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Abstract

We study the mixed Hodge theoretic aspects of the B-model side of
local mirror symmetry. Our main objectives are to define an analogue
of the Yukawa coupling in terms of the variations of the mixed Hodge
structures and to study its properties. We also describe a local version
of Bershadsky—Cecotti-Ooguri—Vafa’s holomorphic anomaly equation.

1 Introduction
1.1 Local mirror symmetry

Mirror symmetry states a relationship between the genus zero Gromov—
Witten (GW) theory (“A-model”) of a Calabi-Yau threefold X and the
Hodge theory (“B-model”) of its mirror Calabi—Yau threefold XV. After the
first example of a quintic hypersurface in P4 and its mirror [9,18], Batyrev [6]
showed that a mirror pair of Calabi—Yau hypersurfaces in toric varieties can
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#1 #2 #3 #4

Figure 1: Examples of two-dimensional reflexive polyhedra. (P?, Fg,Fy,Fo
cases.)

be constructed from a reflexive polyhedron'. Local mirror symmetry was

derived from mirror symmetry for toric Calabi—Yau hypersurfaces by con-
sidering a certain limit in the K#hler and complex moduli spaces? [11,28].
Chiang-Klemm—Yau—Zaslow [11] gave quite a thorough mathematical treat-
ment to it. Their result can be summarized as follows.

Take a two-dimensional reflexive polyhedron A (see figure 1 for exam-
ples). On one side (“lcoal A-model” side), one considers the genus zero
local GW invariants of a smooth weak Fano toric surface Pya«) which is
determined by the two-dimensional complete fan X(A*) generated by inte-
gral points of A. On the other side (“local B-model” side), one considers a
system of differential equations associated to A called the A-hypergeometric
system with parameter zero due to Gel’fand—-Kapranov—Zelevinsky [16,17].
Then the statement of local mirror symmetry is that the genus zero local
GW invariants can be obtained from solutions of the A-hypergeometric
system.

Remark 1.1. The problem of computing the local GW invariants, not only
at genus zero but also at all genera, is solved completely by the method of
the topological vertex [1].

1.2 Local B-model and the mixed Hodge structure

When one compares local mirror symmetry with mirror symmetry, it is
easy to see an analogy between the A-model (GW invariants) and the local
A-model (local GW invariants). To compare the B-model and the local
B-model, let us look into them in more detail. A natural framework for

1See Section 3.5 for the definition of reflexive polyhedra.

2This limit typically corresponds to a situation on the A-model side where one considers
the effect of a local geometry of a weak Fano surface within a Calabi—Yau threefold. Hence
the term “local mirror symmetry”. See [28, Section 4].
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the B-model is the variation of polarized Hodge structures on H3(XV)3
(cf. [12, Ch. 5], [36, Ch. 1, Ch. 3]). One considers

(i) the family 7 : X — B of complex deformations of the Calabi-Yau
three-fold XV,

(ii) a relative holomorphic three form €y, which together with the ele-
ments obtained by successive applications of the Gauss—Manin con-
nection V, spans H3(XV),

(iii) the Picard-Fuchs system for period integrals of Qy g,

(iv) an Op-multilinear symmetric map from 7B x TB x T B to Op called
the Yukawa coupling

Yy (A1, Ay, Ag) = . Va4, Va,VaQx/p A Q) p, (b € B).
b

Let us turn to the local B-model. Our proposal in this paper is that a
natural language for the local B-model is the mixed Hodge structures and
their variations. The mixed Hodge structure (MHS) due to Deligne [13] is
a generalization of the Hodge structure with the extra data W, called the
weight filtration. See Section 2. Although the cohomology H*(V°) of an
open smooth variety V° does not have a Hodge structure in general, it does
have a canonical MHS [13,14]. There is also a canonical one on the relative
cohomology H*(U°,V°).

Now, let us explain what are the counterparts of (i)—(iv) in the local B-
model. Let A be a two-dimensional reflexive polyhedron as above and Fj
be a A-regular Laurent polynomial, i.e., a Laurent polynomial of the form

Fa(tit) = ) amt™ € CltF, 1557,
meANZ?2

which satisfies a certain regularity condition (cf. Definition 3.1). In the
literature, two closely related manifolds associated to F, are considered: the
one is the affine curve C2 in the two-dimensional algebraic torus T? = (C*)?
defined by F,(t1,t2) = 0 [11, Section 6], and the other is the open threefold
Z° C T? x C? defined by F, + zy = 0 [23, Section 8]. As we shall see, they
give the same result. By varying the parameter a = (a,,), we have a family
of affine curves Z — Lieg(A) and a family of open threefolds 2" — Lyeg(A).

3Throughout the paper, the coefficient of the cohomology group is C unless otherwise
specified.
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By taking a quotient by the following action of T? = (C*)3,
Fa(tl, tg) — >\0Fa()\1t17 )\2252) R ()\0, )\1, )\2) € T3,

we also have the quotient families Z/T% — M(A) and 2'/T3 — M(A).
These correspond to (i). As a counterpart of (ii), we consider, for the affine
curve Cy, the class

wo = [(‘ffll A ‘Z", 0)] e HA(T2, Co)",

in the relative cohomology H?(T?,C¢), and for the open threefold Z¢, the
class of a holomorphic 3-form:

o = |[Res———"dzd } H>(ZY).
w |: eSFa—i-{L'y t1 12 T < ( a)

The counterpart of (iii) is the A-hypergeometric system as explained in
[11]. Batyrev [5] and Stienstra [33] studied the variation of MHS (VMHS)
on H?(T? C?2) and showed the followings: H?(T?,CS) = Cwy @ PH(CS)
is isomorphic to a certain vector space Rp,; wp and elements obtained by
successive applications of the Gauss-Manin connection span H?(T?, C2); wy
satisfies the A-hypergeometric system considered in [11]. For the polyhedron
#1 in figure 1, Takahashi [34] independently showed that integrals

/wo, I € Hy(T?,C°,7),
I

over 2-chains I" whose boundaries lie in C; satisfy the same differential
equation. For the open threefold Z;, there is a result by Hosono [25] that
integrals

/wa, Y€ Hy(22,2),
Y

satisfy exactly the same A-hypergeometric system. It has been known that
H3(Z2) = H?(T?,C?). Gross [20, Section 4] described the isomorphism and
mentioned that the integration of w, over a 3-cycle reduces to that of wgy over
a 2-chain under the isomorphism. In this paper, we shall study the (V)MHS
of H3(Z2) and show that it has the same description as H?(T?,C%) = Rp,
and that w, plays the same role as wg. This is one of the main results of
this paper (cf. Theorem 5.1).

4Note that the class wo depends on the parameter a, although it is not indicated in the
notation.
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Remark 1.2. In [11], Chiang et al. considered the “1-form” Resp,—o(log F})
wp on Cf and argued that its period integrals satisfy the A-hypergeometric
system. The result by Batyrev, Stienstra, and Takahashi implies that wg €
H?(T?,C%) gives a rigorous definition of this “l1-form”. This point was
mentioned in [20].

Remark 1.3. Calculation of the (V)MHS of H3(Z?) in this paper closely
follows the result by Batyrev on the MHS of affine hypersurfaces in algebraic
tori [5].

1.3 Weight filtration and the Yukawa coupling

At this point, one may ask what is the role of the weight filtration. Our
answer is that it is needed to define an analogue of the Yukawa coupling.
It is the main motivation of the present work. In general, the lowest level
subspace of the weight filtration in H*(V°) is the image of the cohomology
H*(V') of a smooth compactification V' (see, e.g., [32, Proposition 6.30]). In
our cases, it turns out that the lowest level subspace W; H?(T2,CS) (resp.
W3 H3(Z2)) of the weight filtration on H?(T?,C2) (resp. H3(Z°)) is iso-
morphic to H(C,) (resp. H3(Z,)), where C, (resp. Z,) is a smooth com-
pactification of C§ (resp. Z;). Thus we can use the intersection product on
HY(C,) or H3(Z,) to define an analogue of the Yukawa coupling.

As a counterpart to (iv), we propose the following definition (Definition
6.1). Consider the family of affine curves Z — Lyeg(A). Let TOLyeg(A)
be the subbundle of the holomorphic tangent bundle TL,cs(A) spanned by
Day® . Our Yukawa coupling is a multilinear map from TLyeg(A) X TLyeg(A)
X TOLyeg(A) to OL,.,(a)- Take three vector fields (Ay, Az, A3) € TLreg(A) X
TLyeg(A) X TO]Lreg(A). By the result on VMHS, we see that V 4,wp can be
regarded as a (1,0)-form on C,, and that although V 4,V 4,wp may not be
in Wi, we can associate a 1-form (V4,Va,wp)’ on C, (Lemma 6.1). We
define

Yuk(Al,Ag;Ag) =1 (VAIVA2WO)//\VA3CUQ.
Caq
It is also possible to define the Yukawa coupling using the family of open

threefolds. In fact, they are the same up to multiplication by a nonzero con-
stant. We also have a similar definition for the quotient family (Section 6.5).

In addition to the above geometric definition, we give an algebraic descrip-
tion of the Yukawa coupling via a certain pairing considered by Batyrev [5]

SHere ay is the parameter corresponds to the origin (0,0) € AN Z>.
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(cf. Sections 6.2, 6.3). We also derive the differential equations for them
(Proposition 6.2, Lemma 6.2). These results enables us to compute the
Yukawa couplings at least in the examples shown in figure 1 (cf. Exam-
ple 6.13, Section 8). They agree with the known results [2, 3,8, 15,22, 29].
We also see that they are mapped to the local A-model Yukawa couplings
by the mirror maps (cf. Example 6.15, Section 8).

1.4 Local B-model at higher genera

If we are to pursue further the analogy between mirror symmetry and local
mirror symmetry to higher genera, the first thing to do is to formulate an
analogue of the so-called special Kahler geometry. It is a Kéhler metric on
the moduli B of complex deformations of a Calabi-Yau threefold XV whose
curvature satisfies a certain equation called the special geometry relation.
In the setting of the local B-model, we define a Hermitian metric on the
rank one subbundle TOM(A) of TM(A) and derive an equation similar to
the special geometry relation (Lemma 7.1).

Next, we consider Bershadsky—Cecotti-Ooguri-Vafa’s (BCOV’s) holomor-
phic anomaly equation [7]. It is a partial differential equation for the
B-model topological string amplitudes Fg’s6 which involves the Kéhler met-
ric, its Kahler potential and the Yukawa coupling. By making use of the
result on the VMHS of H?(T?,C?2) (or H3(ZZ)), we propose how to adapt
the holomorphic anomaly equation to the setting of the local B-model (equa-
tions (7.4), (7.5)). We also explain it from Witten’s geometric quantization
approach [39].

In the examples shown in figure 1, we checked that the solutions of this
holomorphic anomaly equation with appropriate holomorphic ambiguities
and with the holomorphic limit give the correct local GW invariants for
g = 1,2 at least for small degrees.

Remark 1.4. It is known that, in the local setting, the Kéhler potential
drops out from BCOV’s holomorphic anomaly equation, and consequently
the equation is solved by a certain Feynman rule with only one type of
propagators S/ with two indices [2,3,22,24,29]. Moreover, it is also known
that essentially only one direction in M(A) corresponding to the moduli of
the elliptic curve C, is relevant. Our description of BCOV’s holomorphic
anomaly equation is based on these results.

