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Abstract

The moduli dependence of D4-branes on a Calabi–Yau manifold is
studied using attractor flow trees, in the large volume limit of the Kähler
cone. One of the moduli-dependent existence criteria of flow trees is the
positivity of the flow parameters along its edges. It is shown that the sign
of the flow parameters can be determined iteratively as function of the
initial moduli, without explicit calculation of the flow of the moduli in
the tree. Using this result, an indefinite quadratic form, which appears in
the expression for the D4-D2-D0 BPS mass in the large volume limit, is
proven to be positive definite for flow trees with 3 or less endpoints. The
contribution of these flow trees to the BPS partition function is there-
fore convergent. From non-primitive wall-crossing is deduced that the
S-duality invariant partition function must be a generating function of
the rational invariants Ω̄(Γ) =

∑
m|Γ

Ω(Γ/m)
m2 instead of the integer invari-

ants Ω(Γ).
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1 Introduction

The BPS-spectrum of supersymmetric quantum field theories [25,26,45] and
supergravity [11, 15, 46] depends in an intriguing way on the moduli of the
theory. If moduli cross walls of marginal stability, BPS-states can combine
or decay without violating physical conservation laws. As a consequence, the
supersymmetric index Ω(Γ; t) of BPS-states with charge Γ, is only locally
constant and changes discontinuously as function of the moduli t. This is by
no means an arbritrary process but happens according to a rather rigorous
mechanism, whose implications are however not fully understood.

The moduli dependence of the supergravity BPS-spectrum appears as
the possible decay or formation of multi-center solutions if the moduli are
varied [11]. This has led to the conjecture that the moduli dependence of the
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supergravity spectrum is captured by “attractor flow trees” [11,15]. These
trees are schematic (in some sense linearized) representations of
supersymmetric solutions, which are much easier to analyse than the full
supergravity solutions. Various results have been derived using the flow
trees, such as the (semi-primitive) wall-crossing formula [15], and the deriva-
tion of BPS spectra [5, 10,13,15,30].

The BPS-states of supergravity are represented in string theory as
D-branes wrapped around cycles of a Calabi–Yau 3-fold X. From this
point of view, one is interested in the BPS-spectrum of the D-branes, as
function of the moduli of X. A fruitful interplay exists between stabil-
ity of D-branes and stability in mathematics [20, 32, 34]. The BPS indices
Ω(Γ; t) are conjecturally equal to the rigorously defined Donaldson–Thomas
invariants.

A central object in the study of BPS-states is the partition function,
which is the generating function for the supersymmetric index Ω(Γ; t) of
BPS-states with charge Γ. The mixed ensemble is most natural for N = 2
supergravity [41], with the electric charges in the canonical ensemble and
the magnetic charges in the microcanonical ensemble. Besides being the
generating function of Ω(Γ; t), it is a useful object to test the validity on
the microscopic level of duality groups. These are for N = 2 supergravity
in 4 dimensions the S-duality group SL(2, Z) [6], and the electric–magnetic
duality group Sp(2b2 + 2, Z) (or a subgroup) [48]. Most desirable is a par-
tition function which gives at any given point t in moduli space the BPS
indices Ω(Γ; t), and which captures correctly the changes of the indices if
the moduli are varied.

This is a rather difficult problem in general. However, one might construct
the partition function using attractor flow trees from elementary building
blocks, the black hole centers which cannot decay. Manschot [36] studied
in this way the contribution to the partition function of a flow tree with 2
endpoints with D4-D2-D0 charge. The analysis was simplified by restricting
to the large volume limit of a single complexified Kähler cone. It shows
that a certain indefinite quadratic form, which appears in the expression
for the BPS mass in this limit, is positive definite when evaluated for stable
bound states of two constituents, or equivalently flow trees with 2 endpoints.
This implies the convergence of the contribution to the partition function
of these flow trees, which enumerates only the stable BPS-states at a point
t in the moduli space. The generating function does not preserve S-duality,
but can be made so by the addition of a “modular completion”, which
(unexpectedly) also has the effect of changing it to a continuous function of
the moduli. Continuity appeared in the literature before in the context of
wall-crossing [25,31].
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The current paper extends the approach of Manschot [36] to flow trees
with 3 endpoints. This solves various conceptual issues for a generalization
to any number of endpoints. The larger flow trees complicate the analysis
considerably, since the existence (or stability) conditions depend on the flow
of the moduli throughout the tree, and are therefore only indirectly deter-
mined by the value t of the moduli at “infinity”. The most sensitive con-
dition to variations of the moduli is the sign of the flow parameters along
the edges of the tree. The flow parameter is a measure for the length of the
edge, and therefore required to be positive for all edges of an existing flow
tree. Fortunately, Subsection 2.2 derives an iterative expression in terms of
t for this sign, without explicit computation of the flow of the moduli along
the edges. Section 3 applies this result to BPS D4-branes, to proof that
also for flow trees with 3 endpoints, an indefinite quadratic form is posi-
tivite definite when restricted to stable flow trees, analogously to the case of
2 endpoints. This again ensures the convergence of the partition function.
It is expected that this property continues to hold for flow trees with any
number of endpoints.

To incorporate flow trees with equal charges for 2 of the 3 endpoints, one
is required to use the semi-primitive wall-crossing formula. Section 3 argues
that partition functions which capture non-primitive wall-crossing can only
be compatible with S-duality, if it is a generating function of the ratio-
nal invariants Ω̄(Γ; t) =

∑
m|Γ

Ω(Γ/m)
m2 [32] and not of the integer invariants

Ω(Γ; t). The jumps of the indices in terms of Ω̄(Γ; t) are also more easily
identified as contributions from flow trees than in terms of Ω(Γ; t). The con-
tributions of the primitive and semi-primitive trees are shown to combine
nicely into sums over certain lattices.

Unfortunately, the form of the stability condition for trees with 3 end-
points prevents an easy construction of the modular completion of its con-
tribution to the partition function analogous to [36]. The compatibility of
these flow trees with S-duality is thus not yet completely shown, but impor-
tant prerequisites are satisfied. I hope to address this issue in future work.

I conclude the introduction with the outline of the paper. Section 2
reviews wall-crossing of BPS-states to render the paper self-contained. It
reviews in particular the Kontsevich–Soibelman wall-crossing formula, wall-
crossing in supergravity and the split attractor flow conjecture. It derives
an expression for the sign of the flow parameters, without explicitly calcu-
lating the flow of the moduli throughout the tree. Section 3 applies the
general discussion of Section 2 to D4-D2-D0 BPS-states. The main part of
the section deals with the proof that the indefinite quadratic form is positive
definite on the stable spectrum for N ≤ 3. Subsection 3.2 comments on non-
primitive wall-crossing, and why S-duality favours the rational invariants
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Ω̄(Γ; t). Section 4 concludes with a short summary of the results and
discussion.

2 Wall-crossing and flow trees

This section reviews briefly stability and wall-crossing of BPS-states in
string theory compactified on a Calabi–Yau 3-fold X (more information
can be found in the references). This compactification preserves N = 2
supersymmetry, such that the only massive BPS states preserve half of
the supersymmetry. We will work in the Type IIA duality frame, where
the electric–magnetic charges of supergravity correspond to D-branes wrap-
ping even dimensional cycles of X. The charges are combined into a vector
Γ = (P 0, P a, Qa, Q0)T, which is an element of a (2b2 + 2)-dimensional sym-
plectic lattice L, with symplectic inner product:

〈Γ1, Γ2〉 = −P 0
1 Q0,2 + P1 · Q2 − P2 · Q1 + P 0

2 Q0,1. (2.1)

〈Γ1, Γ2〉 is often abbreviated to I12 in the following.

The N = 2 superalgebra contains a central element, the central charge Z :
(L, CX) → C, which associates to every Γ ∈ L and point of the moduli space
t = B + iJ ∈ CX (the complexified Kähler cone for Type IIA) a complex
number Z(Γ, t) ∈ C = R

2. The mass M of a BPS-state is determined by the
central charge: M = |Z(Γ, t)|. The (not complexified) Kähler cone is a b2-
dimensional cone which parametrizes the volumes of even dimensional cycles
of X. The boundary of the cone corresponds to vanishing of the volume of
2-cycles. From the perspective of mirror symmetry, it is natural to consider
the “extended Kähler moduli space” [2], which is the union of all Kähler
cones of Calabi–Yaus which are birationally equivalent. These Calabi–Yaus
are however not topologically equivalent, since continuation of the Kähler
moduli beyond the boundary of the Kähler cone leads to flops of 2-cycles of
X. Although flops do not lead to singular physics, we restrict our attention
in this paper to CX , corresponding to topologically equivalent Calabi–Yaus.

The index Ω(Γ; t) is a measure for the number of BPS-states. It is defined
by a weighted trace over the Hilbert space H(Γ, t):

Ω(Γ; t) = 1
2TrH(Γ,t) (2J3)2 (−1)2J3 , (2.2)

where J3 is a generator of the rotation group Spin(3). The sum over the
Hilbert space shows that Ω(Γ; t) are integers. An important property of the
index is its independence of the string coupling constant gs and the complex
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structure moduli of X (in Type IIA). Therefore, the index can be deter-
mined and analyzed at finite gs or in the limit gs → 0 depending on which
regime is better suited for the analysis. The first regime corresponds to four-
dimensional supergravity, where many of the BPS-states appear as (possibly
multi-centered) black holes. The limit gs → 0 is the D-brane regime, where
the BPS-states can often be related to mathematical objects.

As the notation suggests, the Hilbert space H(Γ, t) depends on CX . The
indices Ω(Γ; t) are only locally constant and may jump across codimension
1 hypersurfaces in the moduli space. These “walls of marginal stability” are
determined by the alignment of central charges of the constituents Z(Γ1, t)
and Z(Γ2, t) with Γ = Γ1 + Γ2 (assuming that I12 �= 0, otherwise the sub-
spaces of the moduli space where the central charges align are walls of thresh-
old stability), and divide the moduli space into chambers. Wall-crossing was
first observed in 4 dimensions in supersymmetric gauge theory [45], and later
in supergravity [11,15].

2.1 Kontsevich–Soibelman wall-crossing formula

Supersymmetric D-brane configurations lend themselves well to more
abstract descriptions like triangulated categories. Within this mathemat-
ical setting, Kontsevich and Soibelman [34] have proposed a formula, which
captures changes of the invariants ΔΩ(Γ1 + Γ2; t) at a wall of marginal sta-
bility for generic Γ1 and Γ2. This was an important open problem in physics,
where the jumps of the indices were only known in restricted situations like
semi-primitive charges [15] or Seiberg–Witten theory [22]. By now a lot
of evidence exists for the validity of the KS-formula in generic BPS con-
texts [18, 19,25,26]. We briefly review the KS-formula here.

