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Abstract

This work is concerned with branes and differential equations for one-
parameter Calabi–Yau hypersurfaces in weighted projective spaces. For
a certain class of B-branes, we derive the inhomogeneous Picard–Fuchs
equations satisfied by the brane superpotential. In this way, we arrive at
a prediction for the real BPS invariants for holomorphic maps of world-
sheets with low Euler characteristics, ending on the mirror A-branes.
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1 Introduction

Mirror symmetry for the closed string is the oldest, best understood and
most thoroughly checked string duality. It is mathematically well-defined
and there are elaborate techniques to calculate for example BPS invariants
which are of interest to both physicists and mathematicians. The first cor-
nerstone has been laid in [1] where the abstract concept of mirror symmetry
was put into a computational scheme to produce genus zero Gromov–Witten
invariants in the example of a compact Calabi–Yau three-fold, the quintic in
P

4. Soon after that, it was realized in [2] that the natural setting for mirror
symmetry is topological string theory, and this led to the formulation of the
A- and B-model. The second cornerstone consisted of a thorough analysis
of topological string theory in [3, 4] leading to the holomorphic anomaly
equations which govern its structure. They provide a powerful formalism to
calculate BPS invariants at higher genus.

As compared to the closed string case, open string mirror symmetry is in
many respects unexplored territory. For non-compact Calabi–Yau manifolds
the subject is fairly well understood. The breakthrough was the formulation
of the open string BPS invariants in [5] which were then first computed
in [6]. By now, there exists a considerable amount of literature dealing
with the open mirror symmetry on non-compact Calabi–Yau three-folds. In
particular, recently in [7] a set of recursion relations was found that allows
to completely describe the topological B-model on non-compact Calabi–Yau
threefolds and to compute the various BPS invariants.
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However, for compact Calabi–Yau three-folds mirror symmetry with D-
branes is much less understood. The reason for this is that it is, in gen-
eral, much harder to deal with compact Calabi–Yaus because one has to
take into account many new features. One complication related also to
phenomenology is that, if one is interested in computing consistent models
which have resemblance to the real world, one has to take into account the
effects of fluxes and orientifold planes. These aspects may not directly enter
in certain calculations but on the long run one cannot neglect these issues.
Another difficulty when dealing with compact Calabi–Yau manifolds are
the D-branes themselves. In non-compact models the branes typically sit at
singularities and/or stretch into infinity. In compact Calabi–Yau manifolds
branes obviously wrap compact cycles, leading to additional interesting, and
phenomenologically relevant, structure. Upon the study of boundary condi-
tions in topological string theory in [8], Kontsevich conjectured in [9] that
the mathematical framework to deal with open string mirror symmetry are
categories. Whether one can make use of this abstract concept very much
depends on whether one is interested in A-branes or B-branes. B-branes are
quite well understood and can be approached in various ways which are also
accessible to physicists. The relevant categories are the category of coherent
sheaves and the category of matrix factorizations. A-branes are captured by
the Fukaya category, which is hardly understood, even by mathematicians,
and not many non-trivial examples for A-branes on compact Calabi–Yau
three-folds are known. This is one reason why phenomenologically inclined
physics papers mostly deal with models based on torus orbifolds where the
A-branes are quite simple. For general Calabi–Yau three-folds Kontsevich’s
homological mirror symmetry conjecture states that the two categories are
equivalent. However, this has not yet been useful for computing open BPS
invariants.

Recently, in a pioneering series of articles [10–15] Walcher and various
collaborators took the first steps towards understanding open string mir-
ror symmetry for compact Calabi–Yau three-folds. Further work includes
[16–20]

In the first paper, [10], disk instantons have been computed for the quin-
tic using mostly A-model techniques. A particular Lagrangian A-brane,
defined by the real quintic, was identified. It admits two vacua separated
by a domain wall. The instantons are then maps from the disk into this
Lagrangian. The generating function of these instantons is the BPS domain
wall tension [5]. It was shown that this object is determined by an inhomoge-
neous Picard–Fuchs differential equation. A particular differential equation
was proposed in [10] and it was verified by A-model localization techniques
in [11] that its solution produces the correct instanton numbers. In the
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second paper, [14], the authors focused on the B-model. The D-brane that
is the mirror of the real quintic was identified. From the associated geomet-
ric boundary conditions the inhomogeneous Picard–Fuchs equation could
be derived, thus completing for the first time an explicit open string mirror
symmetry computation on a compact Calabi–Yau three-fold. In [12] the
holomorphic anomaly equations were extended to include a particular set
of D-branes. As mentioned above, the presence of D-branes on compact
spaces generally requires the introduction of orientifolds leading to tadpoles
that must be cancelled. In [15] it has been argued that also in topological
string theory the effects of orientifolds play a crucial role, and the holomor-
phic anomaly equations were further extended to include also unoriented
worldsheets.

The aim of the present article is to deepen the understanding of the con-
cepts introduced in [10, 14], focusing on the B-model. The models we will
consider are the one-parameter hypersurfaces in weighted P

4. These mod-
els are slightly more complicated than the quintic but also exhibit enough
similarities to provide a testing ground for the ideas of [10,14].

The paper is organized as follows. In Section 2 we give an overview
on the subject and introduce the notation. Section 3 is concerned with a
certain class of D-branes and their (obstructed) moduli on the one-parameter
hypersurfaces. In this discussion, we use techniques of matrix factorizations
and boundary conformal field theory. In Section 4 we establish the relation
to geometric boundary conditions. In Section 5 we discuss how to resolve
the singularities at the points on the boundary which are fixed by an action
of the orbifold group. This is necessary preparatory work for the derivation
of the inhomogeneous Picard–Fuchs equations, which we do in Section 6
for a particular choice of boundary conditions. In Section 7 we discuss the
properties of the BPS domain wall tension and compute the certain real BPS
invariants. We close the main part of the paper with some conclusions and
open questions in Section 8. In the Appendix we provide some information
on orientifolds on the one-parameter hypersurfaces.

Recently, we have been informed by Johannes Walcher that he and Daniel
Krefl also work on open string mirror symmetry on one-parameter hyper-
surfaces [21].