5Tts mathematical definition is yet unknown for g > 2.
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1.5 Plan of the paper

In Section 2, we recall the definition of the MHS. In Section 3, we define
the vector space Ry, following Batyrev [5] and recall Gel’fand—Kapranov—
Zelevinsky’s A-hypergeometric system [16,17]. In Section 4, we give descrip-
tions due to Batyrev [5] and Stienstra [33] of (V)MHS on the relative coho-
mology H"(T™, V) of the pair of the n-dimensional algebraic torus T™ and
an affine hypersurface V> in terms of Rp, (Theorem 4.2). In Section 5, we
state the result on the MHS on the cohomology H3(Z?2) of the open threefold
72 and its relationship to that on H%(T?,CS) (Theorem 5.1). The details
for the calculation of H3(Z2) are given in Section A. In Section 6, we define
the Yukawa coupling and study its properties. In Section 7, we propose a
holomorphic anomaly equation for the local B-model.

We note that polyhedra dealt with in Sections 3 and 4 are convex inte-
gral polyhedra, while in Sections 5, 6 and 7, only two-dimensional reflexive
polyhedra are considered.

The examples treated in this article are listed in figure 1. These will be
sometimes called the cases of P?, Fy, Fq, Fy according to their local A-model
toric surfaces. The P? case appears in the course of the paper. The others
are summarized in Section 8.

1.6 Notations

Throughout the paper, we use the following notations. T™ denotes the n-
dimensional algebraic torus (C*)™. For m = (mq,...,my) € Z", t™ stands
for the Laurent monomial /" -- -t~ € C[t{',... t]. For a variable z, 6,
is the logarithmic derivative zd,.

2 Preliminaries on the mixed Hodge structures

In this section, we recall the mixed Hodge structure of Deligne [13,14]. See
also [32,37,38].

A mixed Hodge structure (MHS) H is the triple H = (Hz, W,, F*), where
Hy is a finitely generated abelian group, W, is an increasing filtration (called
the weight filtration) on Hg = Hz ® Q, and F* is a decreasing filtration
(called the Hodge filtration) on Hc = Hz ® C such that for each graded

quotient
Grnw (Hg) :=Wyn/Whp-1,
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with respect to the weight filtration W,, the Hodge filtration F* induces a
decomposition

Gr)Y(He) = € H',
ptrg=n
with HP¢ = H%P, where HP? := GrI;EGr;/iq(HC) and the bar denotes the
complex conjugation. We say that the weight m € Z occurs in H if Grnvf #0,
and that H is a pure Hodge structure of weight m if m is the only weight
which occurs in H. By the classical Hodge theory, if X is a compact Kéhler
manifold, then H*(X) carries a pure Hodge structure of weight k.

Let V° be a smooth open algebraic variety of dimension n. By Deligne
[13,14], there is a canonical MHS on H¥(V°). The weights of H*(V°) may
occur in the range [k, 2k] if K <n and in [k, 2n] if £ > n. The construction
goes as follows. Take a smooth compactification V' of V° such that the
divisor D = V' \ V° is a simple normal crossing divisor, and consider mero-
morphic differential forms on V which may have logarithmic poles along
the divisor D. Then the Hodge filtration is given by the degree of loga-
rithmic forms while the weight filtration is given by the pole order. The
constructed MHS does not depend on the chosen compactification V' and is
functorial, i.e., any morphism f : V° — U° of varieties induces a morphism

f*+ H*(U°) — H*(V°) of MHS’s.

Let ¢:V° — U° be an immersion between two smooth open algebraic
varieties. By [14], there exists a canonical MHS on the relative cohomology
HF(U°,V°). The construction is similar to the one above (cf. [32, Ch. 5], [38,
Ch. 8]). The long exact sequence

. L) Hk*l(vo) BN Hk(UO,VO) N Hk(UO) L} Hk‘(vo) — ... ,
(2.1)
is an exact sequence of MHS’s. The weights of H*(U°, V°) may occur in

[k — 1,2k].

The mth Tate structure T'(m) is the pure Hodge structure of weight —2m
on the lattice (2rv/—1)™Z C C which is of type (—m, —m), i.e., T(m)c =
T(m)~"—m,

Example 2.1. The MHS on H™(T") is T(—m)®(n) for 0 < m < n. See [5,
Example 3.9].

Example 2.2. Let C' be a smooth projective curve and C° = C'\ D be an
affine curve, where D = {p1,...,pn} is a set of distinct m-points on C. We
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describe the MHS on H'(C°). The weight filtration W, and the Hodge
filtration F* are

0OCcwWw, = Hl(c) CWy = HI(CO)’
0c F'=H°(Q4(log D)) € F* = H'(C®),

where },(log D) is the sheaf of logarithmic 1-forms on (C, D). The “Hodge
decomposition” of Gr}Y (HI(CO)) = H'"Y o H%! is the same as that of
HY(O):

Hl,O _ HLO(C), HO,l _ HO’I(C).

That of Gr}¥ (H1(C°)) = H*" @ H" @ H? is

HY' = H(Qt(log D)) /H(Q), H?*? = H*? =0.
Hence, the “Hodge numbers” of H(C®) are
lp=0 1 2

g 0

0
1 g m-—1
2 0

q:

where g is the genus of C. The MHS on H!(C°) is an extension of
T(—1)2("=1 by H'(C) in the sense of [10]:

0— HY(C) — HY(C°) — T(-1)%"=1 0.

3 Polyhedron, Jacobian ring, Rr and A-hypergeometric
system

A convex integral polyhedron A C R" is the convex hull of some finite set in
Z". The set of integral points in A is denoted by A(A) and its cardinality

by I(A) := #A(A).

3.1 A-regularity

Let A be an n-dimensional integral convex polyhedron. Equip the ring
Clto, 51, ..., ;1] with the grading given by det t5t™ = k. Define Sa to be
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its subring

k>0 meA(k)

where

A(k) == {m cR" | % € A} (k>1), A(0):={0} C R". (3.1)

Recall that the Newton polyhedron of a Laurent polynomial

F=>Y amt™ € C[t',. .. ]
m

is the convex hull of {m € Z" | a,, # 0} in R™. Denote by L(A) the space
of Laurent polynomials whose Newton polyhedra are A.

Definition 3.1. A Laurent polynomial F' is said to be A-regular if F' € L(A)
and, for every [-dimensional face A’ C A (0 <1 < n), the equations

, OFA& OFA
FA = amt™ =0, =0,..., =0,
mG%’%Z" " atl atn

have no common solutions in T". Denote by Les(A) the space of A-regular
Laurent polynomials.

Example 3.1. Let A C R? be the polyhedron #1 in figure 1, which is the
convex hull of {(1,0),(0,1),(—1,—1)}. Let F' € L(A) which is of the form

a
F:a1t1+a2t2+ﬁ+ao, ((Io,al,ag,ag E(C) (3.2)
12

We wrote a9y = a1, a(o,1) = a2, a(—1,—1) = as for simplicity. Then we have

3
F € Lig(A) &= —0 49720, ayasas # 0.

ai1a2a3

3.2 Jacobian ring, R and filtrations

For F € L(A), let D; (i =0,...,n) be the following differential operators
acting on Sa:

Dy = (9t0 +toF, D;:= Qti + toetiF, (7, =1,... ,n). (33)
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Definition 3.2. Define C-vector spaces Rr and R;,C by

Rp = SA/zn:DiSA, R =S} /ZH:DZ-SA, (3.4)
=0

1=0

where S} = D k1 Sk.

Obviously, Rp = R; ® SQ.

We consider two filtrations on the vector spaces Rp. The E-filtration on
S is a decreasing filtration

5:--'D---DS_kD---S_lDEOD'--,

where £7% is the subspace spanned by all monomials of the degree < k.
This induces filtrations on R and R; which are denoted by &£ and &,
respectively. It holds that £7" = Rp.

Definition 3.3. Let Jp be the ideal in S(A) generated by toF, to0:, F, . . . , to
0, F. The Jacobian ring R is defined as Sa/Jr. Denote by R the ith
homogeneous piece of Rp.

The graded quotient of R with respect to the E-filtration is given by the
Jacobian ring

Gry'"Rp = RY.

Denote by I(Aj)(O < j <n+ 1) the homogeneous ideals in Sa generated as

C-subspaces by all monomials t’gtm, where k > 1 and m € A(k) which does
(n+2)

not belong to any face of codimension j. We set 15 = SA. These form
an increasing chain of ideals in Sa
0=10 cI1P c1Pc...c10™ =st c 1y =sa. (3.5)

Let Z; C RF be the image of I(Aj). These subspaces define an increasing
filtration Z on Rp:

0=Z0CT1 CToC - CTyt1 =R CIyio = Rp.
Later we will see that Rp is isomorphic to the cohomology mentioned in

Section 1.2. The Z-(resp. &-)filtration describes the weight (resp. Hodge)
filtration of the MHS on it.
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Example 3.2. Let A be the polyhedron #1 in figure 1. Assume that
F € Lyeg(A). Then we have

Rr=Cl@®Cty® Ctl.
The Z- and the E-filtrations are

I3 =Tr =11 2 Cto®Ct3, Iy=TRp.
E0=C1, &l=C1®Ct, E2=Rp.

3.3 Derivations with respect to parameters

Let a = (am)mea(a) be algebraically independent coefficients. Consider the
Cla]-module Sala] := SA ® Cla]. Let

Rrla] == SA[a]/(Zn:DiSA[a]). (3.6)
=0

Define the action of differential operators D, (m € A(A)) on Sa[a] by

0
Dy, = —— + tot™.
Ooam
Since this action commutes with that of D; (i =0,1,...,n), it induces an

action of D, on Rrlal.

am

We shall see that the operator D, corresponds to the Gauss—Manin
connection V,, on the cohomology of our interest (cf. Sections 4.3, 5).
Note that D, preserves the Z-filtration: D, Z? C Z7. This corresponds to
the fact that the weight filtration is preserved by the VMHS’s. Note also
that D, decreases £-filtration by one: D, €% C £7%~1. This corresponds
to the Griffiths transversality [35].

3.4 A-hypergeometric system

We briefly recall the A-hypergeometric system of Gel'fand-Kapranov—
Zelevinsky [16,17] in a form suitable to our situation. Let A be an n-
dimensional integral convex polyhedron. For A, the lattice of relations is
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defined by

meA(A) meA(A)

L(A) = {z = (n)mead) EZD 1Y lum=0, 3 1, =0 }
(3.7

The A-hypergeometric system associated to A (with parameters (0, ...,0) €
C"*t1) is the following system of linear differential equations for ®(a )

Tid(a) =0 (i=0,1,...,n), O®(a)=0(ecLA), (38

where

Z eam7 i = Z mieam (1 <:< n)7

meA(A meA(A)
H H D"
meA(A meA(A
lm>0 lm<0

The number of independent solutions is equal to the volume” of the poly-
hedron A [16].

Example 3.3. In the case when A is the polyhedron #1 in figure 1, the
lattice of relations L(A) has rank one and generated by (—3,1,1,1). For sim-
plicity we write a(; gy = a1, a(9,1) = ag, a(—1,—1) = a3. The A-hypergeometric
system is

(9!11 - 9a3)(13(a) =0, (eaz - 6?@3)@((1) =0,
(Oay + 64, + 0oy + 04,)P(a) =0,
(amaazaas 820) ( ) =0.