Kontsevich and Soibelman [34] introduces a Lie algebra with generator
eΓ for every charge Γ ∈ L. The commutation relations are given by

[eΓ1 , eΓ2 ] = (−1)〈Γ1,Γ2〉 〈Γ1, Γ2〉 eΓ1+Γ2 . (2.3)

For every charge Γ an element TΓ of the Lie group is defined by

TΓ = exp

⎛

⎝−
∑

n≥1

enΓ

n2

⎞

⎠ . (2.4)

A sector in R
2 is defined as a region bounded by two rays whose starting

point is at the origin. A sector is strict if the angle between the rays is
less then 180◦. A product AV of elements TΓ is associated to a strict sector
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V ∈ R
2. The clockwise order of the central charges Z(Γ, t) ∈ V with Γ ∈ L,

determines the order of the product:

AV =
�∏

Γ∈L, Z(Γ,t)∈V

T
Ω(Γ;t)
Γ . (2.5)

If the moduli cross a wall of marginal stability, the order of the central
charges changes and therefore likewise the order of the product. The claim
of [34] is that the change of the Ω(Γ; t) is precisely such that the product
AV does not change. The commutation relations of eΓ thus determine the
changes of indices if walls are crossed.

Note that the form of the wall-crossing formula also suggests that the
invariants Ω̄(Γ; t), defined by

Ω̄(Γ; t) =
∑

m|Γ

Ω(Γ/m; t)
m2

, (2.6)

are convenient. These are valued in Q and are conjecturally equal to the
invariants which are the central topic in the work of Joyce et al. [31,32]. The
product formula (2.5) is in terms of these invariants more simply expressed
using the elements R

Ω̄(Γ;t)
Γ = exp

(
Ω̄(Γ; t) eΓ

)
. Equation (2.6) can be inverted

with the Möbius inversion formula

Ω(Γ; t) =
∑

m|Γ

Ω̄(Γ/m; t)
m2

μ(m) , (2.7)

with Γ primitive. The Möbius function μ(n) is defined by: μ(1) = 1; if n > 0
with prime decomposition n = pa1

1 . . . pak
k , then μ(n) = (−1)k, if ai = 1 for

i = 1, . . . , k; and μ(n) = 0 otherwise.

At a generic point of the walls, only the central charges of two non-parallel
primitive charge vectors Γ1 and Γ2 ∈ L align. We denote the chambers on
either site of the wall by CA and CB. To determine the change of the BPS-
indices between CA and CB, one can truncate the product (2.5) to the lattice
generated by Γ1 and Γ2. The product then becomes

∏

m
n

decreasing

T
Ω((m,n);tA)
(m,n) =

∏

m
n

increasing

T
Ω((m,n);tB)
(m,n) , (2.8)

where (m, n) = mΓ1 + nΓ2. Using the Baker–Campbell–Hausdorff formula

etX etY = etY et2[X,Y ] e
1
2
t3(ad X)2Y e

1
2
t3(ad Y )2X e−

1
4
t4[X,[Y,[X,Y ]]] · · · etX , (2.9)
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with (adX)Y = [X, Y ] and t ∈ R, ΔΩ(mΓ1 + nΓ2; t) can be determined in
principle. For (m, n) = (1, 1) one finds the well-known formula

ΔΩ(Γ; t) = (−1)〈Γ1,Γ2〉−1 〈Γ1, Γ2〉 Ω(Γ1; t)Ω(Γ2; t), (2.10)

where we assumed that 〈Γ1, Γ2〉 > 0 and Im(Z(Γ1)Z̄(Γ2)) > 0 in CB; CB is
thus the stable chamber. A (product) formula is known for semi-primitive
wall-crossing (m, n) = (1, n) from supergravity [15], which is consistent with
equation (2.5). Equation (3.38) of Section 3 gives a similar formula, which is
adapted for wall-crossing of D4-D2-D0 BPS-states in the large volume limit.

The first example of proper non-primitive wall-crossing is for (m, n) =
(2, 2). The KS-formula is now the only tool to compute the change in the
index across a wall. To present the result, it is useful to use nested lists
like ((Γ1, Γ2), ((Γ3, Γ4), Γ5)), which also play a large role in the discussion
on flow trees in Subsection 2.2. We define the following numbers:

Ω̄( (Γ1, Γ2) ; t) = (−1)〈Γ1,Γ2〉−1 〈Γ1, Γ2〉 Ω̄(Γ1; t) Ω̄(Γ2; t), (2.11)

which carries on to more complicated lists. For example the nested list
((Γ1, Γ2), Γ3) leads to:

Ω̄( ((Γ1, Γ2), Γ3) ; t) = (−1)〈Γ1+Γ2,Γ3〉+〈Γ1,Γ2〉 〈Γ1 + Γ2, Γ3〉 〈Γ1, Γ2〉
× Ω̄(Γ1; t) Ω̄(Γ2; t) Ω̄(Γ3; t). (2.12)

The jump of the index ΔΩ(2Γ1 + 2Γ2; t) depends on the indices Ω(aΓ1 +
bΓ2; tA) in CA with a, b ∈ [0, 2]. One finds using the KS-formula:

ΔΩ̄( 2Γ1 + 2Γ2; tA)

= Ω̄( (Γ1, Γ1 + 2Γ2) ; tA) + Ω̄( (2Γ1, 2Γ2) ; tA) + Ω̄( ((2Γ1 + Γ2), Γ2) ; tA)

+ 1
2 Ω̄( (Γ1, (Γ1, 2Γ2)) ; tA) + 1

2 Ω̄( (Γ2, (Γ2, 2Γ1)) ; tA)

+ 1
2 Ω̄( ((Γ1, Γ1 + Γ2), Γ2) ; tA) + 1

2 Ω̄( ((Γ2, Γ2 + Γ1), Γ1) ; tA)

+ 1
4 Ω̄( ((Γ2, (Γ1, Γ2)), Γ1) ; tA). (2.13)

We observe that the jump ΔΩ̄(2Γ1 + 2Γ2) is packaged conveniently in terms
of Ω̄’s and nested lists. Flow trees are also classified by nested lists, the
terms in equation (2.13) are thus naturally identified with contributions
of the corresponding flow trees. The KS-formula provides the non-trivial
prefactors. Subsection 3.2 comments more on this.



WALL-CROSSING OF D4-BRANES USING FLOW TREES 9

2.2 Supergravity and flow trees

At finite string coupling gs (such that the four-dimensional Newton constant
G4 is finite), BPS-states correspond to solutions of the supergravity equa-
tions of motion which preserve half of the supersymmetry. These solutions
often contain various black holes with macroscopic horizons. The (Kähler)
moduli appear in supergravity as massless scalars. Their values at infinity
are imposed as boundary conditions. They determine the value of the cen-
tral charge, and therefore also the stability of bound states. The values of
the moduli are generically not constant throughout a black hole solution,
but “flow” to special values determined by the electric–magnetic charge of
the black hole, due to the attractor mechanism [21]. A point of concern in
the attractor mechanism is the possibility of multiple basins of attraction
depending on the values of the moduli at infinity [40]. Denef [11] explains
how this is related to the points in moduli space where the volume of a
2-cycle of X vanishes. This paper avoids these singularities by restricting
the moduli to a single Kähler cone as explained in the introduction to this
section.

The N = 2 supergravity Lagrangian admits the action of an Sp(2b2 + 2, Z)
duality group [48]. The relevant subgroup in the large volume limit are the
translations Z

b2 which act by

K(k) =

⎛

⎜
⎜
⎜
⎝

1
ka 1

1
2dabck

bkc dabck
c 1

1
6dabck

ckbkc 1
2dabck

bkc ka 1

⎞

⎟
⎟
⎟
⎠

, k ∈ Z
b2 , (2.14)

simultaneously on the charge Γ and the period vector Π = (1, ta, 1
2dabct

btc,
1
6dabct

atbtc)T. There is in addition an SL(2, Z) duality group [6] which
can be related to the IIB S-duality group by a timelike T-duality or the
c-map. S-duality acts by fractional linear transformations on τ = C0 + iβ

gs
,

and interchanges the B- and C-fields.

A brief review is now given about multi-center supergravity solutions,
before discussing attractor flow trees. The general form of the metric of a
BPS multi-center solution is [11]

ds2 = −e2U (dt + ω)2 + e−2Ud�x2. (2.15)
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Since we consider asymptotically flat space-times limr→∞ U, ω = 1. The
evolution of the Calabi–Yau periods in a single center solution is such that

2Im
(
e−U−iαZ(Γ′, t)

)
=
√

G4
〈Γ, Γ′〉

r
+ 2Im

(
e−iαZ(Γ′, t)

)
r=∞ , (2.16)

for every charge Γ′ ∈ L; α is the phase of Z(Γ, t) [11]. In principle one can
solve for the evolution of the periods and moduli from this equation. The
evolution is often described in terms of the flow parameter ρ =

√
G4/2r.

More interesting for discussions about stability are solutions with more
centers. Denef [11] shows that the distance between two centers in a 2-center
solution is given by:

|x1 − x2| =
√

G4
〈Γ1, Γ2〉

2
|Z(Γ1 + Γ2, t)|

Im(Z(Γ1, t)Z̄(Γ2, t))
, (2.17)

where the moduli t are evaluated at r = ∞. The right-hand side can be
positive or negative depending on the values of the moduli at infinity. A
negative value indicates that the BPS-states do not exist at this point of the
moduli space, or in other words that they are unstable. On the other hand,
positivity does not imply stability, since it is not a sufficient condition for
the existence of a full solution to the supergravity equations of motion. For
example, solutions where the central charge vanishes at a regular point of the
moduli space should be disgarded. If we assume that this does not happen,
and the existence of the solution depends only on the sign of the right-hand
side of equation (2.17), the contribution to the index of the 2-center solution
as function of the moduli can be written as [14,15,36]:

1
2

(
sgn(Im(Z(Γ1, t)Z̄(Γ2, t))) + sgn(〈Γ1, Γ2〉)

)

× (−1)〈Γ1,Γ2〉−1 〈Γ1, Γ2〉Ω(Γ1)Ω(Γ2), (2.18)

with sgn(x) defined by

sgn(x) =

⎧
⎪⎨

⎪⎩

1, x > 0,

0, x = 0,

−1, x < 0.

(2.19)

Since close to the wall of marginal stability, the supergravity solution will
always resemble a 2-center solution this is consistent with equation (2.10).
Note that equation (2.18) gives a non-zero contribution at the wall.
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Using that e−U →
√

G4|Z(Γ, t)|/r for r → 0, one finds from equation
(2.16) that the attractor equations are equivalent to

Im(Z(Γ, t(Γ))Z̄(Γ′, t(Γ))) = −
〈
Γ′, Γ

〉
(2.20)

for every Γ′ ∈ L. One observes from this equation that if the moduli at
infinity are fixed at the attractor point t(Γ), the right-hand side of equation
(2.17) can never be positive, and therefore 2-center solutions can not exist.