2 General remarks

In this section we start with a short review of the preceding work on open
string mirror symmetry for compact Calabi–Yau three-folds with the aim
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of making the reader familiar with some new concepts and of defining the
central objects and setting the notation.

2.1 Review of open and closed mirror symmetry

We begin with a mirror pair of families of Calabi–Yau three-folds (X, Y ) real-
ized as hypersurfaces in a toric variety. We will refer to X as the target space
for the A-model, and Y as the target space of the B-model, although at some
point the roles will be interchanged. We extend this mirror pair by includ-
ing families of D-branes to an open string mirror pair ((X, Lα), (Y, Eα)).
This is a down-to-earth way of formulating the homological mirror symme-
try conjecture [9]. Let Fuk(X) denote the category of A-branes on X, and
Db(Coh(Y )) denote the category of B-branes on Y , then this conjecture
states an equivalence between these two categories1

Fuk(X) ∼= Db(Coh(Y )),
Lα ↔ Eα.

(2.1)

Here Lα is a choice of A-branes consisting of a family of special Lagrangian
submanifolds L of X together with a local system on L, i.e., a choice of a flat
connection. The flat connections are solutions to the equations of motion of
the Chern–Simons functional on the world volume of the A-brane [8]. Recall
that flat connections are equivalent to representations ρ : π1(L) → GL(1, R),
and hence are classified by the cohomology group ΓL = Hom(π1(L), R). α
will denote an element of this group. On the other side, Eα is a choice
of B-branes consisting of a family of complexes E of holomorphic vector
bundles on Y together with a choice of a complex structure on E. Remember
that a holomorphic vector bundle admits a unique Hermitian connection a
such that ∂̄a = ∂̄, and vice versa. Hermitian connections are solutions to
the equations of motion of the holomorphic Chern–Simons functional on
the world volume of the B-brane [8, 24]. We will label the choice of the
Hermitian connection on E by α. If open string mirror symmetry holds, it
follows that generically there have to be as many local systems on L as there
are Hermitian connections on E.

In the physical realization of closed string mirror symmetry, the pivotal
quantity is the holomorphic prepotential F . In the A-model on X, it is

1Since we are ultimately working with orientifolds, one should endow these categories
with a parity functor [22,23].
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defined as the generating function of holomorphic maps of spheres into X

FA(t) = c(t) +
∑

β∈H2(X,Z)

ñβ qArea(β), (2.2)

where q = e2πit and c(t) is a cubic polynomial in the complexified Kähler
moduli t containing the classical part, i.e., topological information on X. β
is the class of the image of the map in X.

In the B-model, the prepotential can be written in terms of an integral
symplectic basis (w3(z), w(1)

2 (z), . . . , w(n)
2 (z), w0(z), w(1)

1 (z), . . . , w(n)
1 (z)),

n = h2,1(Y ) of periods on Y as follows:

FB(z) =
1
2

(
w3(z)w0(z) −

n∑

i=1

w
(i)
1 (z)w(i)

2 (z)

)
, (2.3)

where z denotes the complex structure moduli of the mirror manifold Y .
The periods are solutions to the Picard–Fuchs equations

LPF� = 0, (2.4)

for � ∈ {w3, w
(1)
2 , . . . , w

(n)
2 , w0, w

(1)
1 , . . . , w

(n)
1 }. The most important prop-

erty of the prepotentials is that closed string mirror symmetry relates the
two in the following way:

FA(t) = �0(z(t))−2FB(z(t)), (2.5)

where the map z(t) is the (inverse of the) mirror map, and �0(z) = w0(z)
is the fundamental period, i.e., the period which is holomorphic near z = 0.

Given the holomorphic prepotential FA = F (0)
A as well as the topological

data of X, one can then proceed to determine the generating function F (1)

of holomorphic maps of genus 1 in the A-model,

F (1)
A (t) = l(t) +

∑

β∈H2(X,Z)

ñβ qArea(β), (2.6)

from the integration of its holomorphic anomaly equation [3] in the B-model

∂̄ı̄∂jF (1)
B (z) =

1
2
Ckl

ı̄ Cjkl +
( χ

24
− 1
)

Gı̄j , (2.7)

where Cijk = ∂i∂j∂kF is the three-point function, Gı̄j = ∂ı̄∂jK is the
Zamolodchikov metric on the moduli space M of complex structures on
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Y , and χ is the Euler number of Y . In (2.6), l(t) is a linear polynomial in t
depending on the topological data of X. Thereby we pick up a holomorphic
ambiguity f (1,0) which turns out to have a universal behavior (1 − zc)− 1

6

near the conifold point zc. This allows one to fix it completely in the case
of one-parameter Calabi–Yau hypersurfaces without having to rely on the
absence of certain curves. Closed string mirror symmetry then states that

F (1)
A (t) = F (1)

B (z(t)). (2.8)

Following the program initiated by Walcher in [10,12,14], we now consider
the open string analog of the prepotential F which is the BPS domain wall
tension T and point out some of its properties.

In the A-model on X, TA,α(t) is defined as the generating functional
counting holomorphic maps of discs ending on Lα. It has the form

TA,α(t) =
t

2
+ Tclassical,α +

∑

D∈H2(X,Lα,Z)

ñD qArea(D), (2.9)

where H2(X, Lα, Z) is the relative cohomology group labeling the classes
D of the image of the holomorphic discs. Tclassical,α contains “classical”
contributions, i.e., topological invariants such as the analytic or Ray–Singer
torsion of Lα, and is therefore independent of t. The goal in this work is
to compute the BPS invariants ñD for some choice of the pair (X, Lα). We
will explain the way of choosing this pair below. Before, however, we need
to introduce the B-model version of T .