It is equivalent to ®(a) = f(z), z = “%% and

ag
(02 +320.(30, + 1)(30. + 2)] f(2) = 0.
Solutions about z = 0 are obtained in [11, equation (6.22)]:
D(50) = 1, ti= By (2 p)lpmo = log 2 + 3H(2),

1
OsF = 3 ez p)pmo = (log2) 4+

(3.9)

"Here the volume is normalized so that the fundamental simplex in R™ has volume one.
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where

. _ (Sp)3n _1)"n 2) — (Sn_l)' )"
“(in) = T a0 10 =3 Oy,

Here (), denotes the Pochhammer symbol: («), = (a)(a+ 1)+ (a+n —
1) forn > 1, (a), =1 for n = 0.

Proposition 3.1. 1. For each F € Lyeg(A), Rp is spanned by D,
D, 1 (0<k <n, my,...,my € A(A)).

2. In Rplal], the element 1 satisfies the A-hypergeometric system (3.8) with
Oa,, (m € A(A)) replaced by D,,, .

am

aml...

Proof. 1. This follows because Sa is spanned by monomials obtained by
successive applications of D, to 1 and because Rp = E7".
2. In the ring Sa[a], it holds that

(m%wammm) 1=D;1 (0<i<n),
(Dl’@amaDam> 1= H (tm)lm o H (tm)flm —0. (3.10)

m:ly, >0 m:ly, <0

3.5 Reflexive polyhedra

Recall from [6, Section 4] the following:

Definition 3.4. An n-dimensional convex integral polyhedron A C R™ is
reflexive if 0 € A and the distance between 0 and the hypersurface generated
by each codimension-one face A’ is equal to 1, i.e., for each codimension-one
face A’ of A, there exists an integral primitive vector vas € Z™ such that
A'={me A| (var,m) =1}

In the case when n = 2, it is known that there are exactly sixteen two-
dimensional reflexive polyhedra (see [11, figure 1]). Let A be a two-
dimensional reflexive polyhedron and F' € L;eg(A). Then it is known that

1 (k=0,2),
dim Grz*Rp = dim R} = { I(A) =3 (k= 1),
0 (k > 3).
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See Theorem 4.8 in [5]. The Z- and the E-filtrations on the vector space

R are described as follows. Let A’'(A) = A(A)\ {0,mM), m® m®)} where
m®, m®@ m® are any three vertices of A. Then we have

Rp=Ii=£7=Clo @ Ctt™ e CtydCt,

meA(A)
L=ChalCl, Tm=Lie P Cttm, (3.11)
meA/(A)
g=c1, &'=s P Clt" e Cho.
meA’(A)

As to I, it depends on the polyhedron A. For example, Zo = Z; for the
polyhedra #2,#3 in figure 1, while Zo = 73 for the polyhedra #4. See
Section 8.

For a two-dimensional reflexive polyhedron A, there are [(A) — 1 inde-
pendent solutions to the A-hypergeometric system associated to A. Explicit
expressions for them can be found in [11, equation (6.22)].

4 Mixed Hodge structures on H"(T", V)

Let A C R™ be an n-dimensional convex integral polyhedron and F, = > a,,
t™ € Lyeg(A). We denote by V,; the smooth affine hypersurface in T defined
by F,. We state the result on the (V)MHS on H"(T", V) due to Batyrev
[5] and Stienstra [33]. We remark that H*(T™ V°) =0 if k # n (cf. [5,
Theorem 3.4]).

The cokernel of the pull-back H"~1(T") — H" (V) is called the prim-
itive part of the cohomology of V,° and denoted by PH"~1(V.°). From the
long exact sequence (2.1), we obtain the following short exact sequence of
MHS’s:

0 — PH" Y (V) — H™(T",V?) — H™(T") — 0. (4.1)

a

Recall that the MHS on H™(T") is the Tate structure T'(—n) (cf. Example
2.1). Therefore, H"(T", V,?) is an extension of T(—n) by PH"~1(V?).
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4.1 MHS on the primitive part PH" 1 (V?)

Let RT : S{ — TQU." be the linear map given by

—DEE=1) - tm dt dt,,
R+(t§tm):ReSVaO <( ) (Fk ) (U0>, wo :Tll/\/\T

Theorem 4.1 (Batyrev). (i) R™ induces an isomorphism
pT iRy — PH"Y(V?).

(ii) Let W be the weight filtration on PH"~Y(V.?). Then, for0 <i<n—1,
we have

P+ (Z;) = W;_—2+i‘

(iii) Let F$ be the Hodge filtration on PH" Y (V.?). Then, for 0 <i<n—1,
we have

pHE) = L.

4.2 MHS on the middle relative cohomology H™(T", V_?)

Let R%: SR — I'Q%, be the linear map given by RY(1) = wy. Consider the
map R := Rt ® R : Sx — rag, FQ@ZI. Then the following theorem fol-
lows from Theorem 4.1 (cf. [33, Theorem 7]).

Theorem 4.2 (Batyrev, Stienstra). (i) R induces an isomorphism
p:RE, — H'(T", V).
(13) Let Wa be the weight filtration on H™(T™,V,??). Then we have

p(Zi) =Wpopi (0<i<n-—1), p(Zpt1) =Wop—2=Way_1,
H™(T", V) = Way,.

(13i) Let F* be the Hodge filtration on H™(T™, V.?). Then, for 0 <i <n, we
have

Pl = F.
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4.3 Gauss—Manin connection on H™(T", V)

Consider the variation of MHS on H"(T",V;”) over Lyeg(A). It was studied
by Stienstra [33, Section 6].

Lemma 4.1 (Stienstra). The Gauss—Manin connectionV _o_on H™(T", V)

da;

corresponds to the operator Dy, on Rrlal.

Stienstra proved this by considering the de Rham complex (Q°(T"),d +
dF,N) [33, Section 6]. Here we give a different proof. This is a generalization
of Takahashi’s argument [34, Lemma 1.8].

Proof. Since Fy is A-regular, there exists a holomorphic (n — 1)-form v, in
an open neighborhood of V7 in T" such that wy = dF, A ¢4. The restriction
of ¥, to V7 is equal to Resvao%g and is denoted by C;“Toa. It is called the
Gelfand-Leray form of wy (cf. [4, Ch. 10]).

Let I'y, € H,(T",V?). Then one can show that

8 / o — — 8Fa wo
80@ s 0 ol 804 dFa'

Namely, we have V o p(1) = p(Dg,1). Since Batyrev [5] have shown that
da;

the Gauss-Manin connection V_s on PH"1(V,?) corresponds to D,, under

da;

pT, the lemma follows. d

Lemma 4.1 and Proposition 3.1 imply the following

Corollary 4.1 (Stienstra). 1. H"(T",V;?) is spanned by V
(0<k<n, my,...,mg € A(Q)).
2. wy satisfies the A-hypergeometric system (3.8) with 0, replaced by Va,,-

amy Vg, @0

3. The period integrals fFa wo of the relative cohomology H™(T™, V) satisfies
the A(A)-hypergeometric system (3.8). Conwversely, a solution of the A-
hypergeometric system (3.8) is a period integral.

5 MHS on H3(Z°)

Throughout the section, A is a two-dimensional reflexive polyhedron and
Fy € Lyeg(A) is a A-regular Laurent polynomial.
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5.1 MHS on the cohomology of the threefold

Consider the affine threefold Z; defined by
7o ={(t,z,y) € T2 x C? | F,(t) + xy = 0}. (5.1)

We compute H3(Z¢) and its (V)MHS following Batyrev [5]. Let us briefly
state the results. Details are relegated to Section A.

The Poincaré residue map Res : H4(T? x C2\ Z2) 5 H3(Z?2) is an iso-
morphism (see equation (A.2)). By Grothendieck [21], H*(T? x C?\ Z9)
is isomorphic to the cohomology of the global de Rham complex (I'27, . >
(x22),d) of meromorphic differential forms on T? x C? with poles of arbi-
trary order on Z;. We can show that the homomorphism

—1)FELtm
R :Spa — QL 2 (x22); them - _(CDTRET db dts dx dy,

induces an isomorphism Rp, =H 4(T? x C?\ Z2). Together with the resi-
due map, we obtain an isomorphism p’' : R, — H3(ZS). The Gauss—Manin
connection Vg, — on H3(Z2) corresponds to a differentiation by a,, on
I'Q%s, c2(xZ3), which in turn corresponds to the derivation Dg,, on Rp,

(Section A.6).

To compute the weight and the Hodge filtrations, we compactify Z; as a
smooth hypersurface in a toric variety (Section A.2). Then we can work out
calculation similar to [5, Sections 6 and 8]. (Since our Z¢ is a hypersurface
in T? x C?, not in T, we need some modifications. Especially, we need
Mavlyutov’s results on Hodge numbers of semiample hypersurfaces in a toric
varieties [30].) It turns out that the weight and the Hodge filtrations are
given by the Z and the E-filtrations on Rp,. The result on MHS of H3(Z2)
is summarized as follows (Theorems A.1, A.2):

HZ)=Ws =F=F' 2 Rp,,
Wi =1y, Wi=Ws=1s, (5.2)
Freetl, Freel

5.2 Relationship to the relative cohomology

Let C2 be the affine curve in T? defined by F,. Since A is reflexive, it is
an affine elliptic curve obtained by deleting I[(A) — 1 points from an elliptic
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curve C,. The MHS on the primitive part PH(CS) is an extension of
T(—1)2UA)=1 by HY(C,):

0— Hl(Ca) — PHl(C’;) N T(_1)®(Z(A)_4) -0

This follows from the definition of primitive part and the description of
H!(C?) given in Example 2.2. The MHS on the relative cohomology H?(T?,
C?®) is an extension (4.1) of H%(T?) = T(-2) by PH(C,) (cf. Theorem 4.2).

Let p: Rp, = HX(T?, C?) be the isomorphism in Theorem 4.2 and wy =
p(1) € H*(T?,C2). Let
1 dtydty

——dd} H3(2°).
Fotay th ta T E (Za)

we=p'(1)= [Res

/—1
Theorem 5.1. The composition of isomorphisms H3(Z2) LN RE, L H?
(T2, C2) gives an isomorphism

pop Tt H¥(Z3) = HA(T?,CY)

of C-vector spaces which sends wg to wg. The filtrations correspond as fol-
lows:

FHUH(Z5) = €72 5 FIHA(T?,CF) (i=0,1,2),
WsH?(Z2) = I) 5 Wy H?(T?,C°),
WiLH3(Z2) = WsH3(Z2) S Ts = WhH(T?,C2) = WsH?(T?,C2).

1

Moreover, p o p'~* is compatible with the Gauss—Manin connections.

Note that Wy H?(T?,C°) = Wi PH'(C?) = H'(C,). Therefore, it inher-
its a nondegenerate pairing. The same is true for W3H?(Z2), since it is
isomorphic to the cohomology H?(Z,) of a certain smooth compactification
Z, of Z2 (cf. Section A.2)8.

6 Analogue of Yukawa coupling

In this section, A is a 2-dimensional reflexive polyhedron unless otherwise
specified.