To understand all the implications of the supergravity viewpoint to BPS-
stability, one needs to study solutions with more centers, which becomes
quite complicated. Fortunately, the split attractor flow conjecture [11, 15]
proposes a rather elegant framework for analyzing the stability of multi-
center solutions as function of the background moduli. The conjecture has
on the other hand not much bearing on those multi-center solutions, whose
stability does not depend on the moduli. The mysterious scaling solutions
lie in this class [15]. The conjecture does not distinguish such solutions
from single center solutions. We briefly review the conjecture at this point,
following [12,15].

The central objects of the conjecture are the so-called “(attractor) flow
trees”, which are simplified, schematic representations of supergravity solu-
tions. An example of a flow tree is presented in figure 1. Its graph is a rooted
tree (meaning a directed tree with all edges directed away from the root
vertex, see e.g. [17]), and corresponds to a nested list of the total charge Γ.

Figure 1: The attractor flow tree corresponding to ((Γ1, Γ2), ((Γ3, Γ4), Γ5)).
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The nested list corresponding to figure 1 is ((Γ1, Γ2), ((Γ3, Γ4), Γ5)).1 The
vertices are all connected and have generically either one (the leaves) or
three edges connect to it. The root vertex v0 (drawn at the top in figure
1) corresponds to the sphere at infinite radius in the supergravity solution,
which surrounds the total charge Γ. The N bottom vertices (endpoints) rep-
resent black hole centers with charges Γi, i = 1, . . . , N with Γ =

∑N
i=1 Γi. A

tree with N bottom vertices has 2N − 1 edges and N − 1 trivalent vertices.
We denote the set of trivalent vertices by V , and the set of edges by E.
The vertices, edges and charges can obviously be labeled by binary words,
e.g. RLL.

It is useful to introduce some notation associated with a trivalent vertex
v, for later recursive applications. A vertex which appears one vertex before
v in the tree is denoted by vU . The edge between vU and v is denoted by
ev, and the charge along ev by Γv. The charge splits at a trivalent vertex v:
Γv = ΓvL + ΓvR; ΓvL goes off to the left and ΓvR to the right.

Based on a nested list of charges, one can always construct the rooted
tree. A flow tree is essentially an embedding of the rooted tree T in moduli
space, which might or might not exist depending on the value t of the moduli
at v0. The flow of the moduli along an edge e ∈ E is given by the evolution
of the periods for a single center black hole (2.16) with the corresponding
charge Γe. An edge splits at a trivalent vertex v with modului tv into edges
with charges ΓvL and ΓvR, only if tv is at a wall of marginal stability for
(ΓvL, ΓvR). If the moduli lie on the intersection of various walls of marginal
stability, the valence of the vertices can increase accordingly. From equation
(2.16), one deduces that the change of the flow parameter Δρv = ρv − ρvU

along ev is:

Δρv =
Im(Z(ΓvL, tvU ) Z̄(ΓvR, tvU ))
〈ΓvL, ΓvR〉 |Z(ΓvL + ΓvR, t)| . (2.21)

The flows terminate at the bottom vertices, where they are at the corre-
sponding attractor points t(Γi).

A flow tree can now be defined more precisely. Given a choice t of moduli
at v0, a flow tree is a rooted tree T , which satisfies the following (stability)
conditions [11]:

A: ∀ v ∈ V : 〈ΓvL, ΓvR〉 Im(Z(ΓvL, tvU ) Z̄(ΓvR, tvU )) > 0.
B: ∀ v ∈ V : Z(ΓvL, tv) Z̄(ΓvR, tv) > 0.
C: for i = 1, . . . , N : the attractor points t(Γi) do exist in the

moduli space.

1For notational convenience, the Γ’s, comma’s and outer parentheses are in the following
omitted from the nested lists, thus ((Γ1, Γ2), ((Γ3, Γ4), Γ5)) → (12)((34)5).
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Conditions A and B together imply that v lies at a wall of marginal stability.
Condition A is also equivalent with the positivity of the flow parameter
Δρv (2.21) along ev. Since it is a measure for the (inverse) length of the
edge, the condition is an obvious necessary condition for the existence of a
supergravity solution. After all this introductory material the attractor flow
conjecture can be stated:

Split attractor flow conjecture [15]:

1. components of the moduli space of (four-dimensional) supergravity
solutions with total charge Γ and values of the moduli at infinity t, are
in 1 to 1 correspondence with flow trees starting with total charge Γ
and moduli t,

2. for fixed total charge Γ and moduli t only a finite number of flow trees
exist. By 1. the Hilbert space of BPS-states factorizes into a direct
sum of the corresponding flow trees.

This conjecture shows the potential of flow trees to describe the stability
of BPS-states. It suggests an important role for the endpoints of the flow
trees, since these BPS-objects are stable everywhere in the moduli space. As
mentioned before, the endpoints do not necessarily correspond to a single
center, due to the existence of scaling solutions [15]. However, the states
corresponding to these endpoints cannot decay at any point in the moduli
space. Following [8], we will call them “immortal” BPS-states. Since the
index of an immortal object with charge Γ does not depend on t, we simply
denote it by Ω(Γ). The immortal BPS-objects can thus be found by tuning
the moduli to the corresponding attractor point. In agreement with this,
only the N = 1 tree exists if t = t(Γ). A convenient aspect of the immortal
BPS-objects is that more is known about their microscopic aspects, their
degrees of freedom are typically those of a conformal field theory, which
adds many symmetries to the problem.

Whether Condition A is satisfied for (T, t) is conveniently determined by
a product formula:

Condition A :

S(T, t) =
∏

v∈V

1
2

(
sgn(Im(Z(ΓvL, tvU )Z̄(ΓvR, tvU )))

+ sgn(〈ΓvL, ΓvR〉)) �= 0. (2.22)

The 1
2 appears in the definition of S(T, t) such that S(T, t) is ±1 instead

of ±2N−1 for flow trees. Similarly, Condition C can be reformulated as∏N
i=1 Ω(Γi) �= 0. Thus, if one knows that Condition B is satisfied, the
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Figure 2: Flow tree T(12)3 corresponding to (12)3.

contribution of a flow tree to the index can be found essentially by iteration
of equation (2.18). The product S(T, t) determines whether the tree corre-
sponds to (stable) BPS-states, and the contribution of the flow tree to the
index is given by the KS-formula. Some subtleties arise if multiple endpoints
have equal charges; the next section will comment on this.

Much of the power of the split attractor flow conjecture lies in the pos-
sibility of recursive applications of arguments based on simple, elementary
flow trees. The most elementary rooted tree is �. However, verification of
Condition A does not require determination of the flow of the moduli along
its edges. This aspect becomes important for the rooted tree corresponding
to (12)3, which is displayed in figure 2. We denote this flow tree by T(12)3;
the closely related flow trees with the same total charge are T(23)1 and T(31)2.
Assuming that Condition B is satisfied, stability of the split at v1 is deter-
mined by sgn(I(1+2)3 Im(Z(Γ1 + Γ2, t)Z̄(Γ3, t))), and similarly the stability
of vL by sgn(I12 Im(Z(Γ1, t1)Z̄(Γ2, t1))). One might think that the flow of
the periods must be determined explicitly to determine sgn(I12 Im(Z(Γ1,
t1)Z̄(Γ2, t1))) in terms of t, but this follows fortunately more directly from
equation (2.16). To see this, take first Γ′ = Γ3 in equation (2.16), which
shows that v1 corresponds to the flow parameter ρ1:

ρ1 =
Im(Z(Γ1 + Γ2, t)Z̄(Γ3, t))

〈Γ1 + Γ2, Γ3〉 |Z(Γ1 + Γ2 + Γ3, t)|
.

If one now substitutes ρ1 for ρ =
√

G4/2r and Γ′ = Γ1 in equation (2.16),
and uses that Z(Γ1 + Γ2, t1)||Z(Γ3, t1) and eU > 0, one finds the desired
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result

sgn
(
Im
(
Z(Γ1, t1)Z̄(Γ2, t1)

))

= sgn
(

I(2+3)1

I(1+2)3
Im
(
Z(Γ1 + Γ2, t)Z̄(Γ3, t)

)
+ Im

(
Z(Γ1, t)Z̄(Γ2 + Γ3, t)

)
)

.

(2.23)

A more symmetric way of writing this is

sgn
(
Im
(
Z(Γ1, t1)Z̄(Γ2, t1)

))

= sgn

⎛

⎝
∑

cyclic permutations of ijk

I(i+j)k

I(1+2)3
Im
(
Z(Γi, t)Z̄(Γj , t)

)
⎞

⎠ , (2.24)

which makes more manifest that if Im
(
Z(Γ1, t1)Z̄(Γ2, t1)

)
= 0 all three

central charges are aligned. It also shows that we have determined the
stability at vL of the two other trees T(23)1 and T(31)2; the only part that
changes is I(1+2)3. These expressions show that Condition A can be deter-
mined for any flow tree in terms of t in an algorithmic way. Note that T(12)3

can satisfy Condition A, while T(12) does not if evaluated at t. See the
discussion on page 28 and further for more details about this for D4-D2-D0
branes. If Condition B is satisfied and the splits of the charges are primitive,
one can determine the contribution to the index from this flow tree:

Ω((12)3; t) = 1
4(−1)I12+I31+I23 I(1+2)3 I12 Ω(Γ1) Ω(Γ2) Ω(Γ3)

×
(
sgn
(
Im(Z(Γ1 + Γ2, t)Z̄(Γ3, t))

)
+ sgn( I(1+2)3)

)

×
(
sgn
(
Im(Z(Γ1, t1)Z̄(Γ2, t1))

)
+ sgn(I12)

)
. (2.25)

The contribution of a tree with non-primitive splits has probably a very
similar structure. The analysis of Subsections 2.1 and 3.2 suggests that the
Ω’s should be replaced by Ω̄’s and that a non-trivial overall factor might
appear.