In the B-model, TB(z) is defined as the difference of the holomorphic
Chern–Simons functionals Wα(z) for two distinct Hermitian connections:

TB,α(z) = Wα(z) − W0(z) = SholCS(α). (2.10)

Here 0 denotes a reference connection, i.e., a reference complex structure.
In order to make sense of (2.10) for an arbitrary complex E of holomorphic
vector bundles, we proceed as in [14]. Let us for the moment exhibit the
complex structure dependence of a member of the family (Y, E) by writing
Yz and Ez for that member. Then, to such a complex Ez we can associate its
algebraic second Chern class calg

2 (Ez). This is an element of the Chow group
CH2(Yz) of codimension 2 algebraic cycles in Yz modulo rational equivalence.
There is a natural map from CH2(Yz) into the cohomology group H4(Yz, Z).
The image of calg

2 (Ez) under this map is the topological second Chern class
ctop
2 (Ez) characterizing the charges of the D-brane described by the complex

E. We want to emphasize that calg
2 (Ez) contains more information than just
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the charges. An element of the Chow group CH2(Yz) can be represented by a
collection of curves Cz given by a set of algebraic equations. In order to relate
Cz to TB we have to require that it is homologically trivial, i.e., that its image
in H4(Yz, Z) vanishes. In this case, there exists a so-called normal function
νCz = νctop2 (Ez) that has been introduced by Griffiths [25–27]. If we pick any
three-chain Γz such that ∂Γz = Cz and integrate the holomorphic three-form
Ω(z) of Yz over this chain, we obtain the truncated normal function

νCz(Ω) =
∫

Γz

Ω(z). (2.11)

This is then the familiar expression for the holomorphic Chern–Simons func-
tional for the special case where the B-brane is described by a holomorphic
vector bundle on a holomorphic curve [6,28–30]. Hence, the formula for the
domain wall tension in the B-model is [14]:

TB,α(z) = νCα,z (Ω) . (2.12)

Note that the normal function is only well–defined only up to periods, i.e.,
up to integrals

∫
γ Ω for some three-cycle γ ∈ H3(Yz, Z). In fact, the normal

function should be viewed as a holomorphic section of the Griffiths inter-
mediate Jacobian fibration over the moduli space of complex structures of
the family Y . For more details about the mathematical properties of νC ,
see [31–33]. The main property of interest to us is that the normal function
satisfies an inhomogeneous version of the Picard–Fuchs equations [27]:

LPFTB,α(z) = fα(z), (2.13)

where fα(z) is some function in z and LPF is the differential operator
from (2.4). The function fα(z) contains information about the B-brane
realized by the complex Eα beyond its charges.

Having defined the BPS domain wall tension in both the A- and the
B-model, we can now state the analog of (2.5) for open string mirror sym-
metry [14]:

TA,α(t) = �0(z(t))−1TB,α(z(t)). (2.14)

This conjecture has been proven for a particular choice of (X, Lα), namely
for the quintic X in P

4 and L its real locus [10,11,14].

As in the closed string situation, given the BPS domain wall tension
TA = F (0,1)

A , one can then proceed to study holomorphic maps of Riemann
surfaces with larger Euler number. In the A-model on X, F (0,2)

A,α (t) is defined
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as the generating functional counting holomorphic maps of annuli ending on
Lα. It has the form

F (0,2)
A,α (t) =

∑

A∈H2(X,Lα,Z)

ñA qArea(A). (2.15)

On the other hand, it has been recently shown in [12,15], that in the B-model
there is an extension of the holomorphic anomaly equation to Riemann sur-
faces with boundaries which for the annulus reads

∂ı̄∂jF (0,2)
B,α = −Δjk,αΔk

ı̄,α +
Nα

2
Gı̄j , (2.16)

where Nα, roughly speaking, is the number of generators of the unbroken
gauge group on the B-brane Eα. Similar to TB,α, Δij,α is a quantity from
Hodge theory, the Griffiths infinitesimal invariant [34] of the normal function
νCα (see also [31–33]). In the holomorphic limit, they are related by

Δij,α = lim
z̄→0

DiDjTB,α, (2.17)

where Di is the covariant derivative of special geometry. For more details we
refer to [12]. Integrating (2.16) again introduces a holomorphic ambiguity
f (0,2). One would hope that it has a universal behavior near the conifold
point such that the ambiguity can be fixed completely for sufficiently simple
B-branes. Then the analog of (2.8) becomes

F (0,2)
A (t) = F (0,2)

B (z(t)). (2.18)

It turns out, however, that the invariants ñA (after taking into account mul-
tiple cover contributions [5]) need not be integral. The reason for this is the
topological string version of the tadpole cancellation [15]. In the presence of
branes, the A- and B-model only decouple if the tadpoles are cancelled. This
requires the presence of orientifold planes and hence unoriented worldsheets.
It was argued that, upon inclusion of the contributions of the worldsheets,
the real BPS invariants become integers. In particular, we will need the gen-
erating function KA for holomorphic maps of Klein bottles in the A-model.

KA,α(t) =
∑

K∈H2(X,Lα,Z)

nK qArea(K). (2.19)

If the orientifold projection is trivial, the corresponding quantity KB in the
B-model satisfies the holomorphic anomaly equation of F (1) in (2.7) with
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χ = 0 [15]

∂̄ı̄∂jKB =
1
2
Ckl

ı̄ Cjkl − Gı̄j . (2.20)

Here, it is conjectured that the holomorphic ambiguity has a universal
behavior similar to f (1), but with a different exponent: f (1,0)k = (1 − zc)− 1

4 .

2.2 The program

After having introduced all the objects we need and having stated the (con-
jectured) relations among them, we now proceed to explain how the BPS
invariants nD can be determined. Given an A-brane Lα, there is, according
to (2.1), a mirror B-brane Eα. We pick such a B-brane and compute its
algebraic second Chern class calg

2 (Eα) to get the curve Cα. These curves
are homologically equivalent for distinct values of α, i.e., choosing 0 as a
reference value we have

Cα

hom∼= C0, (2.21)

hence the difference of two of them is homologically trivial: [Cα − C0] =
0 ∈ H4(Y, Z). We then construct a three-chain Γα such that ∂Γα = Cα −
C0. Performing the integration of Ω over Γα yields the function fα(z) and
consequently TB,α(z). Finally, we substitute the mirror map, use (2.14), and
expand TA(t) as in (2.9) in order to read off the BPS invariants n0,real

D = nD.
From TB we can also determine the Griffiths infinitesimal invariant Δij ,
and together with the closed string quantities Cijk, Gı̄j we can integrate
Equations (2.16) and (2.20). From (2.15) and (2.19) we can then read off
the BPS invariants n1,real

A=K = 4nA + nK . We will now give the details of each
of these steps as well as the references to the various sections where the
corresponding computations are carried out.