8The divisor Zo\Zg is not smooth but a simple normal crossing divisor. The pull-back
H3(Z,) — WsH?(ZZ), which is always surjective, turns out to be injective. This can be
checked by comparing the dimension given in Lemma A.3 and that in Proposition A.5.
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6.1 Definition of Yukawa coupling via affine curves or threefolds

Let A be a two-dimensional reflexive polyhedron. Let T9L,eg(A) be the
subbundle of the holomorphic tangent bundle TLyeg (A) of Lyeg (A) generated
by 0q4y. Consider the family of affine elliptic curves p : Z — Lyeg(A):

Z = {(a,t) € Lyeg(A) x T? | F,(t) = 0}.

Let C, be the smooth compactification of the affine curve C2 :=p~!(a).
Note that we have Gr%H?(T?, C2) = GroW H?(T?,C?).

Lemma 6.1. For any a € H?(T?,C?2), there exists o' € Wi H?(T?,C2)(=
HY(C,)) such that [a] = [o/] in GrEH?(T?,C2) = Gr W, H3 (T2, C3).

Proof. By (3.11), « is written as

o= O‘Q,Op(t%)) + Z Ozlvmp(t()tm) + Ozlvop(to) + ap,0wo-
meA’(A)

Take o/ = aap(t3) + cp(ty), where ¢ € C is arbitrary. O
The pairing

H*(T?,C3) x FIWH*(T?,C5) = C; (e, B)— | o/ AB
Coa

is independent of the choice of /. Recall that V,,wo € F*W;H?(T?,C?).

Definition 6.1. For k > 1, we define a map

Yuk® : TLyeg(A) X -+ X Tlreg(A) X T Lyeg(A) — Op,,(a)

(k—1) times

by

Yuk®™ (A, Ap_1; Ay) = /C (Vay -+ Va_,w0) AV a,wo.

We call Yuk® the Yukawa coupling and denote it by Yuk.

Remark 6.1. Yuk® = Yuk® =0 by Griffiths’ transversality. For k > 4,
Yuk(k)(Al, ooy Apo1; Ag) is O, (a)-linear in Ay, Ay and C-linear in Ay, .. .,
Aj_1. For k=3, Yuk® is OL, o, (a)-multilinear.
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Remark 6.2. Instead of the relative cohomology H?(T?,C?), we can use
the cohomology H?3(Z2) of the open threefold Z° defined in (5.1), provided
that the levels of Hodge and weight filtrations are shifted according to The-
orem 5.1 and that the integration on (), is replaced by that on the compact
threefold Z, defined in Section A.2.

6.2 Batyrev’s paring

We would like to give an algebraic description of the Yukawa coupling in
terms of the Jacobian ring Rr,. For that purpose, we recall Batyrev’s pairing
[5, Section 9]. Let A be an integral convex n-dimensional polyhedron and
F, € Lieg(A) a A-regular Laurent polynomial. Denote by D, the quotient

Dr, =18 [ (toFu, o, Fuy . o0, Fa) - 13-
It is a graded Rp,-module consisting of the homogeneous pieces D%a (1<

i <n+1). We have ngl = C. The multiplicative structure of Rp,-module
defines a nondegenerate pairing

. Dt n+1—z n+1l ~
(,): Ry, x D= — pril = C,

Let Hp, be the image of the homomorphism Dp, — Rp, induced by the
inclusion I(Al) < SA. Then the above pairing induces a nondegenerate pair-
ing

{.}:Hj x ngl_i — D%;H ~C; {a,B} = (o, 3),
where 3’ € D%:’l_i is an element such that its image of the homomorphism
D%jl*i _ H;L‘;Flfi is ﬁ

6.3 Yukawa coupling in terms of Batyrev’s pairing

Now we come back to the case when A is a two-dimensional reflexive poly-
hedron. In this case, we have Dp, = tyRp,. We explain that the Yukawa
coupling defined in Definition 6.1 is essentially Batyrev’s pairing together
with a choice (concerning the dependence on the parameter a) of the iso-
morphism

& Dy, — C.

First identify 7; with Hf, so that it is compatible with the Hodge decom-
position HY(C,) = H'9(C,) ® H>'(C,) under the isomorphism p: Rp, —
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H?(T?,C%). Then Batyrev’s pairing

{.}: Hf, x H, — D}, =C, (6.1)
induces an antisymmetric pairing ( , )z, on Zj. Although we do not have
an explicit description of such decomposition Z; = H},a <) H%a, the fact that
H}ﬂa and HI%L are one-dimensional makes it possible to find ( , )7,%. It is
given by

(a1 oto + azot?, Broto + Beotd)z, = (—a1.002.0 + a2.061.0) Ealtd).

Our choice of &, is as follows.

Proposition 6.1. There exists a map &, : D%a — C which is holomorphic
in a € Lyeg(A) and satisfies the following condition:

<Damaa ﬁ>21 + (O[, Damﬁ>I1 = aam <O£, ﬁ>Il . (62)

Proof. Define vy, B € C(a) (m € A(A)) and v, § € C(a) by the following
relations in Zy:

3™ = amto + Bmtd,  tS = yto + L3
Then the condition (6.2) is equivalent to
Darna(t5) = —(200m + 0B + Do Bm)Ea(t3)- (6.3)
The existence of a solution &, (¢3) to this equation is ensured by the equation
Oa,, 2am + 0Bm + OayfBm) = Oa,, (20, + 06y, + 0y On),
which follows from the relations in Zy:
Dy, 13t™ — Dy, 12" =0, D, tot™ — D, tot" = 0.

g

9An isomorphism 7; — H}ma & H ,2:(1 compatible with the graded quotient is given by
a1,0to + ozg,ot% — (1,0 — w)to ® ag,otg with some u. The induced antisymmetric pairing
on 77 turns out to be independent of w.
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Remark 6.3. The condition (6.2) is equivalent to the following equation
for the intersection product on H'(C,) under the isomorphism p: Rp, —
H?(T?,C%):

/Vamoz/\ﬂ—i—/ a/\Vamﬂ:(?am/ a B,
Ca Ca Ca

which is well known in the context of variations of polarized Hodge struc-
tures.

Example 6.1. For the polyhedron #1 in figure 1, solving (6.3), we obtain

1
553 X anonzero constant.
27ay1a2a3 + aj

&a (753) =

Batyrev’s pairing (6.1) together with the quotient map Rp, — H%a =
R}, = &%/ induces a pairing

€a
(,):Rp, x HF - DF =
Then, by Remark 6.3, we have the equation

Yuk(k)(Al7 ooy Ag—1;Ag) = (Da, ---Da,_,1,D4, 1) X a nonzero constant .
(6.4)
Here Dy is the shorthand notation for

= > AuD.,,

meA(A)

where A =3 4n) Am0a,, is a vector field on Lieg(A).

Example 6.2. Let A be the polyhedron #1 in figure 1. By (6 h
Yukawa coupling Yuk(Ou, Oag; Oag) is equal to (Dgy, Dggl, Daol)
4

up to nonzero multiplicative constant. Compare with Example 6.

4)te
25()
below

6.4 Yukawa coupling and the A-hypergeometric system

Recall the A-hypergeometric system introduced in Section 3.4. The fol-
lowing proposition enables us to compute the Yukawa coupling by the
A-hypergeometric system. (See also Lemma 6.2 in the next subsection.)
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Proposition 6.2. 1. For k >3 and mq,...,mp_1 € A(A),
TYuk®™ (0, ... Oa,, i0a) =0 (i=0,1,2,3). (6.5)

2. For a vector I = (Im)mea(a) € L(A), let k be the order of the differential
operator U;. Let us write [J; as

9

amy, — Yan,

.0

ank~

0, =0

aml
Then we have

Yuk#+1) (g,

Amyy -

0

(lmk’

Oao) — Yuk**(9,, ..., 0,

ank7

Oay) = 0.
Moreover, for ji,...,jn € A(A), we have

Yuk" (0, L Ouy, Oy s -5 O, 5 O

9 ajh’
- Yuk(k+h+1)(8ajl g e 8 aanl PECIEE 78ank 7 8CL()) = 0

) a‘]h’
3. Form,n € A(A),

D, Yuk® 84y, Ba,: Oag) + O, Yuk® (8ag, a5 Oay)
= 2Yuk® (8,,, Ba,,, Da,y; Oy )-1°

Proof. Let O, == anD,,,
1. Notice that Vg, —---Vj

the form (cf. (3.11))

wo = p(Oq,,, *** Oa,y,, 1) is expressed in

amg_q
2
0002 1)+ D 1mp(OueOuy 1) + a10p(Oay1) + a0 0p(1),
meA’(A)
where the coefficients satisfy
Tz = Tioan o = Tionm = Tigp =0, (i =0,1,2).

By Definition 6.1, we have
Yuk®) (0, O 50ag) = /C a2,00(02,1) A p(Og 1).

Then the statement follows from Proposition 3.1-2.

The statements 2 and 3 follow from Proposition 3.1-2 and Definition 6.1. [J

10This equation is analogous to the case of compact Calabi-Yau threefolds. See [26].
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6.5 Yukawa coupling for quotient family
Consider the action of T3 on Lyeg(A):

T? X Lyeg(A) — Lieg(A), (Ao, A1, A2) - Fult1, t2) — XoFa(Mit1, Aota).
Let M(A) be the geometric invariant theory quotient of Lyeg(A) by this

action!!. Denote the quotient map by ¢ : Lyeg(A) — M(A).

Since T2 acts as automorphisms on Z, we also have a family of affine
curves

7 Z/T3 — M(A). (6.6)

(Similarly, we can construct the quotient family for the open threefold Z7.)
The differential equation (6.5) implies that Yuk(k)(Gaml voe oy Oapm,  30a0)
depends on the parameter a only through T3-invariant combinations. Thus
we can define the Yukawa coupling for the quotient family as follows. Let

TP M(A) be the subbundle of the holomorphic tangent bundle TM(A) gen-
erated by ¢.0q,.

Definition 6.2. We define a map

Yuk() ) TM(A) x - x TM(A) XTOM(A) = Opqa)

M(2) g
(k—1) times
by
Yukg\‘;)(A)(Al,...,Ak,l;Ak):Yuka)( AL AL,

where A] are T3-invariant vector fields on Lyieg(A) such that ¢, A, = A;. The
case k = 3 is called the Yukawa coupling and denoted by Yuk (). (We
may omit the subscript M(A).)

In the rest of this subsection, we rewrite the differential equations for
the Yukawa coupling (Proposition 6.2) obtained in the previous section to
the setting of the quotient family. We fix a local coordinates of M(A) of a
particular class: take a basis [V (1 <i < I(A) — 3)) of the lattice of relations

Y Any a € Lyeg(A) is stable in the sense of the geometric invariant theory (cf. [5, Defi-
nition 10.5]).
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L(A). Then ,

=d",  (1<i<ia)-3)
form a local coordinate system on some open subset in M(A). We use the
shorthand notation

(a)-3
0::=0., bo:=aba= Y 16, Vi:=Vg , Vo:="Vs,.
i=1

Let D be the set of differential operators on (some open set of) M(A),
consisting of

91'1 : --Gikﬁl, (]f >0, 1 <0,...,1 < l(A) -3, l€e L(A))

L= q*< H aﬁg”)Dl.