These generic and exact expressions are useful to make generic statements
about attractor flow trees. A non-trivial question is for example whether
the indices based on attractor flow trees only jump when walls of marginal
stability for the total charge Γ are crossed, and not when something non-
trivial happens for the subcharges at the relevant trivalent vertices. This is
of course required by physical arguments, although not completely obvious
for flow trees. Denef and Moore [15] shows that this is indeed the case in
several concrete examples with N = 3. Using equation (2.24) one can show
that for N = 3, the interplay between the three trees T(12)3, T(23)1 and T(31)2
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is such that the index does not change when the stability of the splits at
vL,R changes. Equation (2.24) shows that Ω((12)3; t) can jump, if

sgn

⎛

⎝
∑

cyclic permutations of ijk

I(i+j)k Im
(
Z(Γi, t)Z̄(Γj , t)

)
⎞

⎠ (2.26)

goes from ±1 to ∓1 via 0. This is not necessarily a wall of marginal sta-
bility for Γ =

∑3
i=1 Γi. However, the contributions to the index of the trees

T(23)1 and T(31)2, respectively Ω((23)1; t) and Ω((31)2; t), are very similar to
Ω((12)3; t). In particular, they also contain a factor (2.26) and will thus also
jump when Ω((12)3; t) does. To show that Ω(Γ; t) does not jump, we have
to show that the coefficient of the term (2.26) in Ω((12)3; t) + Ω((23)1; t) +
Ω((31)2; t) is zero, if (2.26) is zero. One can show that if (2.26) vanishes,
I(1+2)3 Im(Z(Γ1 + Γ2, t)Z̄(Γ3, t)) and the cyclic permutations have all the
same sign; this is generically true in a neighborhood of the hypersurface
where (2.26) is zero. Since

∑
cyclic permutations of ijk I(i+j)kIij = 0, the coeffi-

cient of (2.26) thus vanishes. Note that it is very important here that the
stability of the subtree is evaluated at v1 and not at v0. This result for
N = 3 can be applied inductively. Thus the index determined by attractor
flow trees does only jump when walls for the total charge are crossed.

This derivation essentially ignored Condition B. More precisely put, it
assumes that if one of the trees, say T(12)3, exists as flow tree at some point
in moduli space, it cannot be true that Condition B is not satisfied for T(23)1,
if Conditions A and C are satisfied (and similarly for T(31)2). To argue that
this is correct, assume that this could be the case, and that at least one
of the splits of T(23)1 is a wall of anti-marginal stability. If the moduli are
then moved to the point where (2.26) vanishes, T(12)3 implies that the three
central charges align for t1, whereas T(23)1 implies that some will anti-align,
which is a contradiction.

Another application of equation (2.23) is the analysis of walls of threshold
stability, these are walls in moduli space where the central charges of say
ΓL and ΓR get aligned, with 〈ΓL, ΓR〉 = 0. For N = 3, this is for example
〈Γ1 + Γ2, Γ3〉 = 0 or a cyclic permutation. Specific examples of such cases
are discussed in Ref. [5].

3 D4-D2-D0 BPS-states

This section applies the generic discussion of the previous section to D4-D2-
D0 BPS-states. One of the aims is to construct a BPS partition function
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which correctly captures the moduli dependence. The BPS partition func-
tion of N = 2 supergravity in the mixed ensemble [41] takes the following
approximate form:

Z(τ, C, t) =
∑

QA

Ω(Γ; t) exp
(

−2π
β

gs
|Z(Γ, t)| + 2πiCA QA

)

,

where A = 0, . . . , b2. We will use β/gs = τ2 and C0 = τ1 in the following.
Part 2 of the split attractor flow conjecture suggests the decomposition of
the partition function by rooted trees T :

Z(τ, C, t) =
∑

T∈TP

ZT (τ, C, t). (3.1)

In contrast to the previous section, a rooted tree T in this sum corresponds
to a nested list of magnetic charges PA

i with the electric charge unspecified;
TP is the total set of trees based on nested lists of magnetic charge vectors
PA with

∑N
i=1 PA

i = PA. The partition function enumerates all possible
distributions of electric charge over the endpoints of these rooted trees, and
determines as function of t whether they correspond to actual flow trees and
contribute to the index. This section will always use trees in this sense. Thus
T(11) is a tree with equal magnetic charge vectors associated to the endpoints,
which can still have a non-zero contribution to the index depending on the
electric charges.

To proceed, we make two simplifications:

1. P 0 = 0, such that there is no netto D6-brane charge. The reason for
this simplification is that the microscopic description is much better
understood for immortal BPS-objects with P 0 = 0 than for P 0 �= 0 by
a lift to M-theory [35]. The near-horizon geometry of the resulting
black string is AdS3 × S2 and the degrees of freedom combine to a
two-dimensional N = (4, 0) conformal field theory [39].

2. J → ∞, which is the large volume limit of the Kähler moduli space. In
this limit, quantum effects to the geometry do not play a role such that
(relatively) basic geometric arguments generally suffice. The D-branes
are well described in this limit as coherent sheaves on subspaces of X.

In the large volume limit the magnetic charge P (or equivalently the
divisor wrapped by the D4-branes) must be positive, since it represents the
support of a coherent sheaf. The BPS-states with P 0 = 0, which correspond
to a single AdS3 throat in 5 dimensions (or equivalently M5-brane), appear in
4 dimensions as single centered or as multi-centered supergravity solutions.
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In particular, BPS-states corresponding to the principal or polar terms in
the partition function appear as bound states of D6 and anti-D6 branes [15].
When the moduli are varied such bound states might in principal decay.
However this cannot happen in the large volume limit J → ∞. Boer et al. [5]
show that for ta = limλ→∞ DabQb + iλP a, with Dab = dabcP

c, an uplift to
5 dimensions leads to only a single AdS3 throat. Since in the limit λ → ∞
the dependence on λ disappears, this limit is closely related to the attractor

point for D4-D2-D0 black holes, which is: t(Γ) = DabQb + i
√

Q̂0̄/P 3P a (Q̂0̄

is defined in the next subsection). These findings are consistent with the
results in [36], where an analysis of the partition function showed that for
t = limλ→∞ DabQb + iλP a, Ω(Γ; t) equals the CFT index.

Based on these considerations, one could state that the CFT states are
those BPS-states in 4 dimensions, which cannot decay in the large volume
limit. Since we will work exclusively in the large volume limit, we will use
the word “immortal” for the objects which cannot decay in this limit and
omit the t-dependence of the index: Ω(Γ). These immortal objects form
of course a bigger class than the objects which are immortal in the whole
moduli space. Note that different electric charges correspond to different
attractor points: Ω(Γ′; t(Γ)) does not correspond to Ω(Γ′) generically.

3.1 BPS mass and stability

The form of the partition function shows that its convergence is essentially
determined by properties of the mass |Z(Γ, t)| and of the indices Ω(Γ; t). The
contribution to the partition function of a flow tree with a single endpoint
is known to be convergent by CFT arguments. However, it is not evident
that the contributions of flow trees with more endpoints always lead to
convergent partition functions. This subsection proofs that this is the case
for flow trees with 1, 2 and 3 endpoints with D4-brane charge, which gives
strong evidence that this will continue to hold for N > 3.

The central charge Z(Γ; t) is for J → ∞ given by

Z(Γ, t) = −
∫

X
e−t ∧ Γ.

The real and imaginary parts of Z(Γ, t) for D4-D2-D0 BPS-states are

Re(Z(Γ, t)) = 1
2P · (J2 − B2) + Q · B − Q0,

Im(Z(Γ, t)) = (Q − BP ) · J, (3.2)
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where the triple intersection product dabc is used to contract vectors. For
P · J2 � |(Q − 1

2B) · B − Q0|, |(Q − BP ) · J |, the mass takes the form:

|Z(Γ, t)| = 1
2P · J2 + (Q − 1

2BP ) · B − Q0 + (Q − B)2+, (3.3)

where terms of O(J−2) are omitted. Note that at the attractor point t(Γ),
J is never sufficiently large such that equation (3.3) is a valid approximation
for |Z(Γ, t(Γ))|. The charges Qa naturally take values in the lattice Λ∗, dual
to Λ which has quadratic form Dab = dabcP

c and signature (1, b2 − 1) by
the Hodge index theorem [29]. Q2

+ = (Q·J)2

P ·J2 is the projection to a positive
definite subspace of Λ ⊗ R parametrized by j = J/|J |. The positive definite
combination 2Q2

+ − Q2 = Q2
+ − Q2

− is called the majorant associated to j.
Two expressions which are invariant under the action of K(k) (2.14) are
Q̂0̄ = −Q0 + 1

2Q2 and Qa − dabcB
bP c.

Expression (3.3) is potentially problematic, since |Z(Γ, t)| − 1
2P · J2 is

not obviously bounded below. This would therefore allow the possibility
that addition of electric charge can result in a decrease of the mass, which
is clearly unphysical. This would also have the direct consequence that if
such states are part of the spectrum, the partition function (3.1) with the
electric charges in the canonical ensemble is not convergent, independent of
the growth of the index (except that it is non-zero).

To explain the problem more concretely, we consider a rooted tree with N
endpoints, with (possibly non-primitive) charges Γi, i = 1, . . . , N . To every
endpoint a lattice Λi with quadratic form Di = dabcP

c
i is associated. By a

slight abuse of notation, we use P = (P1, P2, . . . , PN ) ∈ Λ1 ⊕ Λ2 ⊕ · · · ⊕ ΛN

in addition to P =
∑N

i Pi ∈ Λ; and similarly for Q = (Q1, Q2, . . . , QN ) ∈
Λ∗

1 ⊕ Λ∗
2 ⊕ · · · ⊕ Λ∗

N . Using the duality invariant expressions one can write
the mass as

1
2
P · J2 + (Q − B)2+ +

N∑

i=1

Q̂0̄,i −
1
2
(Qi − BPi)2i . (3.4)

The attractor endpoints only exist for Q̂0̄,i ≥ −cR,i/24 = −(P 3
i + c2(X) ·

Pi)/24, where cR,i are the CFT central charges of the endpoints [35]. The
problem is thus reduced to the fact that the quadratic form (Q − B)2+ −
∑N

i=1
1
2(Qi − BPi)2i is indefinite with signature (Nb2 − N + 1, N − 1).
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However, this section will show that it is positive definite if Condition A
is satisfied:

Condition A =⇒ (Q − B)2+ −
N∑

i=1

1
2
(Qi − BPi)2i ≥ 0, (3.5)

thus it is in particular always positive definite for flow trees.