The first step consists of the choice of the mirror pair (X, Y ). For this
work, we will choose X to be one of the four possible hypersurfaces in toric
varieties X with a one-parameter Kähler moduli space, i.e., with h1,1(X) =
1. They are all realized as degree d hypersurfaces in weighted projective
spaces P(w) with d =

∑5
i=1 wi. So X is any of the following families:

P(1, 1, 1, 1, 1)[5], P(1, 1, 1, 1, 2)[6], P(1, 1, 1, 1, 4)[8], P(1, 1, 1, 2, 5)[10].
(2.22)

The first one of these, the quintic in P
4, has been the central example in [10,

14]. Therefore we focus here on the other three families. The mirror families
Y can be obtained through the Greene–Plesser orbifold construction [35] and
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yields for the Y

P(1, 1, 1, 1, 1)[5]/(Z5)3, P(1, 1, 1, 1, 2)[6]/(Z6)2 × Z3,

P(1, 1, 1, 1, 4)[8]/(Z8)2 × Z2, P(1, 1, 1, 2, 5)[10]/(Z10)2,
(2.23)

respectively. These spaces are singular and have to be resolved. For this one
can invoke the standard techniques of toric geometry. The equations for the
latter three mirror families are

W (6)(ψ) = x6
1 + x6

2 + x6
3 + x6

4 + x3
5 − 6ψx1x2x3x4x5, (2.24)

W (8)(ψ) = x8
1 + x8

2 + x8
3 + x8

4 + x2
5 − 4ψx2

1x
2
2x

2
3x

2
4, (2.25)

W (10)(ψ) = x10
1 + x10

2 + x10
3 + x5

4 + x2
5 − 5ψx2

1x
2
2x

2
3x

2
4, (2.26)

where ψ is the complex structure modulus and we denote by W the superpo-
tential of the associated Landau–Ginzburg model. Note that for W (8) and
W (10) we do not use the standard deformation which would be ψx1x2x3x4x5.
The deformations we use can be obtained from the standard one via the
equations of motion for x5. We will justify our choice of deformations in
Section 3.2. Closed string mirror symmetry for these families has been
studied in detail in [36,37], in particular the Picard–Fuchs system (2.4) and
prepotentials (2.2), (2.3) were determined there.

When we now want to specify families of special Lagrangian submanifolds
L of X we run into trouble because there is no general construction known.
The only special Lagrangian submanifolds that are known in general are the
so-called real Calabi–Yau manifolds. See, e.g., [38] for the case W (8). We
circumnavigate this problem by directly specifying the mirror family E of
B-branes on Y and assume that there exists a submanifold L ⊂ X that is
mirror to E. From the properties of E we can infer some of the properties
of L, in particular the number of flat connections on L.

Let us discuss this last point in more detail and explain what we mean
by a family of A- or B-branes. One of the four fundamental facts about
open strings on compact Calabi–Yau three-folds that were argued for in [12]
states that at a generic point in the closed string moduli space, there are no
continuous open string moduli. Hence, at a generic point z0 of the complex
structure moduli space, a D-brane can only depend on the complex structure
modulus z as well as on discrete open string moduli α. The discreteness of
the open string moduli means that there are potentially continuous moduli
for which there is however a superpotential which forces them to be fixed at
its critical locus. This means that the moduli are obstructed. This will be
discussed in great detail in Section 3.2. Assuming that the critical locus is
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a finite set, we identify the points with choices α of a Hermitian structure
on E.

Hence, our task is to specify the B-brane E and study its deformations and
obstructions. Definitely, the handiest way to describe B-branes is through
the concept of matrix factorizations [39,40] (for recent reviews see [41,42]).
In particular, as Orlov has shown in [43], we can associate to every complex
of holomorphic vector bundles E on Y a matrix factorization Q of W with
Q2 = W and vice versa. This correspondence is not unique but an explicit
construction has recently been given in [44] where this correspondence was
physically realized as the open string version of the Calabi–Yau/Landau–
Ginzburg correspondence [45]. We will apply the results of [44] in Sec-
tion 4. So instead of specifying a complex E of holomorphic vector bundles
on Y , we will give the corresponding matrix factorization Q of W . At the
Gepner point, a subset of the matrix factorizations can be identified [46]
with the Recknagel–Schomerus boundary states | L, M, S 〉〉B [47, 48] in the
corresponding Gepner model. The relation between D-branes on the last
three families X in (2.22) and boundary states in the corresponding Gep-
ner model has been studied in [49] which will be useful along the way (for
related work see [50, 51]). This will be explained in more detail in Sec-
tion 3.1, where we will also specify the matrix factorizations for the various
W in (2.25). At this point, we have to take into account that we need
the matrix factorizations on the mirror Y and not on X. The reason why
we focus on matrix factorizations corresponding to Recknagel–Schomerus
boundary states is the following: Since the mirror construction only involves
taking a quotient with respect to the Greene–Plesser group GGP, we can
simply take a GGP-equivariant version of the matrix factorization of the W
in (2.25). As mentioned above, given these matrix factorizations, we have to
work out their deformations and obstructions in order to find the possible
vacua α. In particular, we have to make sure that the deformations are also
GGP-equivariant. This will be the content of Sections 3.3 and 3.4, and the
resulting object will be denoted by Qα.

Let us summarize the first step. Instead of specifying the A-brane Lα on
X, we decide to start on the mirror side and to specify the mirror B-brane
Eα on Y . For various technical reasons it is, however, simpler to first start
with the corresponding GGP-equivariant matrix factorization Qα of W and
then construct the complex Eα from Qα by using the open string version
of the Calabi–Yau/Landau–Ginzburg correspondence [44]. This is done in
great detail in Section 4.1 for the examples we have selected in Section 3.