Here L; is defined by

m;ly >0
Example 6.3. In the case of polyhedron #1 (see Example 3.3), we have
the coordinate z = (=L = “1273‘13 and 0y := ¢«04, = —30,. Then
0
Li_z111) =02 +320.(30. +1)(30, + 2), (6.7)

and D is generated by 955(_37171,1) (k> 0).
For 0 <iy,...,i <I(A) — 3, we define

Yiy a0 = Yuk®FD(0; 655 00). (6.8)

Proposition 6.2 implies the following:

Lemma 6.2. 1. Let L€ D and let U;,,. i, € C(z) be the coefficients of
Oil .. 9% m ﬁ, i.e.

L= Ui.isbi-0i,  (Ui..i € C(2)).

E>141,... 05

Then the Yukawa coupling satisfies

Z Z Ullzk }/;1...ik;0 =0.

k>2 d1,...,ik

2. For0<i,j <I(A) -3,

1
Yijo = 5 (0i¥jo,0 + 0;Yi00).
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Example 6.4. Let A be the polyhedron #1 in figure 1. Applying the above
Lemma to the differential operator (6.7), we obtain the equation

(1+272)0,Yuk(0,,0.;0,) + 272Yuk(0,,0.;0.) =0, (6.9)

which implies
c
C3(1+4272)
where ¢ is some nonzero constant. This result is the same as Example 6.2.

Remark 6.4. Let ¢,0sF be the solutions (3.9) of the A-hypergeometric
system associated to the polyhedron #1 in figure 1. Then we have

Yuk(6,,0.;0,) =

Yuk (0, dy; 0) ox O2OsF. (6.10)

This follows from the multilinearity of Yuk and the fact that

— 02t 0.t \ _ 3 42
Wr(t,0gF) := det <9§85F 0Z85F> = —(0,t)° - 070sF

is proportional to Yuk(f,,0.;0,) since it satisfies the same differential equa-
tion (6.9).

6.6 Comments on Yukawa coupling in the local A-model and
local mirror symmetry

Let A be a two-dimensional reflexive polyhedron. Consider the two-
dimensional nonsingular complete smooth fan ¥(A*) whose generators of
I-cones are A(A)\ {0}. Let Py(a«) be the toric surface defined by 3(A*).
For example, Pya«) = P? if A is the polyhedron #1 in figure 1. Take
a basis C; (1 <i <I(A) —3) of Hy(Pya+),Z) = L(A) and let J; (1 <i <
[(A) — 3) be the dual basis. Denote by ¢; (1 < ¢ <I(A) — 3) the coordinates
on HQ(PZ(A*)) associated to this basis. Let ¢; be the coeflicients of J; in
c1 (IP’E(A*)) = >, ¢Ji and let J; - J; be the intersection numbers.

Let Nog(Ps(a«)) be the genus zero local GW invariant of degree 3, and
define FPE(A*)(t) by

inst

Fad® 0= 3L NGt
B=>_ diC;

Note that dim H?(Psa+)) = dim R}, = I(A) — 3. Let t;(z) be solutions of
the A-hypergeometric system with a single logarithm, so-called the mirror
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maps, and let dsF be a solution with double logarithms. (See [11, equa-
tion (6.22)] for definitions of ¢;,0gF. II; there is t; here.) Local mirror
symmetry [11] says that, under an appropriate identification between t;’s
and t;(2)’s, OgF is related to the local GW invariants by

1I(A)—3

OgF = Z

ij=1

inst

Ji tht - Z 10y, FL oA (1),

Let TVH? (Px;(ax)) be the one-dimensional subspace of TH2(IP’Z(A*)) spa-
nned by >, ¢;0;,. The local A-model Yukawa coupling Yuk4 may be defined
as a multilinear map from TH?(Pg(a+)) x TH?(Psyax)) x T°H?*(Pgas) to

(’)HQ(PE(A*>) given by

I(A)—3

Yuka (9,05 D ady) = 0,0,05F.
=1

Example 6.5. Let A be the polyhedron #1 in figure 1. As in Remark 6.4,
the local A-model Yukawa coupling Yuk, is proportional to the local B-
model Yukawa coupling Yuk. To get the equality, we set ¢ =1 in Exam-
ple 6.4.

We also see that for the other polyhedra in figure 1, the Yukawa couplings
coincide with the local A-model Yukawa couplings Yuk4 under the mirror
maps t1, ta. See Section 8.

7 Holomorphic anomaly equation
7.1 Analogue of special Kahler geometry

We propose an analogue of the special geometry relation for M(A). Con-
sider the quotient family 7 : Z/T3 — M(A). We use the same notations
zi,00,0;, Vo, V; as in Section 6.5. Let

¢ := Vowg € H(C,). (7.1)
As in (6.8), we set

Yio;o—ﬁ/c Vio Ao (0<i<I(A)-3).
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We also set
—\/—1/ O N .
C.

This defines a Hermitian metric on TYM(A) such that the norm of 6y is
Gyo-

By the definition of G5, Yo0,0 and Y;0,0, we have the following

Lemma 7.1.

(1) qub _ 00 zO 0¢
Gog Goﬁ
- 0:Gg5 Yio:Y o0
(2) 0 20— —7G2J :
00 00
Let
= 0y 00Gyp n (90G06)2 _ O0Yo0:0 OG5
Goo Gog Yooo Gog
Then

(3) 0jx=0 (1<j<I(A)-3),

(4) Vo= ¢+6“Y§‘;°v "

)

The second equation is analogous to the special geometry equation [7].
The third equation is an analogue of [40, equation (3.2)].

Example 7.1. Let A be the polyhedron #1 in figure 1. By comparing the
fourth equation of the above lemma and the differential operator (6.7), we
have

9 54z
T+27z0 "7 1t2te

Yo0,0 =

7.2 Proposal of local holomorphic anomaly equation

We propose how to adapt BCOV’s holomorphic anomaly equation [7] to the
local B-model. Let C§ (g,n > 0) be the n-point B-model topological string
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amplitude of genus g. For 2g — 2+ n < 0, we set
AA=C"=0CY=0, Cl=o. (7.2)

For 2g —2+4+n > 1, we put

co,, = (90 _ GE;GOZO)O,%.

For (g,n) = (0,3), let

éi(%] = YOO;0~ (7-3)
As a holomorphic anomaly equation for (g,n) = (1,1), we propose
. 1— 600Gy ~ 160G
0;Cf = —79 9700 hich implies that Cl= 0700 + fi(2).
G06 2 Gy
(7.4)
For (g,n) = (g,0) (g > 2), we propose
5 A Y 0,0  Ag—1 h1 b
0; g: 2&27 (029 + Z 011012) (7.5)
00 hi+ha=g

For g > 2, C’g can be solved by the Feynman diagram method as in [7] or
Yamaguchi—Yau’s polynomial method as in [40].

7.3 Solution by Feynman diagram [7]

Define the propagator S% by the differential equation 6;5% = ?ngj) It is
00
easily solved by Lemma 7.1-(2):
1 600G
5% = G0 f(2),
Yoo Ggg
where fs(z) is a meromorphic function in z. Put Agy:= —1/5%. Then

assuming (7.3), (7.4) and (7.5), we can show that

1 5 1 Aoo 292 &
onox + = log + %;0 . ] =0.

gj exp [ -
This implies that C’g (g > 2) can be computed as a sum over Feynman

diagrams of genus g. The difference from the one given in [7] is that there
is only one propagator, S%.
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7.4 Solution by Yamaguchi—Yau’s method [40]

Let
00G oo
Goo
From the above Feynmann diagram method and the fact that 6pA € C(z)[A4]

(see Lemma 7.1-(3)), it follows that C§ is a polynomial of degree 3g — 3 +n
in C(z)[A]. Moreover, it satisfies

A:

85’8 _ 1 ~g—1 ~hi Avha
54 = " 2%s (c3 +h1+zh;_gcl cte). (7.6)

Example 7.2. For (g,n) = (1,1),(1,2) and (2,0), we have

- 1 ~ 00 Y00 K
1 1 1 2 0Y00;0 1 1
= —— — — >~ - 9
Ol =—3A+fl(), Ch=a+A( o ) =5 +0ofl,
= 1 75 00Y00;0
2 _ 243 ; 1) 42 77
Co 2Y00;0[12 (4Y00;0 +f1> (1)

+ (=5 +0ofi + (11)2)4] + fal2).

Example 7.3. Let A be the polyhedron #1 in figure 1. We checked that
C1,C2 give the correct local GW invariants of P? at least in small degrees.
The holomorphic ambiguities are

1 1+ 54z (3/40)z + (783/80)2% + (3645/8) 23

@)= 0,  fo2) = 5 :
4(1 + 27z) (14 272)

The holomorphic limit is

7.5 Witten’s geometric quantization approach

First recall Witten’s geometric quantization and its implication for holo-
morphic anomaly equation [39]. Let W = R2N be a vector space equipped
with the standard symplectic form and let L — W be a complex line bundle
whose connection 1-form is the canonical 1-form. Let M be the space of
complex structures on W. To each complex structure J € M, associate the
holomorphic polarization H ; which is a subspace of the space of square inte-
grable sections I'(W, L) consisting of “holomorphic” ones. Then an infinite
dimensional bundle H — M is obtained. Witten found a projectively flat
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connection on H. His claim is that if this is applied to the case where
W = H3(XV,R) is the cohomology of a Calabi-Yau threefold XV, then
BCOV’s holomorphic anomaly equation appears as the condition for the
flatness of a section of H.

We apply Witten’s idea to the case when W = W, HY(CS,R) = H(C,,R)
and M = M(A). (To be precise, M(A) is not the space of complex struc-
tures of W but it is larger in general. However, this point does not mat-
ter in the following argument.) Take ¢, ¢ defined in (7.1) as a basis of
We =W HY(C?) = HY(C,) and let 2,7 be the associated complex coordi-
nates. W has a symplectic form /—1Gzdz A dZ given by the intersection
product. Consider the trivial line bundle L = C x W with the connection

0+ %Goﬁ(l’df — de)

Here we use ¢ to denote the differential on W. Then the holomorphic polar-
ization H, (z € M(A)) is as follows:

_ = Goo g
M, = {CD eT(W,L) | (590 + 73})@ - o}
={®eT(W,L) | ® = p(z)e Coa/2®T }

Mimicking Witten’s result, we can show that

Y Gs\2
0;H C H, <9j— T (536—%5) )HCH.
00

Moreover, these make a projectively flat connection on H.
If we regard
)\29—2+n ~

exp{ Z Tcgz” x e~ (Gog/2)2T
7,920 )

as a section of H, then the condition that it is a flat section results in the
following equation:

illa ?‘0;0 ~g—1 n\ =xh1 Ah
0; = 22;27 <Cvgz+2+ Z <m> le+lcn2—m+1 :
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8 Examples

In this section, we consider the polyhedra #2, 3, 4 in figure 1.

8.1 Fg case
Let A be the polyhedron #2 in figure 1

A = the convex hull of {(1,0), (0,1),(—1,0),(0,—1)}.

A-regularity condition
The A-regularity condition for F' € L(A) is as follows:
a  as

|ty
aiasasay 7 0, (a% —4aja3 — 4a2a4)2 — 64ajasasayq # 0.

F(tl, tQ) = ag + a1t1 + (12752 +

Rr and filtrations

We have
Rr=C1®Cty® Ctot; ® CHtE.

