manifold should be complex confor-
mally balanced with non-vanishing holomorphic volume form Ψ satis-
fying additional condition. In terms of the five torsion classes described
in [14], the Strominger condition is interpreted in [13] as follows (see [56]
for a slightly different expression):

2F�dF + Ψ+�dΨ+ = 0.

If the dilaton is constant then the Strominger conditions read

dF ∧ F = dΨ+ = dΨ− = 0. (6.3)

Examples of the latter via evolution equations were presented recently
in [26].

A very promising geometric model in dimension 6 was proposed
in [42] to be a certain T

2-bundle over a Calabi-Yau surface (see [42] and
references therein). Starting with an SU(2)-structure (η, ω1, ω2, ω3) on
(a regular) 5-manifold M satisfying (6.2) one considers an S1-bundle
over M with curvature an exact H-anti-self-dual two-form, dα and the
SU(3)-structure (F, Ψ = Ψ+ + iΨ−) defined by

F = ω1 + η ∧ α; Ψ+ = ω2 ∧ η − ω3 ∧ α;

Ψ− = ω3 ∧ η + ω2 ∧ α. (6.4)

Using (6.2) and the fact that dα is H-anti-self-dual it can be shown fol-
lowing Goldstein and Prokushkin [42] that (6.3) holds as a consequence
of (6.4). When M is regular, i.e., it is an S1-bundle over a Calabi–Yau
four-manifold one gets a holomorphic T

2-bundle over a Calabi–Yau
surface with anti-self-dual integral curvature two-forms, which solves
the first two equations in (1.2) with constant dilaton [42]. It also fol-
lows from considerations in [42] that if the starting SU(2)-structure
solves the equations with non-constant dilaton, i.e., (6.1) hold, then
the SU(3)-structure on the circle bundle also solves the first two Killing
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spinor equations with non-constant dilaton in dimension 6. The T
2-

bundle over a K3 surface construction was used in [67, 34, 35, 4] to pro-
duce the first compact examples in dimension 6 solving the heterotic
supersymmetry equations (1.2) with non-zero flux and non-constant
dilaton together with the anomaly cancellation (1.1) with respect to
the Chern connection.

6.1 T
3-bundles over a Calabi–Yau surface

The structure of the example Γ/H7, where H7 is the nilpotent Lie group
defined by (5.6), is generalized in the following:

Theorem 6.1. Let Γi, 1 ≤ i ≤ 3, be three closed anti-self-dual 2-forms on a
Calabi-Yau surface M4, which represent integral cohomology classes. Denote
by ω1 and by ω2 + iω3 the (closed) Kähler form and the holomorphic volume
form on M4, respectively. Then, there is a compact 7-dimensional manifold
M1,1,1, which is the total space of a T

3-bundle over M4, and it has a G2-
structure

Θ = ω1 ∧ η1 + ω2 ∧ η2 − ω3 ∧ η3 + η1 ∧ η2 ∧ η3, (6.5)
solving the first two Killing spinor equations in (1.2) with constant dilaton in
dimension 7, where ηi, 1 ≤ i ≤ 3, is a 1-form on M1,1,1 such that dηi = Γi,
1 ≤ i ≤ 3.

For any smooth function f on M4, the G2-structure on M1,1,1 given by

Θf = e2f
[
ω1 ∧ η1 + ω2 ∧ η2 − ω3 ∧ η3

]
+ η1 ∧ η2 ∧ η3 (6.6)

solves the first two Killing spinor equations in (1.2) with non-constant dila-
ton φ = 2f (in dimension 7). The metric has the form

gf = e2fgcy + η1 ⊗ η1 + η2 ⊗ η2 + η3 ⊗ η3.

Proof. Since [Γi], 1 ≤ i ≤ 3, define integral cohomology classes on M4, the
well-known result of Kobayashi [64] implies that there exists a circle bundle
S1 ↪→ M5 → M4, with connection one-form η1 on M5 whose curvature form
is dη1 = Γ1. (From now on, we write with the same symbol the two-form
Γi on M4 and its lifting to M5 via the projection M5 → M4.) Since Γi

(i = 2, 3) defines an integral cohomology class on M5, there exists a principal
circle bundle S1 ↪→ M6 → M5 corresponding to [Γ2] and a connection one-
form η2 on M6 such that Γ2 is the curvature form of η2. Using again the
result of Kobayashi, there exists a principal circle bundle S1 ↪→ M1,1,1 → M6
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with connection one-form η3 such that dη3 = Γ3 since Γ3 defines an integral
cohomology class on M6. The actions of S1 on each one of the manifolds M5,
M6 and M1,1,1 define an action of the three-torus on M1,1,1 doing M1,1,1 a
T

3-bundle over M4.