Equipped with an explicit complex of holomorphic vector bundles Eα on
Y we can proceed to the second step and compute its topological Chern
character chtop(Eα) as well as its algebraic second Chern class calg(Eα).
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The topological Chern character allows us to verify that the complexes we
have constructed indeed come from Recknagel–Schomerus boundary states
by comparing it to the Chern characters obtained in [49]. This is done in
Section 4.1. Furthermore, it allows us to check whether it satisfies the tad-
pole cancellation condition along the lines of [52]. In fact, in the case of
the quintic, the complex chosen in [14] is precisely the one for which the
tadpole cancellation condition is satisfied [52]. This seems to be important
for the following reason: Another of the four fundamental facts pointed out
in [12] is that the topological charge of the D-brane configuration under
consideration has to vanish. This is the topological string version of the
tadpole cancellation condition. This was subsequently made more precise
in [15] where it was argued that the decoupling of the B-brane from the
A-type moduli only happens under this condition. This condition then
requires the inclusion of unoriented worldsheets and therefore orientifolds.
It was shown that only upon their inclusion the open string BPS invariants
at higher order in perturbation theory become integral. We will come back
to this issue at the end of this section. The algebraic second Chern class
allows us to determine the curves Cα. For this purpose one chooses generic
sections of ker Qα and looks for the locus where they fail to be linearly inde-
pendent. This locus is a representative of the algebraic Chern class. This is
explained in Section 4.2.

In the third step we have to select a three-chain Γα on Y such that
∂Γα = Cα − C0 and integrate the holomorphic three-form Ω over this three-
chain. This is typically done by putting an infinitesimal tube T (Γα) around
Γα in the ambient weighted projective space and integrating over this 4-chain
instead [25]. Furthermore, one expects on general grounds [27] that this inte-
gral satisfies an inhomogeneous Picard–Fuchs equation of the form (2.13).
As explained in [53] there is a standard algorithm of reduction of the pole
order due to Griffiths and Dwork [25, 54] which yields the following differ-
ential equation for the holomorphic three-form Ω:

LPFΩ(z) = dϕ(z). (2.27)

We briefly review this in Section 6.1 and apply it to the various families
(Y, Cα) in Sections 6.2 and 6.3. This provides us with both LPF and dϕ(z).
The integral of the term on the right-hand side of (2.27) over the tube
T (Γα) gives the inhomogeneous term f(z) in (2.13) due to the fact that the
four-chain T (Γα) has a non–trivial boundary T (Cα − C0)

fα(z) =
∫

T (Cα−C0)
ϕ(z). (2.28)
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As was pointed out in [14], here one runs into a further technical problem.
The tubes T (Cα) and T (C0) will intersect in general in some number of
points pi ∈ Y . Moreover, these points can coincide with the singular points
from the action of the orbifold group GGP on W = 0. The induced singular-
ities have to be resolved. Since the ambient spaces are weighted projective
spaces, this can be done straightforwardly in the framework of toric geom-
etry. This is the subject of Section 5. Once we are equipped with the
resolution we can proceed to compute the integral in (2.28) along the lines
of [14]. This is worked out for the various families (Y, Cα) also in Sections 6.2
and 6.3. In the end, we obtain from (2.11) and (2.12) the normal function
TB,α(z).

The last step then involves plugging the inverse mirror map z(t) into
TB(z), using the open string mirror formula (2.14), and to expand the so
obtained BPS domain wall tension TA(t) according to (2.9). This is standard
and will be carried out in Section 7.4. Before that, however, we study
the solutions to (2.27) and their monodromy behavior along paths in the
complex structure moduli space of Y . For this purpose, we analyze these
solutions in Section 7.1 and their analytic continuation to large values of z in
Section 7.2. The monodromy behavior is discussed in Section 7.3. This will
provide a consistency check on the results we have found in Section 6. In
Section 7.4 we try in addition to make a prediction for real BPS invariants
with Euler number 1 by solving the holomorphic anomaly equations for the
annulus (2.16) and the Klein bottle (2.20). It is important at this point that
we have carefully chosen our B-brane in Section 3 such that the orientifold
projection becomes trivial.

Finally, we will study the normal function TB(z) and the differential equa-
tion it satisfies in more detail in Section 7.5. It turns out that the TB(z) we
found also satisfies a homogeneous differential equation

LBTB(z) = 0 (2.29)

in a similar way as the one found for the quintic in [10]. We will argue
that the solutions to the differential operator LB are so-called semi-periods.
These are solutions to the GKZ hypergeometric system of differential equa-
tions (see [55] for a nice review). This system arises naturally in the exten-
sion of the Greene–Plesser mirror construction to arbitrary Calabi–Yau
hypersurfaces in toric varieties found by Batyrev [56, 57]. The GKZ sys-
tem in particular contains the Picard–Fuchs system. Furthermore, there is
a construction of three-chains S such that the integral of the holomorphic
three-form Ω over S is a semi-period. We speculate on the relation between
the three-chains S and the three-chain Γ used in the construction of the
normal function.
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3 D-branes and effective superpotentials

In this section we will discuss D-branes on the one-parameter hypersurfaces.
We will make use of the description of Landau–Ginzburg branes in terms
of matrix factorizations and of the boundary state formalism, available at
the Gepner point. In all cases we will restrict ourselves to tensor product
boundary states. We will discuss which branes have moduli and how they
are obstructed by computing the effective superpotential. This will give a
hint which branes admit two vacua separated by a domain wall.