The Z-filtration and the &£-filtration are as follows:

Ilzzgzcto@(ctg, I3 =11 & Ctpty, 1y =Rp.
E'=C1, £&'=E"aCty®Ctot1, E2=TRp.

MHS

By Theorem 4.2 and (3.11),

1121

(8.1)

(T2, 02) = Cun @ PHA(CS),  PHY(CZ) = C plto) & Cpltnth) & Co(8d).
Wy = Cp(tg) ® (Cp(t%), Wy = W1 @ Cp(totr), Wy = H2(T2, C).

E¥=Cwy, E1=E"@Cp(ty) ®Cp(toty), E2= H*(T?C).
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A-hypergeometric system

The lattice of relations L(A) (defined in (3.7)) is generated by two vectors
1M =(-2,1,0,1,0), 1® =(=2,0,1,0,1).

The A-hypergeometric system is generated by the following differential oper-
ators:

0a1 - 0(137 0(12 - 9(147 00,1 + Hag + Hag + 0(14 + 0(107

0,00z — 820, Dy O, — O

ag”

Take
v a1as 12 204
zn=a =-—5, =a @ =-—5.
Qg Qg

These are coordinates of an open subset of M(A). We have 6y := ¢.0q, =
—20,, —20,,. With these coordinates, the above A-hypergeometric system
reduces to the following two differential operators of order 2:

L1 =07 — 21 (=201 — 205)(—26; — 205 — 1),
Lo =03 — 29(—261 — 20) (=261 — 205 — 1).

Solutions about z; = 0, zo = 0 are as follows.

p=0 = log 21 + 2H (21, 22),

p=0 = log z9 + 2H(2’1,2’2),
=logzilogzo +---,

where

w(z;p) = Z ((2p1+2p2)2n1+2n2 ni+p1 n2+p2

Zl 22 )
n1,n2>0 pL+ 1)7211(102 + 1)%2
(2n1 + 2ny — 1)!
H(zl 22) = E LM N2
’ 12,12 1 %2
ni,n2>0 e

(nl 7n2)7é(070)

Yukawa coupling

In this case, D is generated by L1, Lo. Applying Lemma 6.2 to L1, Lo, 09L1,
6oLy , we obtain first-order partial differential equations for Y; j.0. Solving
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these equations, we obtain

8¢
Y0,00 =
T d(2, 29)
8cz1 (1 —4z —4z) 8czo
Yii0= Y190 = Y- =
1,150 d( 1722)7 1,2;0 d(Zl,ZQ) ) 2,2;,0 d(Zl,ZQ)

where d(z1, 20) = (1 — 421 — 423)? — 642122 and ¢ € C is a nonzero constant.

Comparison with the local A-model Yukawa coupling

We show that the Yukawa coupling and the local A-model Yukawa coupling
coincide under the mirror map

Yuk(@ta, 8tﬁ; —28151 — 2(9132) X 8t08tﬁ85F. (82)
For this purpose, let us define the “Wronskian” of 1, to, dgF by

0 -+ 05,11 01t Oatq
Wrn...ik (t1, to, agF) = det 91'1 oo Hith O1to Ooto
0;, - -eikasF 010sF 0905 F

2
. 01t1 0Oot
= det <91t2 02t2> . ;1 Oito - Oalg - O, 01, Os .

(8.3)

We can show that Lemma 6.2 holds if we replace Yuk;, ;.0 with Wr;,_;, (¢1,
ta,0sF)'2. Therefore Wr;;(t1,t2,0sF) must be proportional to Yij.0. Then
(8.2) follows from the multilinearity of Yuk.

12The first statement follows from the cofactor expansion of the determinant and the
fact that t1,t2,dsF are solutions of £ =0 for £ € D:

D Vs Wiy (11,12, 051 = det (elasF 0205 F

DL yenns ik

01t1 Oat1 O1t1  O2t1 .
x Lt1 — det (9185F 9285F> Lto + det (91t2 taz) LOsF = 0.

O1to Ooto >

To prove the second statement, we first solve £1% = Lo% = 0 and express 67, 65% in terms
of 0102%,01%,02% (x = t1,t2,0sF). Then if we substitute these into 61 Wr11(t1,t2,9sF) —
Wri1o(t1, t2, 0sF'), terms cancel each other and we obtain zero. We can prove the other
equations similarly.
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Holomorphic ambiguities

The multiplication constant of Ypo.o is ¢ = 1. From L1, L2, we obtain

8(21 + 22 — 6(27 + 22) + 1221 22)
d(zl, ZQ) '

KR =

We checked that (:”11, 6‘02 give the correct local GW invariants of [ for small
degrees. The holomorphic ambiguities are

1 . 100d(z1,z2) 1
A& =Gd iy Yo 2O= oy (;Obmzm)

(The numerator of f3(z) is omitted because it is long.) As the holomorphic
limit, we take
GO@ —1— QOH(zl, 22).

8.2 [F; case

Let A be the polyhedron #3 in figure 1:

A = the convex hull of {(1,0), (0,1),(—1,0),(—=1,—1)}.

A-regularity

The A-regularity condition for F' € L(A) is as follows:

F(t1,t2) = ag + a1ty + asts + — +
tltg

ayasazay 7 0, ag(ao — 4a1a3) — a2a4( ag — 36apaiaz + 27ajazaq) # 0.

R, Z-filtration, £-filtration and MHS

These are the same as the Fy-case.

A-hypergeometric system

The lattice of relations L(A) is generated by two vectors

1M =(-2,1,0,1,0),  1® =(-1,0,1,-1,1).
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The A-hypergeometric system is generated by the following differential oper-
ators:

9(11 - 9(13 - 9(147 0@2 - 0a47 0(11 + 0(12 + 0(13 + 0(14 + 00,07

2
a1 0oy — 02, DuyOuy — DagOas-
Take
(1) aijag 1(2) azG4
zZ1 =Q = 7 zZ9 = Q = —.
agp apas

These are coordinates of an open subset of M(A). We have 0y := ¢.0,, =
—20., —0.,.

With these coordinates, the A-hypergeometric system reduces to the fol-
lowing two differential operators of order 2:

ﬁl = 91(91 — 92) — 2’1(—291 — 92)(—291 — 92 — 1),
Lo =03 — 25(—201 — 02) (61 — 62).

Solutions about z; = 0, z9 = 0 are as follows:

w(2;0) =
t1:= 0y, w(2; p)\p 0o =logz1 +2H(z1, 22),
to := 0p,w(2; p)|p=0 = log zo + H (21, 22),

OgF := ( 0> +8p18p2>w(z;p),

2 1
where
w(zp) = Y (201 + p2)2n; +ns T(1+ p1 — po)
3 n1ma>0 (Pl + 1)77,1 (pZ + 1)%2 F(l —+ pP1 — P2 + ny — n2)
X Z;l1+p1z;zg+p2’
_ (2n1 +ng — 1)! 1
) = Z n1!(ny — ng)ng!? —Das
ni,n2>0
ni>ng

Here T'(x) denotes the Gamma function.
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Yukawa coupling

c(8 —9z9) c(1+4z — 29 — 32129)
Y000 =———-- Y110= ;
’ d(Zl, 2’2) ’ d(zl, 22) (8 4)
c(1 —4z1 — 29 + 62129) c(z2(1 4 1221)) '
Y1,2;0 = 1/272;0 = -

d(z1,22) ’ d(z1,22)
where d(z1, z2) = (1 — 421)? — 22(1 — 3621 + 272122) and ¢ € C is a nonzero
constant.

Comparison with local A-model Yukawa coupling

As in the Fyp-case, we can show that

Yuk((?ta,@tﬁ; —28t1 - 8152) X 6ta6tﬁ85F (1 < Oé,,@ < 2)

Holomorphic ambiguities

The multiplication constant of Ypo,o is ¢ = 1 and

221(—32 + 19221 + 28225 — 1442129 — 48622 + 24323)
R =
d(21, 22)

We checked that C, CZ give the correct local GW invariants of F; for small
degrees. The holomorphic ambiguities are

1 bod(z1,22) |1

1 7 o
1 _ - _ b
fl (Z) N 12 d(Zl, 2’2) + 67 fZ(Z) N d(zl, 22)2 <zgz:0 bz]zlz%>.

(The numerator of f2(z) is omitted.) As the holomorphic limit, we take

Goﬁ —1— 90H(2’1, 2’2).

8.3 [Fs-case

Let A be the polyhedron #4 in figure 1
A = the convex hull of {(1,0),(0,1),(—1,0),(—2,—-1)}.

This A is different from previous examples in that there are one integral
point lying on the middle of an edge. This case has several features different
from the previous cases.
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A-regularity

The A-regularity condition for F' € L(A) is as follows!?:

a a
F(t17t2) =ap+ a1ty + asts + —3 + T4’

aiazazay 7 0, (a% — dasay) ((a% — 4a1a3)2 — 64a%a2a4) # 0.

R g and filtrations
~ to 2
Rr :Cl@@to@@tf@(‘;to.
1

The Z-filtration is
t
TiICto®Ctl, Ty=TI3=1, EB(Ct—O, T4 = Rr.
1
The E-filtration is

g —ci, 5—1:50@@0@@;?, 2= Rp

MHS

H*(T?,C3) = Cwo ® PH'(C3), PH'(Cq) = Cp(to) ® Cp(to/t1) ® Cp(t5)-
Wi = Cp(to) ® Cp(t3), Wa=W1&Cp(to/t1),  Wa= H*(T? C).
% =Cuwy, E1=E"@®Cp(ty) ® Cp(to/t1), £ 2= H?*(T?C).

A-hypergeometric system

The lattice of relations L(A) is generated by two vectors

1M =(=2,1,0,1,0), 1 =(0,0,1,-2,1),

1311 the last equation, the first factor comes from a one-dimensional face and the second
factor comes from the two-dimensional face.
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and the A-hypergeometric system is generated by the following differential
operators:

0(11 - 0(13 - 29114’ 9(12 - 9a47 eal + (9a2 + (9,13 + 0114 + 01107
Dy Ong — 02, OupOa, — 02

agp? as”

Take the following local coordinates of M(A):

[{€Y) aijas 1(2) a2a4
z=a =-—5, =a @ =-—5.
Qg as

Then we have 6y := ¢.0,, = —260,,.
With these coordinates, the A-hypergeometric system reduces to the fol-
lowing two differential operators of order 2:

ﬁl = 91(01 — 292) — Z1(—291)(—291 — 1),
ﬁg = 9% — 2’2(91 — 202)(91 — 292 — 1).

Solutions about z; = 0, zo0 = 0 are as follows:

(Z’ 0)
ty = 3p1w(zap)\p 0 =logz1 + H(z1,22) — G(22),
ta == Opy @ (2; p)|p=0 = log 22 + 2G(22),
IsF = (851 + 0,0y )w (25 ),

where
w(zp) = Y (2p1)2n L'(1+4 p1 — 2ps)
A=y (o Dy (p2 + 1R, (14 p1 = 202 + na — 2n2)
% Zn1+p1 n2+p2’

2111 — 1) n1 _ns
21722 =2 Z nyl nl — 2n2)|n2'221 227

ni,n2>0

ni>2ns

G(29) = Z Mz;”.

n2!2
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Yukawa coupling

2¢ c(l—4z) 2c22(1 — 821)
— Yio0=———"-", Ya20=-— ;
d(z1,22) d(21,22) (1 — 4Z2)d(21,2’2)

(8.5)
and Ypo,0 = 4Y11,0 where d(z1,22) = (1 — 421)? — 642225 and c € C is a non-
zero constant.