To this end, we start by taking a closer look at Condition A for these BPS-
states. From equation (3.2) is clear that the central charge gets aligned
along the positive real axis of the C-plane for J → ∞, the infinitesimal
angle with the real axis can nevertheless vary, which leads to interesting
wall-crossing phenomena. For a split (Γ1, Γ2), I12 Im(Z(Γ1, t)Z̄(Γ2, t)) ≥
0 becomes for J → ∞ and constituent charges Γ1 = (0, P1, Q1, Q0,1) and
Γ2 = (0, P2, Q2, Q0,2):

I12

(
P1 · J2 (Q2 − BP2) · J − P2 · J2(Q1 − BP1) · J

)
≤ 0, (3.6)

where only the leading order in J is kept. Note that for this approximation
no walls of marginal stability exist for Calabi–Yaus with b2 = 1. The sta-
bility condition is invariant under rescalings of J : B + iJ → B + iλJ with
λ > 0. The space of variations of equation (3.7) due to J has therefore b2 − 1
dimensions, and is essentially a real projective space. Similarly, variations of
B which are proportional to J do not change the stability condition. Thus
the total space of stability conditions in the case of interest has real dimen-
sion 2(b2 − 1). Since equation (3.6) is either ±∞ or 0 for J → ∞, we define
a homogeneous function of degree 0:

I(Γ1, Γ2; t) =
P1 · J2 (Q2 − BP2) · J − P2 · J2(Q1 − BP1) · J√

P1 · J2 P2 · J2 P · J2
. (3.7)

This has the special property that

I(Γ1, Γ2; t)2 = |Z(Γ1, t)| + |Z(Γ2, t)| − |Z(Γ, t)|.

Equation (3.6) is reminiscent of the stability condition for sheaves on sur-
faces, but already when subleading powers in J are taken into account, the
equivalence between D-branes and coherent sheaves disappears [16]. Note
that for P2 = �0, the wall of marginal stability is given by Q2 · J = 0. In
case P2 = �0, Q2 must be a positive vector in the large volume limit, since
it represents the support of a coherent sheaf. Therefore, Q2 · J lies at the
boundary of the Kähler cone, and such walls are not crossed, since we restrict
ourselves to the Kähler cone. The assumption that the Pi are positive for
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every endpoint, as was assumed in writing equation (3.4), is thus consistent
with the restriction to this regime of the moduli space.

For a rooted tree, Condition A can be verified by the product S(T, t),
which can be determined iteratively using equation (2.23). To determine
the contribution to the partition function of a rooted tree, also Conditions
B and C on page 12 should be verified. The existence of the attractor
point of all endpoints (Condition C) is determined by the CFT partition
functions, the attractor point exists if Q̂0̄,i ≥ −cR,i/24 (note again that for
Q̂0̄ < 0 multicenter solutions are required, but they cannot decay in the large
volume limit). Finally, Condition B is essentially assumed by neglecting
the lower orders in J to the stability condition: Re(Z(Γ, t)) ≈ 1

2P · J2 � 0.
Alternatively, one can estimate the flow of the moduli as in [1], to see that
in the very large volume limit the central charges will never be anti-parallel
at the vertices.

The remaining part of this subsection will proof implication (3.5) for trees
with 1, 2 and 3 endpoints, and comment briefly on N > 3. Also the contri-
butions to the partition functions of these trees are discussed.

3.1.1 One endpoint

This case is trivial, since the potentially harmful term can be rewritten as

(Q − B)2+ − 1
2(Q − B)2 = 1

2(Q − B)2+ − 1
2(Q − B)2−, (3.8)

which is positive definite on Λ. Before moving on to N = 2, a couple proper-
ties of the partition function for N = 1 are reviewed. The partition function
ZT1(τ, C, t) can be written in the following form:

ZT1(τ, C, t) =
∑

Q0, Q

Ω(P, Q, Q0) (−1)P ·Qe(−τ̄(−Q0 + Q2/2) + τ(Q − B)2+/2

+ τ̄(Q − B)2−/2 + C · (Q − B/2)),

where the leading term to the mass in (3.3) is omitted since it leads to a
modular invariant overall factor. The lower bound of the mass together with
the expected growth of the index imply that the series is convergent.

The CFT, which describes the degrees of freedom of immortal objects
in the large volume limit, contains a spectral flow symmetry, which implies
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that the indices Ω(P, Q, Q0) only depend on Q̂0̄ = −Q0 + 1
2Q2, and the rep-

resentative μ of Q − 1
2P 2 in the coset Λ∗/Λ [4,24]. This symmetry is also a

well-known property of the dual supergravity in AdS3 [5]. Modularity and
spectral flow furthermore imply that the CFT elliptic genus can be decom-
posed in a theta function and a vector-valued modular form hP,Q− 1

2
P (τ)

[4, 24]:
hP,Q− 1

2
P (τ) =

∑

Q0

Ω(P, Q, Q0) q−Q0+ 1
2
Q2

, (3.9)

which satisfy the special property that hP,Q− 1
2
P (τ) = hP,Q− 1

2
P+k(τ) with k ∈

Λ. The definition (3.9) can be found in the existing literature, however Sub-
section 3.2 gives evidence for replacing the integer coefficients Ω(P, Q, Q0)
by the rational coefficients Ω̄(P, Q, Q0) for compatibility with S-duality.

3.1.2 Two endpoints

This case is dealt with by [36]. The potentially problematic term is in this
case

(Q − B)2+ − 1
2(Q1 − B)21 − 1

2(Q2 − B)22. (3.10)

To proof that this quantity is positive definite if S(T12, t) �= 0 is satisfied,
we can replace Qi − BPi by Qi without loss of generality. We proceed by
writing the quantities in equations (3.6) and (3.10) in terms of vectors in
(Λ1 ⊕ Λ2) ⊗ R, such that we can apply techniques of [27,51]. Define the unit
vectors J2, P12 and s12 ∈ (Λ1 ⊕ Λ2) ⊗ R by

J2 =
(J, J)

√
(P1 + P2) · J2

, P12 =
(−P2, P1)√

(P1 + P2)P1P2

,

s12 =
(−P2 · J2 J, P1 · J2 J)

√
(P1 + P2) · J2 P1 · J2 P2 · J2

. (3.11)

Innerproducts of these vectors with Q = (Q1, Q2) give the familiar quantities
in S(T12): P12 · Q = I12/

√
PP1P2 and s12 · Q = I(Γ1, Γ2, iJ). These vectors

satisfy:

Proposition 3.1.

s12 · J2 = 0, J2 · P12 = 0, s12 · P12 ≥ 1. (3.12)

Proof. The first two identies follow trivially. It is straightforward to show
that the third identity is positive. To show that it is ≥ 1, notice that the
lattice Λ1 ⊕ Λ2 has signature (2, 2b2 − 2). The three vectors J2, P12 and s12

2The shift by 1
2
P arises since Q is valued in the shifted lattice Λ∗ + 1

2
P [23, 38].
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are positive definite and since J2 is orthogonal with s12 and P12, they span
a lattice with signature (2, 1) if they are all linearly independent. Therefore,

∣
∣
∣
∣
∣
∣

1 0 0
0 1 s12 · P12

0 s12 · P12 1

∣
∣
∣
∣
∣
∣
< 0,

which is equivalent to s12 · P12 ≥ 1, where equality only holds if s12 = P12.
�

In terms of these vectors, the claim becomes:

Proposition 3.2. For Q = (Q1, Q2) ∈ Λ∗
1 ⊕ Λ∗

2, sgn(s12 · Q) − sgn(P12 ·
Q) �= 0 implies

(Q1)21 + (Q2)22 − (Q · J2)2 < 0. (3.13)

Proof. We can assume that P12 and s12 are linearly independent, since oth-
erwise sgn(s12 · Q) − sgn(P12 · Q) = 0. Therefore, Q, J2, P12 and s12 span
generically a subspace of Λ1 ⊕ Λ2 with signature (2, 2), or else Q is a linear
combination of J2, P12 and s12. Therefore,

∣
∣
∣
∣
∣
∣
∣
∣

Q2 Q · J2 Q · P12 Q · s12

Q · J2 1 0 0
Q · P12 0 1 s12 · P12

Q · s12 0 s12 · P12 1

∣
∣
∣
∣
∣
∣
∣
∣

≥ 0,

which is equivalent to

Q2 − (Q · J2)2 ≤ (Q · P12)2 + (Q · s12)2 − 2 Q · P12 Q · s12 s12·P12

1 − (s12 · P12)2
.

Since sgn(s12 · Q) − sgn(P12 · Q) �= 0 implies Q · P12 Q · s12 ≤ 0, the propo-
sition follows. �

Before we continue with N = 3, we elaborate a bit more on the contribu-
tion of N = 2 flow trees to the partition function. To construct the partition
function, first the contribution of the flow tree to the index must be deter-
mined. We assume here that the magnetic vectors are primitive, such that
the primitive wall-crossing formula can be used. Subsection 3.2 comments
on the implications of non-primitive wall-crossing for the partition function.

Since the D0-brane charges Q0,i do not appear in the stability condi-
tion, the derivation of the jump becomes somewhat more complicated. To
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determine the change between two adjacent chambers CA and CB, the spec-
trum can be truncated to states with charges Γ1 = (P1, Q1, Q0,1), Γ2 =
(P2, Q2, Q0,2) and Γ = (P, Q, Q0) with (P1, Q1) + (P2, Q2) = (P, Q). Here
the (Pi, Qi) are kept fixed, but the Q0,i are not since the wall is independent
of Q0(,i). Equation (2.5) can thus be truncated to

∏

Q0,1

T
Ω(Γ1)
Γ1

∏

Q0

T
Ω(Γ;tA)
Γ

∏

Q0,2

T
Ω(Γ2)
Γ2

=
∏

Q0,2

T
Ω(Γ2)
Γ2

∏

Q0

T
Ω(Γ;tB)
Γ

∏

Q0,1

T
Ω(Γ1)
Γ1

.

(3.14)

The Lie algebra elements eΓ are central. Using the Baker–Campbell–
Hausdorff formula for this algebra eXeY = eY e[X,Y ]eX , one can derive that
the change in the index across the wall is:

ΔΩ(Γ; tA → tB) = (−1)P1·Q2−P2·Q1−1 (P1 · Q2 − P2 · Q1)

×
∑

Q0,1+Q0,2=Q0

Ω(Γ1; tA) Ω(Γ2; tB). (3.15)

This change of the index was assumed in [36], but not derived from the
KS-formula.