3.1 Matrix factorizations and boundary states

Let us now discuss the class of matrix factorizations which characterize
the D-branes we are interested in. At the Gepner point we can make an
identification with the Recknagel–Schomerus boundary states. Given the
Ad−2 minimal model with superpotential W = xd we can identify certain
matrix factorizations with boundary states [40,46]. In particular, we have

Q(k) =
(

0 xk

xd−k 0

)
⇐⇒ | L, S 〉〉B = | k − 1, 0 〉〉B. (3.1)

The additional label M is non-zero whenever an orbifold action is taken
into account. The branes we are looking at will be tensor products of such
boundary states. We will often use the boundary state notation to label the
matrix factorizations, even when the deformation is turned on. We consider
the following factorizations for the three hypersurfaces:

Qd=6 =
4∑

i=1

(xki
i ηi + x6−ki

i η̄i) + x5η5 + (x2
5 − 6ψx1x2x3x4)η̄5, (3.2)

Qd=8
± =

4∑

i=1

(xki
i ηi + x8−ki

i η̄i) + (x5 ±
√

4ψx1x2x3x4)η5

+ (x5 ∓
√

4ψx1x2x3x4)η̄5, (3.3)

Qd=10
± =

3∑

i=1

(xki
i ηi + x10−ki

i η̄i) + xk4
4 η4 + x5−k4

4 η̄4

+ (x5 ±
√

5ψx1x2x3x4)η5 + (x5 ∓
√

5ψx1x2x3x4)η̄5. (3.4)

The ηi, η̄i are boundary fermions satisfying Clifford algebra relations:

{ηi, η̄j} = δij , {ηi, ηj} = 0. (3.5)



ONE-PARAMETER CALABI–YAU HYPERSURFACES 1007

The R-charges of the variables xi are 2wi
d where wi are their homogeneous

weights. The R-charges of the boundary fermions are chosen such that the
matrix factorization Q has charge 1.

Note that (3.2) to (3.4) do not present the only way to incorporate the
bulk deformation into the matrix factorizations of this type. Throughout
this paper, we will use the above expressions whenever speaking of the bulk
deformed matrix factorizations. Let us mention that none of the above
matrix factorizations has the structure of the factorization for the quintic
given in [14]. This particular form of matrix factorization is actually quite
special and we have only found it for d = 8 and ki = 3:

Q̃d=8
± =

4∑

i=1

(x3
i ηi + x5

i η̄i) + (x5η5 + x5η̄5) ± 2
√

ψ

4∏

i=1

(ηi − x2
i η̄i)(η5 − η̄5).

(3.6)

At the Gepner point this matrix factorization can be identified with the
L = (2, 2, 2, 2, 0) boundary state.

3.2 Which branes have moduli?

Only matrix factorizations with obstructed brane moduli can lead to a dis-
crete number of brane vacua which are separated by domain walls. In order
to find brane moduli one starts at the Gepner point and looks for open string
states which are valid boundary deformations. A simultaneous bulk defor-
mation will in general obstruct these boundary deformations. The informa-
tion about the obstructions is encoded in the critical locus of the effective
superpotential Weff . This will be the subject of the next section. In this
section, we confine ourselves to some rather trivial technical observations on
how to assemble open string moduli from minimal model open string states.

In the following we will focus on tensor product branes. These B-branes
are tensor products of boundary conditions of the minimal model compo-
nents, which, in addition, have to be invariant under an orbifold action of a
finite group GGP which is determined by the Greene–Plesser construction of
mirror symmetry [35]. Orbifold invariance greatly constrains the number of
possible open string states. So, when making an ansatz for an allowed open
string state it is essential that the constrains coming from the orbifold are
included.

What we are interested in are (at least at first order) marginal deforma-
tions of a matrix factorization, i.e., open string states which have R-charge
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1 and odd Z2-degree. This leads to the following obvious criteria on the
minimal model components:

• The R-charges of the minimal model components of the open string
state have to add up to 1.

• In order for the Z2-degree to be odd we must compose the open string
state of an odd number of fermionic minimal model components.

These restrictions are usually not strong enough for practical purposes — for
the models we discuss here the number of marginal boundary fermions may
still be of order a hundred. What cuts down this number to a handful is the
orbifold condition. If we are interested in obstructed deformations there are
some additional constraints. See [58] for examples of obstructed and unob-
structed boundary deformations. A boundary deformation is obstructed at
second order when the (Massey) product of the associated open string state
with all the other open string states gives a Z2-even open string state. In
particular, these bosonic open string states may be bulk deformations Φi

which are also in the boundary cohomology, i.e., Ψi = Φi. These are respon-
sible for the fact that obstructed boundary parameters can be expressed in
terms (unobstructed) bulk parameters via the relations defined by the crit-
ical locus of Weff . If one is specifically interested in boundary deformations
leading to a cubic effective superpotential and therefore to a simple domain
wall structure, we get additional constraints on the form of the marginal
boundary deformations:

• In at least one open string state all the xi which appear in the bulk
deformation have to appear. This is a necessary condition for the bulk
moduli to enter the effective superpotential and for Weff to be cubic.2

• In at least one open string state the powers of the xi must not be
higher than the xi-powers in the bulk deformations.

Let us now focus on the deformations we have in the one-parameter hyper-
surfaces in weighted P

4. There are only two possibilities: Φ1 = x1x2x3x4x5
or Φ2 = x2

1x
2
2x

2
3x

2
4. In order to find marginal deformations which are

obstructed at order 2 we have to search for minimal model open string
states which are either linear or quadratic in the xi. From these conditions
we will also get constraints for the form of the matrix factorizations we have

2Only then it is possible that an open string state squares to the bulk deformation. If
the equations for the critical locus do not contain bulk parameters the generic solution of
the equation is that all boundary parameters are 0. In order for the effective superpotential
to be cubic all Massey products must give obstructions or 0 at order 2 in deformation
theory. So, in particular, one open string state must square to a bulk deformation.
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to use. Let us thus consider a minimal model with superpotential

W = xd (3.7)

and a generic matrix factorization

Q(k) =
(

0 xk

xd−k 0

)
. (3.8)

Without loss of generality, we will assume that k ≤ d − k.

Let us first discuss the fermionic open string states. These are

ψl =
(

0 xl

−xd−2k+l 0

)
, l = 0, . . . , k − 1. (3.9)

The R-charges of these fermions are qψl
= d−2k+2l

d . Note that for our choice
for k, we have l ≤ d − 2k + l which means that the exponent of the lower
left entry of the matrix is always greater or equal to the exponent of the
upper right entry.

What are now the fermionic building blocks we can have when we have
the bulk deformations Φ1,2? It is easy to see that we can only have l = 0, 1, 2.
It makes sense to treat the cases d = even and d = odd separately.