Yi10=

Comparison with local A-model Yukawa coupling

We show that

Yuk(@ta,atﬁ; —28t1) X ataatﬁ(“)gF (1 < Ck,ﬂ < 2) (86)

Note that the Wronskian Wr;, 4, (¢1,t2,0sF) defined as in (8.3) is divis-
ible by 02ty due to the fact that to does not depend on z;. We define the
modified Wronskian'* by

Wr'

t1,t2,0sF) := Wry, , (t1,t2,05F)/0ats

2
=6it1- > Oita- Doty 01,0,05F.
a,B=1

As in the Fy-case, Lemma 6.2 holds if we replace Y, . ;, .0 by Wr} (t1,t2,0g

i1...0)

F'). Therefore Wr;;(t1,t2, 0sF) is proportional to the Yukawa coupling Yjj.0.
Then (8.6) follows from the multi-linearity of Yuk.

Holomorphic ambiguities

The multiplication constant of Ypo.p is ¢ = 1 and

~ 8z1(1 — 621 + 2421 29)
d(Zl, 22) ’

We checked that C, C? give the correct local GW invariants of Fy for small
degrees. The holomorphic ambiguities are

7
1,y = _ Lbodlar,22) 1 _ i
fl (Z) - 192 d(Zl,ZQ) =+ 63 fZ(Z) - d(21,22)2 (ijzzobl]'z122>'

14 A reason to consider the modified Wronskian in the Fa-case is that the Wronskians
do not satisfy the statement corresponding to the second one in Lemma 6.2.
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(The numerator of fa(z) is omitted.) As the holomorphic limit, we take

GOﬁ — 1 - eoH(Zl, ZQ).

Appendix A Mixed Hodge structure of an open threefold

In this section, A is a 2-dimensional reflexive polyhedron. Let Ff, € Lyeg(A)
be a A-regular Laurent polynomial. Define P, € C[t{,t5,z,y] by

Pa(tl,tg, x,y) = Fa(tl,tg) + xy.

Let Z° be the affine hypersurface in T? x C? defined by P,:
Z; = {(t17t27x7y) € T2 X C2 | Fa(tlatQ) +ay = 0} (Al)

It is easy to see that the A-regularity of F, implies the smoothness
of Z.

The goal of the appendix is to give an explicit description of the MHS
on H3(Z2). First, we show that H3(Z2) = Rp,. Next we compactify Z° as
a hypersurface in a smooth toric variety. Then using this compactification,
we compute the Hodge and weight filtrations on H3(Z2). We use Batyrev’s
method for affine hypersurfaces in algebraic tori [5, Sections 6-8] with some
modifications.

A.1 Middle cohomology H?(Z?)

We have a long exact sequence

L= HY(T? x C?) — HY(T? x C*\ 29) == H%(Z)

— H(T?xC?) — --- . (A.2)

Since H*(T? x C?) = H?(T? x C?) = 0, the Poincaré residue map Res : H*
(T? x C%\ Z2) — H3(Z?) is an isomorphism.

In the rest of this subsection, t™ stands for ¢1"'¢5">. By Grothendieck [21],
H*(T? x C%\ Z2) is isomorphic to the cohomology of the global de Rham
complex (F'Q%,. o (xZg),d) of meromorphic differential forms on T? x C?
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with poles of arbitrary order on Z2. Let R’ be the homomorphism

—DFEN ™ dty dt
7R L22 dz dy.

/. 4 o k
R :SA = Ty 2 (xZ,),  tot™ — PR 1 1

Proposition A.1. The map R’ induces an isomorphism
R :Rp, = HYT? x C?\ 29).

Corollary A.1. The map R’ and the Poincaré residue map give an isomor-
phism

P Re, = HYZY).
Remark A.1. Fori=0,1,2,/* : H(T? x C?) — H(Z?) is an isomorphism
where ¢ : Z8 — T? x C? is the inclusion. For i >4, H'(Z2) = 0 since Z2 is
affine.

proof. (of Proposition A.1.) We would like to compute

(x23)
*xZ°)

4
FQTQ x C2

dro?

~ HY(T? x C?\ Z°). (A.3)
T2><(C2(

Let
My = Clto, t,t5,x,y], M= My/DyMy, L =C[tT,t5],
where Dj : My — M) is defined by

(k + toPy)thtmamsyms (k> 0)

Dy (thtmamsy™ms) .= .
0( 0 Y ) {(1 + tOPa)tIOgtmxmgynu (k — 0)

We first rewrite the left-hand side of (A.3) using M. Consider the homo-
morphism ¥y : My — Q%QX c2(*¥Z3) given by

(=1L (k—1)lta™3y™4 k> 1
\I/0<tll§tmxm3ym4) = { m,.ms3 Z{ 7 (

Then the kernel of ¥y is DyMj. Therefore, ¥y induces an isomorphism

UM S 00, L (x22).
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Define the operators D} (1 <i < 4) acting on M by

(mi + toby, Po)thtma™sy™ (i =1,2, k> 0)

/akam,ms, may\ .__
Di(tOt xr Uy ) {mltotm magma (’L: 1’27]@:0) )

k -1
Dy(thtmamsy™) = (m3k+ toeg”,]i‘ﬁ)totmxms v, G20
mgtgtm ™I Ty ™, (k=0)
k -1
R R B A
mytptm By (k=0)

Let e1, . .., eq be the standard basis on C*. For I = {iy,...,i,} C {1,2,3,4},
let e; :==e;; A--- ANe;,. Then we have an isomorphism

U, M@APCH 5 Q) 5 (x22); Zfz®eln—>z\llfz

where v is defined by

o (i=1,2)
V(e) = qdx (i=3) , Aler) =(ei) A Avlei,).
dy (i=4)

If we define D' : M @ A3C* — M ® AC? by

D'(fr@er): ZD' frv(ei Ner),

we have a commutative diagram

Mo ACt 5 Mo aAct
Vs | 10y
0, (x23) L 04, o (+22)
Thus, we have
FQ%‘QX(CQ(*Z((;) ~ M ® A*CH
dFQ%zX(CQ(*Zg) - DM ® A3CH

Then the proposition follows from the next lemma.
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Lemma A.l. 1. The homomorphism L[tg] — M ® A*C* given by tht™
tlgﬂtm ® e1 A ea Aes A ey induces an isomorphism

2
~  MoaAC!
L[to]/ZDiL[to} T DM@ AT
=0

Here D; are the same as those defined in (3.3).
2. The inclusion SA — Lto] induces an isomorphism

2 2

Sa/ > DiSa — Lito]/ Y DiLlto].

=0 =0

Proof of the lemma is by brute force calculation.

A.2 Compactification Z, of Z

In Sections A.2-A.5, we omit the subscript a from Fy, P,, Z,, Z;, C§ and C,,
for simplicity. In Sections A.2 and A.3, t™ stands for the Laurent monomial
A e A

We construct a compactification of Z° as a semiample smooth hypersur-
face Z in a four-dimensional toric variety V such that the divisor D = Z \ Z°
is a simple normal crossing divisor:

Z° C A
N n.
T2 x C2 c Vv

The basic idea is to consider the following slightly modified expression for
P=F+uxy:

_ F(ty,t b
po Eltuts) b bo, (b1,bo # 0, F € Lyeg(A)). (A.4)
taty ty

The Newton polyhedron A of P is given by

A = {(ml,mg,mg,m4) € R4 ’

ms3 § O, my Z —1, m3 — 1y Z 0, (ml,mg) S A(—mg)}.
(A.5)
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Then by the general theory of the toric variety, we obtain a singular pro-
jective toric variety V' = ProjSx such that H°(V’, O(1)) = Brea(a)Ct™
We blow up V’ to obtain a smooth toric variety V. A compactification of
Z° can be obtained as a hypersurface defined by a generic section of the
pull-back of O(1).

Such a V can be explicitly given as follows. First, let v; € Z? (1 <4 <,
r:=1[(A) —1) be the primitive vectors lying on faces of the dual polyhe-
dron A* of A. Let ¥(A) be the two-dimensional complete fan spanned by
v1,.. ., (see figure 2) and let Pya) be the corresponding smooth toric
surface. Then Pya) is a resolution of the singular toric surface ProjSa,
and C° can be compactified smoothly to C'in Py(a). Next we set

V; 0 0 0
=1-1] 1<i<r), wp=|(1|, w=|[(0], us=1[-1]1,
0 0 1 0
0
Ug = 1
—1

Then the 1-cones of the fan Yy are given by
vi=R>o0 (1<i<r), pi=Rxou; (1<j<4),
and the 4-cones of Yy are given by

[¢,i+1; 7,7 + 1] := Rx00; + R>00i41 + Reou; + R>oujt1,
x(1<i<r 1<j<4).

('. 72)

.\\

AN

* '(27'1)

('17'1)

Figure 2: An example of a reflexive polyhedron A (left), its dual polytope
A* (middle) and the fan X(A) (right).
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(For the sake of convenience, we set 0,41 := 01, us := u1 and v,41 := vy, li5
:= p1.) The 3-cones and the 2-cones are faces of the above 4-cones. The
toric variety V associated to the fan v is a bundle over the toric surface
Pg(a) whose fiber is the Hirzebruch surface ;.

Let D; (1 <i<r)and E; (1<j<4) be the toric divisors of V corre-
sponding to the 1-cones v; and uj, respectively. By a standard computation
in the theory of toric varieties (see e.g. [31]), we have

Lemma A.2.
H(V,0(E: +Ep)) = € Ct™

meA(A)

Therefore P in equation (A.4) is a generic section of the line bundle cor-
responding to the divisor E; 4+ Eo. We define Z to be the hypersurface in V
defined by P. We show that if we assume F is A-regular and byb; # 0, then
(1) Z° C Z; (2) Z is smooth; (3) D = Z/Z° is a (simple) normal crossing
divisor. (1) can be shown as follows. Let U,, .., = Spec [t{*, 137, t3,t4] C V
be the open set corresponding to the 2-cone spanned by g1, p2. It is isomor-
phic to T? x C2. The defining equation of Z on Uy, 4, is F(t1,t2) + bits +
botsts and this is equal to P if we identify x = t3,y = b1 + bpt4. We can
prove (2) and (3) by looking at the defining equation P, of Z on the open
subset U, C V corresponding to each 4-cone o.

We end this subsection by listing the Hodge numbers of Z.
Lemma A.3. The Hodge numbers h?1(Z) = dim HP9(Z) are

|p=

1 2
0 0

(A)-1 1
1 (A -1
0 0

W N = O
o O OO
—_— o O oW

Proof. By the formula on cohomology of semiample divisors on a toric
variety due to Mavlyutov [30, Cor.2.7]'°, we can explicitly compute the

15For a semiample toric divisor X in a d-dimensional complete simplicial toric variety
Ps, Mavlyutov’s formula is:

dim H* Py, QL (X)) = ; () (‘lﬁf‘]f:) : i (d - ZHT;; - j) (— 1) T #50, (5)-

The sum is over all faces ¢ of the polytope Ax associated to X, I*(d) is the number of
interior integral points in the face d, o5 € X x is a cone corresponding to the face § in the
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dimensions of HY(V,QP(E; + Eg)) and HY(V,QP(2E; + 2E3)). Then we
obtain dim HY(Z, Q) by exact sequences (as in the proof of the Lefshetz
hyperplane theorem [19, p.156]). O

A.3 The Hodge filtration

Let D=7 D; +E3+E4. Note that D=V \T?xC? and D = Z/Z° =
Z ND.