We have to show that (6.6) implies (3.1). We calculate using (6.6) that

∗Θf = e2f
[
ω1 ∧ η2 ∧ η3 + ω2 ∧ η3 ∧ η1 − ω3 ∧ η1 ∧ η2 +

e2f

2
ω1 ∧ ω1

]
;

dΘf = 2df ∧ Θf − 2df ∧ η1 ∧ η2 ∧ η3 + dη1 ∧ η2 ∧ η3 − η1 ∧ dη2 ∧ η3

+ η1 ∧ η2 ∧ dη3.

From the last two equalities we derive

d ∗ Θf = 2df ∧ ∗Θf , dΘf ∧ Θf = 0,

where we have used the equalities dωi = 0, ωi ∧ dηj = 0 (i, j = 1, 2, 3) since
dηj = Γj are anti-self-dual two-forms on M4, and df ∧ ωi ∧ ωi = 0 as a five-
form on a four-dimensional Calabi–Yau manifold. �

Notice that in the previous theorem, if we start with a four-torus, we have
essentially three possibilities:

(1) Only one of the three two-forms Γi is independent. In this case, we get
(5.6) with c1 = c2 = 0. The resulting compact nilmanifold satisfies the
equations of motion.

(2) Two of the three two-forms Γi are independent. Then, we get (5.6)
with (c1, c2) 
= (0, 0). The resulting compact nilmanifold satisfies the
supersymmetry equations but not the equations of motion.

(3) The three two-forms Γi are independent. In this case, essentially we get
the quaternionic Heisenberg nilmanifold. We did not get any instanton
satisfying the supersymmetry equations, but at least the first two Killing
spinor equations are satisfied as the previous theorem asserts.

Remark 6.1. Clearly the conclusions of the above theorem are valid also
if we start with a compact non-regular M5 with an SU(2)-structure satisfy-
ing (6.1). In this case, we take two anti-self-dual two-forms Γ2 and Γ3 on
M5, and we consider M1,1,1 the principal circle bundle over M6 correspond-
ing to [Γ3], which in turn is a principal circle bundle over M5 corresponding
to [Γ2]. Now, M1,1,1 is a T

2-bundle over M5, and the G2-structure defined
by (6.5) solves the first two Killing spinor equations.

Suppose that M has a G2-structure defined by a three-form Θ. Let us
recall that a three-dimensional submanifold X of M is called associative,
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with respect to Θ, if the restriction to X of Θ coincides with the Riemannian
volume form on X induced by the G2-metric determined by Θ. (Here we
do not assume that Θ is closed.) We do not know whether M1,1,1 has a
G2-structure, defined by a three-form Θ, such that the fibers are associative
with respect to Θ.

In [42], it is proved that certain non-trivial T
2-bundles M over a Calabi–

Yau surface have a natural complex structure not admitting Kähler metric.
The key of their proof is that the fibers are complex submanifolds of M . For
the previous construction of T

3-bundles M1,1,1 over a Calabi–Yau surface
we have

Lemma 6.1. In the conditions of Theorem 6.1, suppose that one of the
integral cohomology classes represented by Γi is non-trivial on M4. Let Θ
be a three-form defining a G2-structure on M1,1,1, such that there is a fiber
T

3, which is associative with respect to Θ. Then Θ is not closed. Therefore,
the G2-structure on M1,1,1 is non-parallel.

Proof. We know that one of the circle bundles considered in the construc-
tion of M1,1,1 is non-trivial since one of the forms Γi defines a non-zero
cohomology class on M4. Then, one can check that the homology class in
H3(M1,1,1, R) defined by the fibers is trivial. Therefore, if some T

3 fiber
is associative, then Θ cannot be closed. Otherwise, there is a well-defined
cohomology class [Θ] in H3(M1,1,1, R) and it evaluates on [T3] to give a
positive number, i.e., the volume of T

3, which is a contradiction with the
triviality of [T3] . �

6.2 S
1-bundles over a manifold with a balanced SU(3)-structure

Next result generalizes the structure of the example N(3, 1) defined by (5.7).