For odd l the only interesting open string states are those for l = 0, 1:

ψ0 =
(

0 1
−xd−2k 0

)
, ψ1 =

(
0 x

−xd−2k+1 0

)
. (3.10)

In order to satisfy the criteria above we must have d − 2k = 1, which shows
that for every odd d there is only one matrix factorization which leads to
the desired open string state. In addition to that the state ψ2 only exists if
k ≥ 2 which means that d ≥ 5.

Let us now discuss the case k = even. There, the following fermionic open
string states are of interest:

ψ0 =
(

0 1
−xd−2k 0

)
, ψ1 =

(
0 x

−xd−2k+1 0

)
, ψ2 =

(
0 x2

−xd−2k+2 0

)
.

(3.11)
Since we do not allow x-powers in our open string states which are higher
than those appearing in the bulk deformation, ψ1 and ψ2 only need to be
considered if k = d

2 . For our bulk deformations we must have d − 2k = 2
which only works if d ≥ 4.
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The bosonic open string states have a simpler structure:

φl =
(

xl 0
0 xl

)
, l = 0, . . . , k − 1. (3.12)

The R-charges are qφr = 2l
d .

Out of this reasoning we can make an interesting observation for the
degree 8 hypersurface. Since all the di of the minimal model components
are even and the x5-variable only appears quadratic in the Landau–Ginzburg
superpotential it is impossible to find a charge 1 fermionic open string state3

which squares to the deformation Φ1 = x1x2x3x4x5. The situation is entirely
different in we choose the bulk deformation Φ2 = x2

1x
2
2x

2
3x

2
4. In the bulk

theory these two deformations would be equivalent modulo the equations of
motion, when we have a boundary this situation is different.

We can apply similar arguments to the degree 6 hypersurface. In this
model, we can only have the bulk deformation Φ1 = x1x2x3x4x5. Since the
minimal model superpotential for the x5-component is cubic, we can only

get an x5 into an open string state through the charge 1
3 fermion

(
0 1

−x5 0

)
.

Therefore, the R-charges of the other minimal model components must add
up to 2

3 . But the even and odd open string states with only linear xi-entries
have R-charge 2

3 and 1
3 , respectively. From this we can conclude that the

boundary deformations cannot be of the structure that one marginal open
string state squares to the bulk deformation which tells us that the effective
superpotential will not be a cubic polynomial.

3.3 Obstructions and the effective superpotential

In this section, we will make a systematic search for open string moduli
on the (mirror) hypersurfaces and compute the effective superpotential by
computing Massey products using an algorithm described in [59,60]. We will
refrain from describing the algorithm here since the structure of the branes is
so simple that we do not need the technical details. In the previous section,
we have discussed certain conditions on the minimal model open string states
in order for the effective superpotential to be cubic. It actually turns out
that if a brane has obstructed deformations, the effective superpotential
encoding the obstructions is bicubic. We will now give an example for each
case. Similar discussions for the quintic can be found in [58,61].

3Actually, there will not be any open string state where x5 appears.
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3.3.1 The d = 8 brane L = (3, 3, 2, 1, 0)

This boundary state and its associated matrix factorization will be our main
example throughout the paper. The reason for this is that we can manage
to cancel the tadpoles by adding an O9-plane, as we will show later on. We
consider the Gepner point ψ = 0 of the mirror hypersurface where we have
to take into account a (Z8)2 × Z2 orbifold. At the Gepner point the matrix
factorizations can be decomposed as follows in terms of the minimal model
components:

Q0 =
(

0 x4
1

x4
1 0

)
⊗
(

0 x4
2

x4
2 0

)
⊗
(

0 x3
3

x5
3 0

)
⊗
(

0 x2
4

x6
4 0

)
⊗
(

0 x5
x5 0

)
.

(3.13)
Here the ⊗ is understood as a graded tensor product. There is only one
marginal orbifold invariant boundary operator given by the tensor product
of four even R-charge 1

4 open string states and one charge 0 odd open string
state of the five minimal models:

Ψ =
(

x1 0
0 x1

)
⊗
(

x2 0
0 x2

)
⊗
(

x3 0
0 x3

)
⊗
(

x4 0
0 x4

)
⊗
(

0 1
−1 0

)
. (3.14)

We observe that

Ψ2 = −x2
1x

2
2x

2
3x

2
4 ≡ Φ, (3.15)

which is precisely the bulk deformation which we called Φ. This bulk defor-
mation, however, is not a boundary open string state. So actually, the
Massey product algorithm tells us that we have to find a deformation Ψ′

of the matrix factorization which is quadratic in the boundary parameter
u such that {Q0, Ψ′} = −Ψ = x2

1x
2
2x

2
3x

2
4. What is more, as was explained

in [60] for minimal models, since the bulk deformation is exact on the bound-
ary, one also has to deform the brane by deforming the bulk. The deformed
brane Q0 + tΨ̄ is such that {Q0, Ψ̄} = x2

1x
2
2x

2
3x

2
4 and t is a bulk deformation

parameter. This immediately implies Ψ′ = Ψ̄. The deformation Ψ′ is easily
computed and has the properties Ψ′2 = 0 and {Ψ, Ψ′} = 0. By systemat-
ically going through the deformation theory algorithm, one finds, that all
Massey products at order 3 of the bulk/boundary deformation of the brane
vanish and the algorithm terminates.

The deformed matrix factorization is

Q = Q0 + tΨ′ + uΨ + u2Ψ′. (3.16)
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Squaring this matrix, and taking into account the properties of the defor-
mation Ψ′, we find

Q2 = W0 + t{Q0, Ψ′} + u2Ψ2 + u2{Q0, Ψ′}
= W0 + tx2

1x
2
2x

2
3x

2
4 − u2x2

1x
2
2x

2
3x

2
4 + u2x2

1x
2
2x

2
3x

2
4

= W0 + tx2
1x

2
2x

2
3x

2
4. (3.17)

Setting t = −4ψ, the bulk and boundary deformed matrix factorization
squares to the deformed Landau–Ginzburg superpotential (2.25) — the
boundary deformations cancel out. Since all the Massey products were
either 0 or Q0-exact we have no contribution to the critical locus of the
effective superpotential. One only gets contributions to the critical locus if
some Massey products are in the boundary cohomology. In other words, the
deformation of Q0 by the modulus Ψ is unobstructed! Since the equation
for the critical locus of the effective superpotential vanishes, this implies

Weff = 0 (3.18)

Since the effective superpotential is also the generating functional of open
string disk amplitudes we can check the consistency of the result by com-
puting the two- and three-point correlation functions on the disk using the
resudue formula of Kapustin and Li [62]. Indeed, we find

〈ΨΦ〉 = 0,

〈ΨΨΨ〉 = 0, (3.19)

which is consistent with Weff = 0. Therefore, we conclude that this brane
has one unobstructed boundary modulus.