Proposition A.2. Forp=1,2,3,4, the residue mapping
HY?(V, Q2 (log(Z + D)) " H*? (7,05 (log D))

s an isomorphism.

Proof. Consider the exact sequence
0 — O (logD) — Q2 (log(Z + D)) " 0¥~} (log D) — 0,

and take the cohomology. The vanishings H*?(V, 0k, (logD)) = H>P(V,
0%, (logD)) = 0 imply the proposition. O

We use the notation Q{’,’D(k‘) = OF,(logD) ® O(kZ) for integers k,p > 0.

Proposition A.3.

H(V, Q3 5(5 — p))
HO(V, Q% (4 —p)) + dHO(V, 9%, (4 — p))
(p=1,2,3),
HO(V,Q(log(Z + D))) = HO(V, Qy p(1)).

H*?(V,QP(log(Z + D)))

fan ¥ x (which is the fan such that there is a morphism s : ¥ — ¥x; X is a pull-back of
an ample divisor by the induced morphism of toric varieties Py — Px ), and #Xs,(j) is
the number of j-cones in ¥,5; = {s(7) € ¥ : 7 € 0s5}. In the case of the threefold Z C V,
Y.z is generated by w2, us and 1-cones o; such that v; are vertices of A*.
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Proof. The proposition follows from the exact sequence:

1
d QI\U/JTD(Q) d . 4 Q%/,[D)<5_p)

— B
% 5(1) O p(4—p)

0 — QY (log(Z + D)) — Oy p(1)
— 0,
and Lemma A.4 below. O
Lemma A.4. Let k be a nonnegative integer, p =1,2,3,4.

1. HY(V,QP(log(D+E; +E2)) @ O(kZ)) =0 (g >0),
2. HYV,Q(log(D+E;)®OkZ)) =0 (¢g>0,i=1,2),
3. HIV,Q% (k) =0 (¢>0).

Proof. 1. Let Dy := D+ E; + Es. Note that this is the sum of all toric
divisors in V. It is well known that QF,(logDr) = Oy ® APM where M is
the dual lattice of N =2 Z* (cf. [31]). On the other hand, since E; + E5 is
semiample, we have H4(V,Ov(kZ)) = 0 for ¢ > 0 [30]. Therefore,

HY(V, 0% (logDy) @ Oy (kZ)) = HI(V,Ov(kZ)) @ °’M =0 (¢ > 0).
2. As above, the following vanishing holds:

HY(Es2, O, (log(D + E1)) @ O, (kZ))
=~ H9(Ey, Og,(kZ)) @ \P71Z3 =0 (¢ > 0).

Moreover, the map

Resg,

HO(V, 9%, (logDy) ® Ov(kZ)) —* H°(Ey, Q%" (log(D + E1)) @ Ok, (kZ))
is surjective. Taking the exact sequence of cohomology of the exact sequence

0— Qg,(log(ﬂ) +E1)) ® Ov(kZ) — QF,(log D) ® Oy (kZ)

Res o
—2 05 (log(D + Ey)) ® O, (kZ) — 0,
we obtain

HI(V,QP(log(D +Ey)) ® O(kZ)) =0 (¢ >0).
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The proof for Es is similar.
3. As above, we can show the vanishing

HY(Ey NEs, Q4 %5 (logD) @ O(kZ))
~ HYE; NEy, Op, g, (kZ)) @ AP2Z2 =0 (g > 0),

and the surjectivity of the map

P H(V, 05, (log(D + E:)) @ O(kZ))
i=1,2

Res
= HO(Ey N Es, O 25 (log D) ® O(kZ)).

Consider the exact sequence

0 — 9% (logD) ® O(kZ) — €P &, (log(D + Ey)) @ O(kZ)
i=1,2

Res
— 0% (logDp) ® O(kZ)  —57 QF 2, (logD) ® O(kZ) — 0.

Taking the cohomology, we obtain the statement 3. U

Let A(k) be the polyhedron defined by applying (3.1) to A defined in
(A.5) and let A[k] be the following four-dimensional polyhedron:

A[k] = {(m17m27m37m4> € R4 |
(m1,m2) € A(=m3 —1), =k +1<m3 <0, mg > —k,
mg —my >0 }

Proposition A.4. Let k be a positive integer k > 1.

t™ dty dts dits dty

1. H(V,0% p(k)) = C—————-.

V.o = B Cu T
meA(k—1)NnZ*

t™ dtq dto dt3

2. HO(V,0% p(k) = =t 5

(V, 9y p(k)) @ Pk t1 ty t3
meARNZ4

@ [C tm dt1 dtg dt4 tm dtl dtg dt4 tm dtg dtg dt4]

© TR R

meA(k—1)NZ4
HO(V, Q5 (k + 1))
HO(V, Q% (k) + dHO(V, Q5 (k)

Y k
= Ry,
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where the isomorphism is induced from the map

— )RR dty dty dts dty
Sk — HOV, Qb (kb + 1)), dhepgpe o (LRI diy dfy dts dty |
A ( V,]D)( )) 0“1 *2 Pk+1(t3t4)k t1 to t3 t4

Proof. The statements 1 and 2 can be shown by calculation of the Cech
cohomology associated to the open cover given by the toric fan. The third
statement follows from the first and the second. O

Theorem A.l. The Hodge filtration on H?(Z°) satisfies
GiH3(Z°) = RYP, (0<p<3).

~

Proof. As is well known, there are canonical isomorphisms Grf.H?(Z°) =
H37(Z,Q (log D)). The theorem follows from Propositions A.2, A.3 and
AA4. O

A.4 The weight filtrations

Proposition A.5.

dimGryY =1, dimGrY =0,

dim Gr)Y = I1(A) — 4, dimGr}’ =2.

Proof. The divisor D = Z \ Z° consists of r + 2 components. Define D)
to be the disjoint union of intersections of k components for £k = 1,2,3 and
D) .= Z. Consider the spectral sequence ywE of the hypercohomology
H*(Z,Q%(log D)) associated to the decreasing weight filtration W= := W.
This spectral sequence degenerates at yy Ey. We have yy EV'? 22 [2P+4(D(=P),
C) and the differential d; : H?P+9(D(P) C) — H?*+e+t2(D(=P=1) () is given
by the Gysin morphism (see e.g. [37, Corollary 8.33, Proposition 8.34]).
Computing the cohomology of d;, we obtain the following result:

p=20 —1 -2 -3

=0 i 0 0 0

1 0 0 0 0

. 2 0 2 0 0
dim yy B3 = 3 2 0 0 0
4 0 I(A)—4 1 0

5 0 0 0 0

6 0 0 0 1
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The dimensions of the graded quotients Gr‘i\; 3 H3(Z2°) = wEP?7P can be
read from this table. O

Proposition A.6. The weight filtration on H*(T? x C?\ Z°) is
WsH*(T? x C?\ Z°) = I, = RF,
W H(T? x C?\ Z°) = WsH*(T? x C?\ Z°) = I3,
WsH*(T? x C*\ Z°) = 1.

Proof. We consider three filtrations V,1’, V" on H*(T? x C?\ Z°) and com-
pare them. First, we define

Vi (log(Z + D)) == QL5 A Q% (log(Z + D)), (0 <k <4).
This induces the weight filtration Vy, H*(T? x C?\ Z°) = Wy, 4 H (T? x C?\

Z°). We have already computed the dimension of graded quotients in Propo-
sition A.5.

Second, let U :=V \ (ZUE3UE,). We define
ViQl (log(U ND)) := Qi7" AQF (log(UND))  (k=0,1,2).

This induces another filtration V' on H*(T? x C2\ Z°). As in [5, Section §],
this is given by the Z-filtration on Rp:

VEHY(T? x C%\ Z2°) = 17;, ViHYT? x C*\ 2°) = I3,
VLHY(T? x C%\ Z2°) 2 14.

Third, let j : U — V be the inclusion and define

Vi (log(Z + D)) := Q4 F A QY
+ (Vi-14:Qp (log(U ND))) N Dy (log(Z + D)).

Since H*(T? x C?) = 0, the first term does not contribute to H*(T? x C?\
Z°). So the induced filtration is related to V' by

VIHYT? x C2\ 2°) =V, H (T? x C?\ 2°), (k=1,2,3).
Moreover, it holds that

Vildy (log(Z + D)) € VyQy (log(Z + D)),  (k=1,2),
Vi, (log(Z + D)) € VYO (log(Z + D)).
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Therefore, we have

Ve HY(T? x C*\ 2°) c V,_H (T? x C*\ 2°) (k = 1,2),
Vi H*(T? x C?\ Z°) c VoH*(T? x C*\ Z°).

By the dimension consideration, we see that the proposition holds. O

Since taking the residue map H*(T? x C2?\ Z°) — H3(Z°) decreases the
weight by 2, we obtain

Theorem A.2. The weight filtration on H3(Z°) is as follows:
WeH?(Z°) = R,

WsH3(Z°) = WyH?(Z°) = T3,
WsH3(Z°) =2 1.

A.5 Deformation and obstruction

By Kawamata’s result [27], H*(Z,Tz(—log D))) and H?(Z,Tz(—logD)))
are the set of infinitesimal logarithmic deformations and the set of obstruc-
tions, respectively.

Let w be the following global section of Kz(D) = Q3 (log D) :

1 dty dito
= ————dzdy.
w = Resyz — x dy

Proposition A.7.

HY(Z,Tz(—log D)) = HY(Z,Q%(log D)) = RL,
H*(Z,Tz(—log D)) = H?*(Z,Q%(log D)) = 0,

where the isomorphisms are given by the contraction with the 3-form w.

Proof. The contraction with w is an isomorphism since Kz(D) = Oz and
Tz(—1log D) and Q%(log D) are locally free. For the rest, see Theorem A.1
and Remark A.1. O
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A.6 Variation of MHSs

Varying the parameter a € ;e (A), we obtain a family of threefolds Z7:
[ AR Lieg(A).

We have

Rgp;Z & O]Lreg(A) >~ Rplal ® O]Lreg(A)'
The Gauss-Manin connection on V,  on R3p.Z ® OL,,(a) corresponds to
the derivation D,, since it corresponds to the differentiation by a,, on

IO, o2 (x29).

Let w, be the relative holomorphic 3-form on Z’, such that

1 dty dt
—1—2dxdy.
Fa‘i‘xy t1 1o

wqe = Res

By Proposition 3.1, we obtain

Corollary A.2. 1. H3(ZS) is spanned by wq, V., Wa and Va, Vg, wq
(m,n € A(A)).

2. wq satisfies the A-hypergeometric system (3.8) with 0,4, replaced by Va,, -
3. Period integrals of w, satisfies the A-hypergeometric system (3.8). Con-
versely, a solution of the A-hypergeometric system (3.8) is a period integral.
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