Theorem 6.2. Let M6 be a compact complex six-manifold solving the first
two Killing spinor equations with constant dilaton in dimension 6, i.e., there
exists an SU(3)-structure (F, Ψ+, Ψ−) satisfying (6.3). Let Γ be a closed
integral two-form which is an SU(3)-instanton, Γ ∈ su(3), i.e. Γαβ = Γᾱβ̄ =
Γαβ̄Fαβ̄ = 0 in local holomorphic coordinates. Then, there is a principal
circle bundle π : M7 −→ M6 with a connection form η such that Γ = dη is
the curvature of η and the G2-structure

Θ = F ∧ η + Ψ+, ∗Θ =
1
2
F ∧ F + Ψ− ∧ η (6.7)

solves the first two Killing spinor equations in (1.2) with constant dilaton.
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Proof. The exterior derivative of (6.7), with the help of (6.3), yields

d ∗ Θ =
1
2
d(F ∧ F ) + dΨ− ∧ η − Ψ− ∧ dη = 0,

and

dΘ ∧ Θ = F 2 ∧ dη ∧ η + (F ∧ η + Ψ+) ∧ dΨ+ − dF ∧ Ψ+ ∧ η = 0,

because of the algebraic facts Ψ− ∧ dη = 0, F 2 ∧ dη = 0 since dη ∈ su(3),
and because dF ∧ Ψ+ = 0 on a complex manifold (see, e.g., [14]). Hence,
equations (3.1) hold with θ7 = 0.

The existence of a principal circle bundle in the conditions above follows
again from [64]. �

6.3 S
1-bundles over a cocalibrated G2-manifold of pure type

We describe a more general situation inspired by the structure of the example
Γ/H8 defined by (5.11) and by considerations in [39].

Theorem 6.3. Let M7 be a compact G2-manifold solving the first two equa-
tions of (1.2) with constant dilaton in dimension 7, i.e., there exists a G2-
structure Θ satisfying d ∗ Θ = dΘ ∧ Θ = 0. Let f be a smooth function on
M7, and let Γ4 be a closed integral two-form on M7, which is a G2-instanton,
Γ4 ∈ g2, i.e., it satisfies (3.4). Then, we have

(i) There is a principal circle bundle π : M8 −→ M7 corresponding to [Γ4]
and a connection one-form η4 on M8 whose curvature form is Γ4, such
that the Spin(7)-structure

Φf = e3fΘ ∧ η4 + e4f ∗7 Θ, (6.8)

solves the first two Killing spinor equations in (1.2) with non-constant
dilaton φ = 2f in dimension 8, where ∗7 denotes the Hodge star oper-
ator on M7. The Spin(7)-metric has the form

gf = e2fg7 + η4 ⊗ η4.

(ii) If M7 is a circle bundle over a compact 6-manifold (M6, F, Ψ+, Ψ−)
as in Theorem 6.2, f is a smooth function on M6 and the form Γ4
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of the part i) is such that Γ4 ∈ su(3), then there is a compact eight-
dimensional manifold M1,1 with a free structure preserving T

2-action
and a fibration π : M1,1/T

2 ∼= M6 with the Spin(7)-structure

Φf = e3f
[
F ∧ η + Ψ+

]
∧ η4 + e4f

[1
2
F ∧ F + Ψ− ∧ η

]
, (6.9)

solving the first two Killing spinor equations in (1.2) with non-constant
dilaton φ = 2f in dimension 8, where η is the connection one-form on
the circle bundle over M6 corresponding to Γ. The metric has the form

gf = e2f (g6 + η ⊗ η) + η4 ⊗ η4.

Proof. To prove (i) first we show that the Lee form 7θ8
f = − ∗ (∗dΦ ∧ Φ) is

an exact one-form. The exterior derivative of (6.8) yields

dΦf = 3e3fdf ∧ Θ ∧ η4 + e3fdΘ ∧ η4 + 4e4fdf ∧ ∗7Θ − e3fΘ ∧ dη4.

The latter leads to

∗dΦf = −3e4f ∗7 (df ∧ Θ) + e4f ∗7 dΘ + 4e3f ∗7 (df ∧ ∗7Θ) ∧ η4

+ 2e4fdη4 ∧ η4,

where we have used the well-known fact that ∗7(Θ ∧ dη4) = −2dη4, since
dη ∈ g2.