Since equation (3.15) gives the jump of the index towards the stable cham-
ber, the contribution ΩT12(Γ; t) of T12 to the total index, is given by equation
(3.15) with the moduli at the right hand side at the corresponding attractor
points. One finds for the generating function

hT12,Q− 1
2
P (τ ; t) =

∑

Q0

ΩT12(Γ; t) q−Q0+ 1
2
Q2

=
∑

Q1+Q2=Q

1
2( sgn(I(Γ1, Γ2; t)) − sgn(I12)) ) (−1)P1·Q2−P2·Q1

× (P1 · Q2 − P2 · Q1) q
1
2
Q2− 1

2
(Q1)21− 1

2
(Q2)22

× hP1,μ1(τ)hP2,μ2(τ),

where Q2 and (Qi)2i are the quadratic forms based on P and Pi respectively.
hT12,Q− 1

2
P (τ ; t) is not a vector-valued modular form; however Manschot [36]

continues by showing that summing over the D2-brane charges, leads to the
partition function

ZT12(τ, C, t) =
∑

(μ1,μ2)∈Λ∗
1/Λ1⊕Λ∗

2/Λ2

hP1,μ1(τ)hP2,μ2(τ) Ψ(μ1,μ2)(τ, C, B),

(3.16)



WALL-CROSSING OF D4-BRANES USING FLOW TREES 25

with

Ψ(μ1,μ2)(τ, C, B) =
∑

Q1∈Λ1+μ1+P1/2
Q2∈Λ2+μ2+P2/2

S(T12, t) I12 (−1)P1·Q1+P2·Q2−1

× e

⎛

⎝τ(Q − B)2+/2 + τ̄

⎛

⎝
∑

i=1,2

(Qi − B)2i − (Q − B)2+

⎞

⎠

/

2

+ C · (Q − B/2)

⎞

⎠ . (3.17)

Ψ(μ1,μ2)(τ, C, B) determines which charge combinations are stable and which
are not. It does not transform as a theta function, but using techniques of
indefinite theta functions [51], one can complete it to a function Ψ∗

(μ1,μ2)

(τ, C, B) which does transform as a theta function with weight (1
2 , b2 + 1

2).
We therefore call Ψ(μ1,μ2)(τ, C, B) a mock Siegel theta function. Using the
completed function, ZT12(τ, C, t) transforms precisely as ZT1+2(τ, C, t) (with
T1+2 the N = 1 flow tree with magnetic charge P1 + P2). An intriguing
phenomenon of the modular completion is that it replaces the discontinu-
ity of the partition function across walls by a continuous transition. One
could say that the discontinuous invariants Ω(Γ; t) are replaced by functions
Ω(Γ; t, τ2) of t and τ2, which approach the original invariants in the limit
τ2 → ∞. If this structure is valid in general, taking the limit and crossing a
wall between CA and CB, leads to the following commutative diagram:

Ω(Γ; tA, τ2)

τ2→∞
��

tA→tB �� Ω(Γ; tB, τ2)

τ2→∞
��

Ω(Γ; tA) KS �� Ω(Γ; tB)

For a better understanding of the way Ψ(μ1,μ2)(τ, C, B) determines, which
states are stable and which not, we explain briefly the concept of indefinite
theta functions.

Indefinite theta function

An indefinite theta function sums over part of an indefinite lattice, which
belongs either to the positive or negative definite part of the lattice. Typ-
ically such sums do not transform as modular forms, but can be made
so in special cases by the addition of a non-holomorphic term [51]. The
idea is most easily explained by considering a lattice Λ with signature
(1, b2 − 1) [27,51].
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Figure 3: An indefinite lattice; the lattice points inside the green region
contribute to the theta function defined in the text.

Given two positive vectors J,P ∈ Λ with J · P > 0, one can proof that the
condition 1

2(sgn(J · Q) − sgn(P · Q)) �= 0 implies that Q2 < 0. This proof is
completely analogous to the proof of Proposition 3.2; just omit the term
with Q · J2 and identify P, J with P12 and s12. Figure 3 displays the lattice
points for which the condition is satisfied for a two-dimensional lattice with

quadratic form
(

−1 0
0 1

)

(which is incidentally the intersection form of

2-cycles on CP
2 blown up at a point). The green region in the figure contains

the lattice points for which the condition is satisfied. This region changes
when J and/or P are varied. (From the point of view of wall-crossing, we
think of P as fixed and J as variable.)

The indefinite theta function is defined as the sum over all lattice points,
satisfying the condition:

θμ(τ̄ , z) =
∑

k∈Λ

1
2(sgn(J · Q)) − sgn(P · Q)) q̄k2/2yk, (3.18)

which is convergent. Its Fourier coefficients are locally constant as function
of J , but can change if the boundary of the green region passes a lattice
point. These indefinite theta functions do not have the nice modular prop-
erties which holomorphic theta functions or Siegel theta functions are known
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to have. However, the indefinite theta function can be completed to a func-
tion with the familiar modular properties, by replacing sgn(x) in (3.18) by
E(x

√
τ2) with E(z) = 2

∫ z
0 e−πu2

du [51]. Note that the discontinuous func-
tion sgn(Q · J) as function of J is replaced now by a continuous function.
Moreover, E(x

√
τ2) approaches sgn(x) for τ2 → ∞, the “thickness of the

step” is of order of
√

2/τ2.

The function Ψ(μ1,μ2)(τ, C, B) is very similar to the function (3.18). An
important difference is that the boundary of the positive definite cone
depends on the moduli by Q · J2 in equation (3.13). Another difference is
that Ψ(μ1,μ2)(τ, C, B) contains the factor P1 · Q2 − P2 · Q1 multiplying the
exponential, which leads to a more complicated modular completion.

Entropy enigma

One can easily compare the relative magnitude of the contribution to the
index of flow trees with N = 1 and 2 using the partition function (3.16).
A special class is formed by flow trees with N > 1 whose index exceeds the
index of the flow tree with N = 1, the so called entropy enigmas. We consider
here entropy enigmas in the Cardy regime of the CFT where Q̂0̄ � P 3.
Andriyash and Moore [1] showed earlier the existence of entropy enigmas

for D4-D2-D0 branes for weak topological string coupling gtop ∼
√

Q̂0̄/P 3.
The entropy of the single center is in the Cardy regime:

π

√
2
3
(P 3 + c2 · P )

(
Q0̄ + 1

2Q2
)
. (3.19)

Application of the Cardy formula to equation (3.16) shows that the condition
for enigmatic N = 2 flow trees is:

(P 3 + c2 · P )
(
Q0̄ + 1

2Q2
)

< (P 3
1 + P 3

2 + c2 · P )
(
Q0̄ + 1

2(Q1)21 + 1
2(Q2)22

)
.

(3.20)

Note that the right-hand side also captures the entropy due to distribut-
ing the total D0-brane charge in different ways between the two endpoints,
otherwise one should just add up the entropy of both endpoints.

Charges Γ1 and Γ2, which satisfy this relation, are not hard to find. To
this end, write Q as μ − P/2 + k with μ ∈ Λ∗/Λ and k ∈ Λ. Choose Q
such that k2 = P1 · k2 + P2 · k2 = 0. Therefore, P1 · k2 = −P2 · k2. Without
loss of generality we can assume that P1 · k2 ≥ 0. Taking Q2 = 0 leads now
to an enigmatic configuration for sufficiently large k. It is not difficult to
see that this can very well happen for strong topological string coupling

gtop ∼
√

Q̂0̄/P 3 � 1. Substituting this choice of charges into the stability
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condition shows that there exist regions in the moduli space where such
bound states are stable. These enigmas show that one has to be careful by
estimating the magnitude of the total index by the CFT index away from
the attractor point.

3.1.3 Three endpoints

This subsection discusses flow trees with three endpoints with D4-D2-D0
charges. We will proof that also in this case the claim (3.5) is true, such
that the partition function for flow trees with N = 3 is convergent. The
total lattice is now a sum of three lattices: Λ1 ⊕ Λ2 ⊕ Λ3. The case N = 3
is qualitatively different from N = 2, since the flow of the moduli needs to
be taken into account. What we want to proof is:

S(T(12)3, t) �= 0 =⇒ (Q − B)2+ −
3∑

i=1

1
2
(Qi − BPi)2i ≥ 0, (3.21)

with S(T(12)3, t) given by equations (2.22) and (2.23).

The requirement that the stability of the subtree (12) is determined in
terms of t1 instead of t has the consequence that the stability condition is
not directly related to a determinant like equation (3.14). Therefore, we
will reduce S(T(12)3, t) �= 0 to special cases where an argument based on
a determinant can be used. To this end, define for generic flow trees the
“unphysical” condition:

Condition U :

U(T, t) =
∏

v∈V

1
2 (sgn(〈ΓvL, ΓvR〉) − sgn(I(ΓvL, ΓvR, t))) �= 0.

Note that the non-vanishing of U(T, t) is determined here by the stability of
all splits at v ∈ V in terms of t. If stability would be based on this condition,
the jumps of the index might appear at other points in the moduli space
than the walls of marginal stability for the total charge. It is however a
useful condition since:

Proposition 3.3.

U(T, t) �= 0 =⇒ (Q − B)2+ −
N∑

i=1

1
2
(Qi − BPi)2i ≥ 0, (3.22)

Proof. It is again sufficient to proof the proposition for B = 0. The vectors
defined in equation (3.11), are easily generalized to vectors for vertex 1 in
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the tree T : 1 → 1L, and 2 → 1R. In terms of these vectors, Condition U
becomes:

U(T, t) =
∏

v∈V

1
2(sgn(PvLR · (QvL, QvR)) − sgn(svLR · (QvL, QvR))) �= 0.

(3.23)
We will use induction to arrive at the desired result. The proposition is true
for N = 2 by Proposition 3.2. For general N > 2, the attractor flow tree can
be seen as a combination of two trees T1L and T1R, which merge at vertex 1.
We index the endpoints of T1L and T1R respectively by i = 1, 2, . . . , k and
i = k + 1, . . . , N , such that the left-hand side of the inequality in equation
(3.22) is equal to

(Q1L · J)2

P1L · J2
−

k∑

i=1

(Qi)2i +
(Q1R · J)2

P1R · J2
−

N∑

i=k+1

(Qi)2i − (s1LR · (Q1L, Q1R))2.

(3.24)
The product U(T, t) factorizes as

U(T, t) = 1
2(sgn(P1LR · (Q1L, Q1R))

− sgn(s1LR · (Q1L, Q1R)))S(TL, t)S(TR, t). (3.25)

By the induction hypothesis, the sum of the first two terms is positive if
S(TL, t) is non-zero, and the similarly the sum of the second two if S(TR, t)
is non-zero. Therefore one can argue analogously to the proof of Proposition
3.2 that (Q1, Q2. . . . , QN ), J2, P1LR and s1LR span a space of signature (2, 2)
in Λ1 ⊕ Λ2 ⊕ · · · ⊕ ΛN . Equation (3.24) is therefore negative if U(T ) �= 0.

�

For a tree with N = 3, S(T(12)3, t) �= 0 implies in most cases that U(T, t) �=
0, with T one of the three trees with N = 3. Specifically, S(T(12)3, t) �= 0
together with

I12

(
I2(31) P1 · J2 + I(23)1 P2 · J2

)
≤ 0, (3.26)

implies U(T12, t) �= 0, and consequently U(T(12)3, t) �= 0. To analyze the
remaining cases, we divide them into three classes:

I : I12 I31 > 0 and I12 I23 < 0,

II : I12 I31 < 0 and I12 I23 > 0, (3.27)
III : I12 I31 > 0 and I12 I23 > 0.
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To proof the positivity for these classes, we only need to be concerned with
those trees for which S(T12, t) = 0 and S(T(12)3, t) �= 0. Then it is possi-
ble to show that I implies U(T2(31), t) �= 0; and similarly that II implies
U(T1(23), t) �= 0. Class III cannot be reduced to U(T, t) �= 0 for some T , and
the proof requires a little more work.