Consequently, we claim

∗ dΦf ∧ Φf = −3e7f ∗7 (df ∧ Θ) ∧ Θ ∧ η4 + 4e7f ∗7 (df ∧ ∗7Θ) ∧ ∗7Θ ∧ η4

+ 3e8f ∗7 (df ∧ Θ) ∧ ∗7Θ + e7f ∗7 dΘ ∧ Θ ∧ η4

+ e8f ∗7 dΘ ∧ ∗7Θ + 2e8f ∗7 Θ ∧ dη4 ∧ η4

= 24e7f ∗7 df ∧ η4. (6.10)

Indeed, the second and third lines in (6.10) give no contribution since the
first term vanishes because it is a general algebraic identity valid on any
G2-manifold, the second term is zero due to the second equality in (2.3), the
third term is zero because of the following chain of equalities

∗7dΘ ∧ ∗7Θ = g(∗7dΘ, Θ)vol.7 = g(dΘ, ∗7Θ)vol.7 = dΘ ∧ Θ = 0

and the fourth term is zero because ∗7Θ ∧ dη4 = 0, since dη4 ∈ g2.
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The terms in the first line are subject to the following well-known algebraic
G2-identities

∗7(df ∧ Θ) ∧ Θ = −4 ∗7 df, ∗7(df ∧ ∗7Θ) ∧ ∗7Θ = 3 ∗7 df.

Hence, we obtain from (2.5) and (6.10) that θ8
f = 24

7 df , i.e., the Lee form
is an exact form, which completes the proof of i). The existence of the
principal circle bundle S1 ↪→ M8 → M7 in the conditions above follows from
the result of Kobayashi [64].

Now, let us suppose that Γ and Γ4 are closed integral 2-forms on M6,
such that Γ and Γ4 ∈ su(3). Let M7 be the principal circle bundle over
M6 corresponding to [Γ] as in Theorem 6.2. Since [Γ4] defines an integral
cohomology class on M7, Kobayashi theorem implies that there exists a
principal circle bundle S1 ↪→ M1,1 → M7 corresponding to [Γ4] and a con-
nection one-form η4 whose curvature is Γ4. The actions of S1 on each one of
the manifolds M7 and M1,1 define an action of the two-torus on M1,1 and
M1,1 can be considered a T

2-bundle over M6. Substituting (6.7) in (6.8),
and using Theorem 6.2 and the part (i), we conclude (ii). �

Remark 6.2. In Theorem 6.3, if M7 is a T
2-bundle over a compact non-

regular M5 as in Remark 6.2, such that M5 has an SU(2)-structure (η1, ω1,
ω2, ω3) satisfying (6.1), and there exist three closed anti-self-dual 2-forms
Γ2, Γ3 and Γ4 on M5 representing integral cohomology classes, then the
S1-bundle over M7, constructed in Theorem 6.3, is a T

3-bundle over M5

with Spin(7)-structure

Φf = e3fΘf ∧ η4 + e4f ∗7 Θf ,

solving the first two equations in (1.2) with non-constant dilaton, where the
G2-form Θf on M7 is given by (6.6). The Spin(7)-metric is

gf = e2f (g5 + η2 ⊗ η2 + η3 ⊗ η3) + η4 ⊗ η4,

where f and g5 denote a smooth function and the metric on M5, respectively.

Moreover, we must notice that in Theorem 6.3, if M7 is a T
3-bundle over

a Calabi–Yau surface as in Theorem 6.1, and the form Γ4 considered in
Theorem 6.3 is such that Γ4 ∈ su(2), i.e., anti-self-dual two-form on M4,
then the S1-bundle constructed in Theorem 6.3 is a T

4-bundle over the
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Calabi–Yau M4 with a Spin(7)-structure given by

Φf = Θf ∧ η4 + ∗7Θf ,

which solves the first two equations in (1.2) with non-constant dilaton, where
the G2-form Θf is given by (6.6). The metric is given by

gf = e2fgcy + η1 ⊗ η1 + η2 ⊗ η2 + η3 ⊗ η3 + η4 ⊗ η4.

Suppose that one of the integral cohomology classes represented by Γi is
non-trivial on M4. Let Φ be a four-form defining a Spin(7)-structure on the
total space of the S1-bundle over M7, such that there is a fiber T

4 which
is associative with respect to Φ. Then we conclude that Φ is not closed
similarly as in the proof of Lemma 6.1. Therefore, the Spin(7)-structure on
the total space of the S1-bundle over M7 is non-parallel.
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Käehler manifolds with SU(3) structure, Commun. Math. Phys. 251
(2004), 65–78.