Let P = P1 + P2 + P3 and define the following unit vectors:

P12 =
(−P2, P1, 0)

√
(P1 + P2)P1P2

, P23 =
(0,−P3, P2)√
(P2 + P3)P2P3

,

P31 =
(P3, 0,−P1)√
(P1 + P3)P1P3

, P(12)3 =
(−P3,−P3, P1 + P2)√

P (P1 + P2)P3

, (3.28)

s(12)3 =
(−P3 · J2 J,−P3 · J2 J, (P1 + P2) · J2 J)

√
P · J2 (P1 + P2) · J2 P3 · J2

,

J3 =
(J, J, J)√

P · J2
.

Analogously to Proposition 3.1, one can show various useful relations
between these vectors. The innerproduct of J3 with any other vector in (3.28)
vanishes. Furthermore,

P12 · s(12)3 = P12 · P(12)3 = 0, s(12)3 · P(12)3 > 1. (3.29)

Proposition 3.4. Let Q = (Q1, Q2, Q3) ∈ Λ∗
1 ⊕ Λ∗

2 ⊕ Λ∗
3. If the following

conditions are satisfied

a) (s(12)3 · Q) (P(12)3 · Q) ≥ 0,
b) (P12 · Q) (P31 · Q) ≥ 0,
c) (P12 · Q) (P23 · Q) ≥ 0,

(3.30)

then
3∑

i=1

(Qi)2i − (Q · J3)2 < 0. (3.31)

Condition a) is equivalent to the stability condition for the two center split
(1 + 2)3; Conditions b) and c) are equivalent to Condition III in equation
(3.27).

Proof. We start by showing an implication of condition (a) in (3.30). The
positive definite subspace of Λ is spanned by the orthonormal basis given by



WALL-CROSSING OF D4-BRANES USING FLOW TREES 31

J , P12 and P(12)3. Consequently, the vectors Q, s(12)3, J , P12 and P(12)3

span generically a space of signature (3, 2). Therefore,

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

Q2 Q · J3 Q · P12 Q · s(12)3 Q · P(12)3

Q · J3 1 0 0 0
Q · P12 0 1 0 0

Q · s(12)3 0 0 1 P(12)3 · s(12)3

Q · P(12)3 0 0 P(12)3 · s(12)3 1

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

> 0.

From this determinant follows that

Q2 − (Q · J3)2 − (Q · P12)2 < 0, (3.32)

if condition (a) in (3.30) is satisfied. Therefore Q, J3 and P12 span in this
case a space with signature (2, 1). We want to show that conditions (b) and
(c) imply that “−(Q · P12)2” can be omitted from the inequality. To this
end, we choose to complement the set of three vectors Q, J3 and P12 by

P23⊥ = P23 − (P23 · P(12)3)P(12)3, (3.33)

which is the component of P23 orthogonal to P(12)3. As a result, Q, J3,
P12 and P23⊥ span a space of signature (2, 2). Since P12 and P23⊥ are both
orthogonal to J3 and P(12)3, they span a space of signature (1, 1). Conditions
b) and c) imply that (P12 · Q) (P23⊥ · Q) > 0, since

P23⊥ =
1

PP3(P1 + P2)

(

PP1P3 P23 + PP2P3

√
P1P3(P1 + P3)
(P2 + P3)P2P3

P31

)

.

(3.34)

This also shows that P12 · P23⊥ < 0. Using these relations together with the
argument of the sign of the determinant:

∣
∣
∣
∣
∣
∣
∣
∣

Q2 Q · J3 Q · P12 Q · P23⊥
Q · J3 1 0 0
Q · P12 0 1 P12 · P23⊥
Q · P23⊥ 0 P12 · P23⊥ P2

23⊥

∣
∣
∣
∣
∣
∣
∣
∣

> 0,

one obtains the desired result

Q2 − (Q · J3)2 < 0. (3.35)

�
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This proof gives more confidence that positivity can be proven for any
N . It is conceivable that for any N , S(T, t) �= 0 can be reduced for most
T to U(T ′) �= 0 for several T ′, and that in the remaining cases it can be
proved as well. An obstacle for an easy inductive proof, analogous to the
one for U(T, t), is the fact that stability of subtrees at v0 is not ensured by
stability at v1. The quadratic form for T12 is not even positive definite for
S(T(12)3) �= 0.

Proposition 3.4 implies that the lattice sum

Ψ(μ1,μ2,μ3)(τ, C, B)

=
∑

Q1∈Λ1+μ1+P1/2
Q2∈Λ2+μ2+P2/2
Q3∈Λ3+μ3+P3/2

S(T(12)3, t) I(12)3 I12 (−1)P1·Q1+P2·Q2+P3·Q3

× e

(

τ(Q − B)2+/2 + τ̄

(
3∑

i=1

(Qi − B)2i − (Q − B)2+

)/

2

+ C · (Q − B/2)

)

, (3.36)

is convergent. Analogously to the discussion in Subsection 3.1.2, this object
does not transform as a modular form. Since it is a lattice sum it is not
unlikely that a modular completion exists for this sum as for N = 2. This is
also expected from S-duality. However, due to the complexity of S(T(12)3, t),
this does not seem as easy as straightforward. If S(T(12)3, t) is replaced by
U(T(12)3, t) one can iterate the procedure in [36]. We will not attempt to
find the modular completion of equation (3.36), but leave this for future
research.

Nevertheless, we can now write down the contribution of flow trees with
three endpoints to the partition function:

ZT(12)3
(τ, C, t) =

∑

(μ1,μ2,μ3)∈Λ∗
1/Λ1⊕Λ∗

2/Λ2⊕Λ∗
3/Λ3

hP1,μ1(τ) hP2,μ2(τ) hP3,μ3(τ)

× Ψ(μ1,μ2,μ3)(τ, C, B). (3.37)

The other topologies of the tree can similarly be taken into account. If the
Pi are primitive and different, the partition functions for N = 1, 2 and 3
capture correctly the total jumps of the indices across walls. We would also
like to include the case when the Pi are possibly equal. In that case one
must use the semi-primitive wall-crossing formula, we will come back to this
point in Subsection 3.2.
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Table 1: Non-zero intersection numbers of Calabi–Yaus with b2 = 2 [7] and
b2 = 3, 4 [33].

b2 2 3 4

dabc d111 = 8,
d112 = 4

d111 = 8, d112 = 2,
d113 = 2, d123 = 1

d112 = 4, d113 = 2, d122 = 4,
d123 = 2, d124 = 2, d134 = 1,
d224 = 2, d234 = 1

Numerical experiments

Besides the analytical proof of the claim, it is instructive to carry out numer-
ical experiments to answer questions like: what portion of the set of rooted
trees is a flow tree for given t? or what is the overlap between Conditions
A and U. I have done numerical experiments with three Calabi–Yaus, with
b2 = 2, 3 and 4. The Calabi–Yau with b2 = 2 is discussed in more detail
in [7], and b2 = 3, 4 in [33]. The only relevant data for our purpose are the
triple intersection numbers, which are listed in Table 1.

Many different tables with combinations of statistical data can be gener-
ated. I suffice here by giving Table 2, which lists the number configurations
with S(T(12)3, t) �= 0, the number for which U(T(12)3, t) �= 0, and the num-
ber of configurations which lie in both classes. A C++ code has searched
109 configurations per Calabi–Yau, using a random number generator. The
random number generator chose its values for the moduli and the charges in
the following domains: Ja ∈ [1, . . . , 12], P a ∈ [1, . . . , 10], Qa ∈ [−20, . . . , 20].
The variation of the quantities in the table between different runs of 109 con-
figurations is < 0.05%. Clearly, the physical condition S(T(12)3, t) �= 0 is less
often satisfied than the condition U(T(12)3, t) �= 0, although it is not a subset
of it. One can also read off from the table, that for all three Calabi–Yaus
the ratio of the number of charge combinations with T(12)3 stable, but T12

unstable in terms of t (S(T12, t) = 0), is between 6 and 7%. It would be

Table 2: Number of trees in a search of 109 trees T(12)3, for which
S(T(12)3, t) �= 0, U(T(12)3, t) �= 0 and the number of trees which satisfy both
conditions.

b2 S(T(12)3, t) �= 0 U(T(12)3, t) �= 0 S(T(12)3, t) �= 0⋂
U(T(12)3, t) �= 0

2 18147241 29465018 17016426
3 22255909 35817183 20750877
4 23264713 37135142 21654091
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interesting to better understand the dependence on Calabi–Yau, moduli or
charges of these and other ratios, and derive them analytically.

3.2 Non-primitive wall-crossing

This last subsection discusses some aspects of non-primitive wall-crossing.
Denef and Moore [15] presents a formula for the jumps of the index, for
semi-primitive wall-crossing Γ → NΓ1 + Γ2, which is known to be compat-
ible with the KS-formula. For the application to D4-D2-D0 BPS-states in
the large volume limit, where the walls are independent of Q0(,i), a wall-
crossing formula with an additional parameter for the D0-brane charge is
desired. This formula can be derived from the KS-formula similar to [9]. We
take the constituent charges to be Γ1 = (Nγ1, Q0,1) and Γ2 = (γ2, Q0,2), with
γ1 = (P1, Q1) and γ2 = (P2, Q2), respectively. One finds for the generating
series of the indices

∞∑

N=0

∑

Q0

ΔΩ((Nγ1 + γ2, Q0); t)uNvQ0

=
∞∑

Q0,2

Ω((γ2, Q0,2))vQ0,2

×
∞∏

k=1

∏

Q0,1

(
1 − (−1)I12kukvQ0,1

)I12 k Ω((kγ1,Q0,1))
. (3.38)

The ΔΩ(Γ; t) are the contributions to the index in a stable chamber for T12

with I12 > 0. For N = 1 one obtains our previous result (2.10). One finds
for N = 2:

ΔΩ(Γ; t) = −
∑

Q0,1+Q0,2=Q0

2I12 Ω((2γ1, Q0,1); t) Ω((γ2, Q0,2); t)

+
∑

Q0,1+Q0,2+Q0,3=Q0
Q0,1 �=Q0,3

I2
12 Ω((γ1, Q0,1); t)

× Ω((γ1, Q0,3); t) Ω((γ2, Q0,2); t)

+
∑

2Q0,1+Q0,2=Q0

1
2I12 Ω((γ1, Q0,1); t) Ω((γ2, Q0,2); t)

× (I12 Ω((γ1, Q0,1); t) − 1) . (3.39)

This expression raises a puzzle. The discussion of [36] (see the review on
page 22 and further), suggests that a prerequisite for S-duality invariance of
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the generating function of ΔΩ(Γ; t), is that it can be expressed in terms of
products of vector-valued modular forms of SL(2, Z). However, the “ − 1”
in the last line makes that a factor hP1,μ1(2τ) would appear in the cur-
rent case, which is not a vector-valued modular form of SL(2, Z) but of the
congruence subgroup Γ0(4). The resolution to this puzzle is that the cor-
rect definition of hP,μ(τ) is not as generating function of Ω(Γ) but instead
of Ω̄(Γ) =

∑
m|Γ

1
m2 Ω(Γ/m; t). Requiring that the newly defined hP,μ(τ)

transform as an SL(2, Z) vector-valued modular form is compatible with
semi-primitive wall-crossing. To this end, redefine hP,Q− 1

2
P (τ):

hP,Q− 1
2
P (τ) =

∑

Q0

Ω̄((P, Q, Q0)) qQ0̄+ 1
2
Q2

. (3.40)

The generating function of Ω(Γ) transforms only under a congruence sub-
group Γ0(M), with M a product of primes p: M =

∏
pαp |P pαp , for total

magnetic charge P . For N = 2, it is h2P1,2μ1(τ) − 1
4hP1,μ1(2τ) which has

an expansion with integer coefficients, but does not transform well under
SL(2, Z).

Using this new definition, the contribution to the generating function of
∑

Q0
ΔΩ(Γ; t) q−Q0+ 1

2
Q2

in a stable chamber is:

∑

2Q1+Q2=Q

q
1
2
Q2−(Q1)21− 1

2
(Q2)22

×
(

1
2I2

12 h2
P1,μ1

(τ)hP2,μ2(τ) − 2I12 h2P1,2μ1(τ)hP2,μ2(τ)
)

.

The two terms can be identified as contributions of the trees T(12)1 and
T(2·1 2).3 T(12)1 should be considered as a special (degenerate) case of T(12)3.
We also observe that modularity of the complete partition function, requires
that the T(12)1-contribution should combine with a mock Siegel theta func-
tion of the lattice Λ1 ⊕ Λ1 ⊕ Λ2, whereas the T(2·1 2)-contribution should
combine with a mock Siegel theta function of Λ2·1 ⊕ Λ2 (where Λ2·1 has qua-
dratic form 2dabcP

c
1 ). Therefore, to show the compatibility of semi-primitive

wall-crossing with modularity, one is forced to understand the extended flow
trees, which we studied before. If we insert the products S(T(12)1, t) (which

3The tree T(2·1 2) has two endpoints, one with magnetic charge 2P1 and one with P2.
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is −1
2 or 0) and S(T(2·1 2), t), and add the contributions of T(2·1 2) with prim-

itive charges, we find
∑

Q1+Q2+Q3=Q

q
1
2
Q2− 1

2
(Q1)21− 1

2
(Q3)21− 1

2
(Q2)22 S(T(12)1, t)I(12)1

× I12 hP1,μ1(τ)hP1,μ3(τ)hP2,μ2(τ)

−
∑

Q1+Q2=Q

q
1
2
Q2− 1

2
(Q1)22·1− 1

2
(Q2)22 S(T(2·12), t) 2I12 h2P1,2μ1(τ)hP2,μ2(τ).

(3.41)

The sum over Q will give the correct mock Siegel theta functions (3.17) and
(3.36); the positivity condition of Subsection 3.1 implies the convergence
of the series. Note that for P primitive, the semi-primitive wall-crossing
formula for N = 2 is precisely such that modularity and integrality are com-
patible. This also suggests more generally, that the contribution to the par-
tition function from a rooted tree, based on a nested list of magnetic charge,
preserves S-duality. One will find products of vector-valued modular forms
corresponding to the different endpoints.

More evidence for the claim that Ω̄(Γ) are the correct invariants in the
context of S-duality, can be found from the partition functions of N = 4
Yang-Mills on a surface [47], which are closely related to D4-brane partition
functions on a divisor of a Calabi–Yau. These partition functions are gener-
ating functions of the Euler number χ(M) of the instanton moduli space M,
which are related to the DT-invariants by Ω(Γ; t) = (−1)dimM(Γ)χ(M(Γ))
[16]. Yoshioka has calculated in Refs. [49,50] the partition function for U(2)
Yang-Mills (rank 2 sheaves) on CP

2. The two partition functions for sheaves
of rank 2 with c1 = 0 mod 2 and 1 mod 2 are given by

h2,0(τ) = −f2,0(τ)
η(τ)6

, h2,1(τ) =
f2,1(τ)
η(τ)6

, (3.42)

where f2,i(τ) are the generating functions of the class numbers H(n):

f2,0(τ) =
∞∑

n=0

3H(4n)qn, f2,1(τ) =
∞∑

n=1

3H(4n − 1)qn− 1
4 . (3.43)

(h2,0(τ), h2,1(τ)) transforms as a vector-valued modular form of weight −3
2 .4

However, the coefficients of h2,0(τ) are not integers. To obtain integers,
one needs to subtract the contribution of multiple U(1) instantons 1

4
1

η(2τ)3
;

4The vector (f2,0(τ), f2,1(τ)) is actually a mock modular form; a modular completion
must be added for proper transformation properties under SL(2, Z) [47].
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the resulting vector transforms only under Γ0(2). The −-sign in (3.42) is
crucial and follows from the factor (−1)dimM(Γ). Similar results are known
for K3 [37,47].

Equation (3.41) suggests that the contribution of flow trees to the index
is most conveniently expressed in terms of Ω̄(Γ). This continues to be true
for semi-primitive wall-crossing with a larger multiplicity of Γ1 and non-
primitive wall-crossing in general. Consider for example wall-crossing for
(2Γ1, 2Γ2). Equation (2.13) expresses ΔΩ̄(2Γ1 + 2Γ2; t) as a sum of terms
indexed by nested lists which can be attributed to different flow trees. It is
not difficult to see that this is a generic property of the jumps given by the
KS-formula. The non-trivial information provided by the KS-formula are
the prefactors of the contributions. Nested lists and flow trees are clearly
useful tools for enumerating invariants subject to wall-crossing.

Of course, the integer invariants Ω(Γ) are useful too. For example, we
have seen that the semi-primitive wall-crossing formula is a nice product
formula in terms of them. This has a geometric interpretation in terms of
halos (N centers of Γ1 placed on an equal distance around a center with
charge Γ2), and correctly accounts for the bose/fermi statistics [15].

One might wonder why S-duality and integrality of the invariants are
not compatible although they are both well motivated from physics. A
pragmatic reason is that modularity seems to require that the jumps of
the indices can be written in terms of products of invariants, such that the
sum of the arguments of the invariants equals the total charge. Such an
identification is possible for Ω̄(Γ; t) but not for Ω(Γ; t).

Another physical motivation for the rational invariants are IIB D-brane
instantons. The IIA BPS-states can be mapped to IIB instantons by a
timelike T-duality, which suggests that the instanton numbers are equal
to the BPS-invariants Ω(Γ; t). The invariants Ω̄(Γ; t) appear for instan-
tons in their measure [42], the sum over m|Γ incorporates the contributions
of multiple instantons. This sum appears for D1-D(-1) instantons in fact
after a Poisson resummation of a manifestly S-duality invariant sum (anal-
ogous to Poincaré series) [43, 44]. The relation between Ω(Γ; t) and Ω̄(Γ; t)
is analogous to Gromov–Witten invariants of m-fold covers of worldsheet
instantons n̄Q,g =

∑
m

nQ/m,g

m3 , where nQ,g are also expected to be integers [3].
The rational invariants raise the question about the status of the MSW CFT
for non-primitive magnetic charges P . If this is a proper CFT, the modular
invariant partition function must have integer coefficients. However, since
the BPS-object is not protected by conservation laws against decomposition
into smaller objects, the degrees of freedom might not combine to a proper
conformal field theory.
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4 Summary and discussion

The previous sections discussed the KS wall-crossing formula and flow trees,
and applied these to D4-D2-D0 black holes. Two new results that are gen-
erally applicable to BPS wall-crossing using flow trees are:

• The sign of the flow parameter along every edge can be determined
iteratively in terms of the initial moduli t, without explicit calculation
of the flow throughout the tree.

• It is demonstrated that ΔΩ̄(Γ; t) as derived from the KS-formula, can
be decomposed into certain combinations of rational invariants Ω̄(Γ, t)
classified by nested lists, which also classify the flow trees. This sug-
gests that the contribution to the index of a flow tree is conveniently
expressed in terms of the rational invariants.

The discussion on wall-crossing for D4-D2-D0 black holes is restricted to
the large volume limit of a single Kähler cone. The following results are
obtained:

• For N ≤ 3 is proven that the indefinite quadratic form (Q − B)2+ −
∑N

i=1(Qi − B)2i is positive definite for flow trees, since it is implied by
the positivity of flow parameters in the tree. This result is expected to
be true for any N , which would imply that the BPS partition function
in the mixed ensemble is convergent.

• The contribution to the partition function of flow trees with three
endpoints is constructed, including the case where two endpoints have
equal charge. The contribution of trees with non-primitive and prim-
itive charges nicely combine to products of vector-valued modular
forms, and mock Siegel theta functions.

• The S-duality invariant partition function is a generating function of
the rational invariants Ω̄(Γ, t). It is conceivable that the contributions
to the partition function of trees with prescribed magnetic charges
preserve S-duality.

Various aspects of wall-crossing for D4-D2-D0 BPS-states remain to be
better understood. A major aspect which was not addressed here, is the
modular completion of the mock Siegel theta function for N = 3. This
prevented a confirmation of S-duality by the supergravity partition function
in this paper, although it is shown that important prerequisites are satisfied.
The main obstacles are 1) the signature of the indefinite quadratic form is
(2, 3b2 − 2), and 2) the complexity of the flow tree condition S(T(12)3, t) �= 0.
The mathematical literature only reports on indefinite theta functions and
their modular completions for signature (1, n − 1). Another aspect which
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deserves a better understanding is the physical interpretation and derivation
of the modular completion, it might be related to perturbative contributions.
Contributions to the partition function of flow trees with N > 3 are also left
for future research.

This paper made various restrictions on the charges and the region of mod-
uli space; I hope to address in future research non-zero D6-brane charge,
to include finite volume effects and to cross walls between Kähler cones.
Another interesting direction is to understand better the condition
S(T(12)3, t) �= 0 from a more mathematical perspective, now it can be deter-
mined so easily in terms of t. An interesting application in this context
might be wall-crossing for sheaves on surfaces as in [28].
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