[43] U. Gran, P. Lohrmann and G. Papadopoulos, The spinorial geometry
of supersymmetric heterotic string backgrounds, J. High Energy Phys.
02 (2006), 063.

[44] U. Gran, G. Papadopoulos and D. Roest, Supersymmetric heterotic
string backgrounds, Phys. Lett. B656 (2007), 119.

[45] U. Gran, G. Papadopoulos, D. Roest and P. Sloane, Geometry of all
supersymmetric type I backgrounds, J. High Energy Phys. 08 (2007),
074.

[46] U. Gran and G. Papadopoulos, Solution of heterotic Killing spinor equa-
tions and special geometry, Special metrics and supersymmetry, 144–
161, AIP Conf. Proc., 1093, Amer. Inst. Phys., Melville, NY, 2009.

[47] A. Gray, Vector cross product on manifolds, Trans. Am. Math. Soc. 141
(1969), 463–504; Correction 148 (1970), 625.

[48] M. Günaydin and H. Nikolai, Seven-dimensional octonionic Yang–Mills
instanton and its extension to an heterotic string soliton, Phys. Lett.
B353 (1991), 169.

[49] J. Gutowski, S. Ivanov and G. Papadopoulos, Deformations of general-
ized calibrations and compact non-Kahler manifolds with vanishing first
Chern class, Asian J. Math. 7 (2003), 39–80.

[50] R. Harvey and H.B. Lawson, Calibrated geometries, Acta Math. 148
(1982), 47–157.



COMPACT SUPERSYMMETRIC SOLUTIONS 283

[51] J.A. Harvey and A. Strominger, Octonionic superstring solitons, Phys.
Rev. Let. 66(5) (1991), 549.

[52] P.S. Howe and G. Papadopoulos, Ultraviolet behavior of two-
dimensional supersymmetric non-linear sigma models, Nucl. Phys.
B289 (1987), 264.

[53] C.M. Hull, Anomalies, ambiquities and superstrings, Phys. Lett. B167
(1986), 51.

[54] C.M. Hull and P.K. Townsend, The two loop beta function for sigma
models with torsion, Phys. Lett. B191 (1987), 115.

[55] C.M. Hull and E. Witten, Supersymmetric sigma models and the het-
erotic string, Phys. Lett. B160 (1985), 398.

[56] P. Ivanov and S. Ivanov, SU(3)-instantons and G2, Spin(7)-heterotic
string solitons, Comm. Math. Phys. 259 (2005), 79–102.

[57] S. Ivanov, Geometry of quaternionic Kähler connections with torsion,
J. Geom. Phys. 41(3) (2002), 235–257.

[58] S. Ivanov, Connection with torsion, parallel spinors and geometry of
Spin(7) manifolds, Math. Res. Lett. 11(2–3) (2004), 171–186.

[59] S. Ivanov and G. Papadopoulos, A no-go theorem for string warped
compactifications, Phys. Lett. B497 (2001), 309–316.

[60] S. Ivanov and G. Papadopoulos, Vanishing theorems and string back-
grounds, Class. Quant. Grav. 18 (2001), 1089-1110.

[61] D. Joyce, Compact Riemannian 7-manifolds with holonomy G2. I,
J. Diff. Geom. 43 (1996), 291–328.

[62] D. Joyce, Compact Riemannian 7-manifolds with holonomy G2. II,
J. Diff. Geom. 43 (1996), 329–375.

[63] D. Joyce, Compact Riemannian manifolds with special holonomy,
Oxford University Press, 2000.

[64] S. Kobayashi, Principal fiber bundles with 1-dimensional toroidal group,
Tohoku Math. J. (56) 8 (1956), 29–45.

[65] A. Kovalev, Twisted connected sums and special Riemannian holonomy,
J. Reine Angew Math. 565 (2003), 125–160.

[66] B. Lawson and M.-L. Michelsohn, Spin geometry, Princeton University
Press, 1989.

[67] J. Li and S.-T. Yau, The existence of supersymmetric string theory with
torsion, J. Diff. Geom. 70(1) (2005), 143–181.

[68] P.-A. Nagy, Skew-symmetric prolongations of the Lie Albegras and
applications, arXiv:0712.1398, To appear in J. Lie Theory.

[69] R. Reyes Carrión, A generalization of the notion of instanton, Diff.
Geom. Appl. 8(1) (1998), 1–20.



284 MARISA FERNÁNDEZ ET AL.
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