3.3.2 The d = 8 brane L = (2, 2, 2, 2, 0)

This brane has a bicubic superpotential as we will now show. At the Gepner
point the associated matrix factorization looks as follows:

Q0 =
(

0 x3
1

x5
1 0

)
⊗
(

0 x3
2

x5
2 0

)
⊗
(

0 x3
3

x5
3 0

)
⊗
(

0 x3
4

x5
4 0

)
⊗
(

0 x5
x5 0

)
.

(3.20)
There are, up to Q0-exact pieces, only two orbifold invariant open string
states. The first one comes from the tensor product of four charge 1

4 open
string fermions from the four A6-components of the Gepner model and the
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charge 0 fermion from the A0-piece:

Ψ1 =
(

0 1
−x2

1 0

)
⊗
(

0 1
−x2

2 0

)
⊗
(

0 1
−x2

3 0

)
⊗
(

0 1
−x2

4 0

)
⊗
(

0 1
−1 0

)
.

(3.21)
The second marginal fermionic open string state corresponds to a tensor
product of four charge 1

4 bosons:

Ψ2 =
(

x1 0
0 x1

)
⊗
(

x2 0
0 x2

)
⊗
(

x3 0
0 x3

)
⊗
(

x4 0
0 x4

)
⊗
(

0 1
−1 0

)
.

(3.22)
We are now ready to calculate the superpotential from this data. The first
step is to deform the matrix factorization:

Q = Q0 + u1Ψ1 + u2Ψ2. (3.23)

The matrix factorization condition is

Q2 != W0 − 4ψx2
1x

2
2x

2
3x

2
4 +
∑

i

fi(ui, ψ)Φi, (3.24)

where W0 is the Landau–Ginzburg superpotential at the Gepner point and
Φi are bosonic open string states. We could actually also absorb the second
summand into the last terms since we can write the bulk deformation as
an open string state4 Φ0 = x2

1x
2
2x

2
3x

2
4. For the matrix factorization condi-

tion to be satisfied we must impose fi(ui, ψ) = 0. These vanishing relations
determine the critical locus of the effective superpotential [59, 60].

In order to determine the obstructions to the deformations with bulk and
boundary operators we compute the “matric Massey products”:

Ψ1Ψ1 = −x2
1x

2
2x

2
3x

2
4,

Ψ2Ψ2 = −x2
1x

2
2x

2
3x

2
4. (3.25)

Furthermore we have to compute Ψ1Ψ2 + Ψ2Ψ1. The calculation gives a Z2-
even state with R-charge 2. At the Gepner point, this state is not Q0-exact
but Q0-closed and therefore must be a bosonic open string state. One easily
checks that this state is also orbifold invariant. So this symmetric product
of open string states will give a contribution to the vanishing relations in the
third term of (3.24). The deformation theory algorithm then implies that
there are no higher Massey products to compute.

4It is easy to check that this state is actually in the boundary open string spectrum.



1014 JOHANNA KNAPP AND EMANUEL SCHEIDEGGER

We therefore conclude that the deformations are fully obstructed at order
2 and the critical locus of the effective superpotential is

u2
1 + u2

2 − 4ψ = 0,

u1u2 = 0. (3.26)

These conditions have four solutions:

u1 = 0, u2 = ±2
√

ψ,

u2 = 0, u1 = ±2
√

ψ. (3.27)

In order to be sure that Equations (3.26) really describe the minima of
an effective superpotential we should also check if we can actually get this
potential by integrating them. The canonical approach to get the effec-
tive superpotential is to integrate homogeneous linear combinations of the
vanishing relations and to determine the free coefficients by requiring that
the second order derivatives with respect to the boundary parameters u1,2
match. Doing this, one gets a symmetric form for the effective superpoten-
tial:

Wsym
eff =

u3
1
3

+
u3

2
3

+ u2
1u2 + u1u

2
2 − 4ψ(u1 + u2). (3.28)

The critical locus of this effective superpotential gives the equation

(u1 + u2)2 − 4ψ
!= 0, (3.29)

which not only has the solutions (3.27) but also an additional pair of solu-
tions u1 = u2 = ±

√
ψ. There are two more choices of effective superpoten-

tials whose critical locus is exactly (3.26):

W1
eff =

u3
1
3

+ u1u
2
2 − 4ψu1,

W2
eff =

u3
2
3

+ u2
1u2 − 4ψu2. (3.30)

These three results are actually equivalent in the sense that they can be
related via field redefinitions. We can get (3.30) out of (3.28) by applying the
transformations {u1 → u1 − u2, u2 → u2} and {u1 → u1, u2 → u2 − u1}.5

5In general, i.e., if we consider also massive deformations, which means that the param-
eters ui have different degrees of homogeneity, these transformations become non-linear.
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These ambiguities are due to a gauge freedom which cannot be fixed in the
topological sector [63,64]. This reflects the presence of “A∞-morphisms” in
the underlying A∞-category. In the language of matrix factorizations, this
can be traced back to an ambiguity in choosing open string states and higher
order deformations. In this particular example we could have as well cho-
sen some linear combinations of the boundary fermions Ψ1/2 as our basis of
open string states. But here we have chosen a particular set, so we should
at least find out which of the above realizations of the effective superpoten-
tial fits to our choice of open string states. In this particular example we
can check this explicitly. We use the fact that the effective superpotential
can also be interpreted as the generating functional of disk amplitudes.
Amplitudes that do not have any integrated insertions, i.e., amplitudes
with one bulk and one boundary insertion or amplitudes with three bound-
ary insertions, can be evaluated explicitly using the residue formula of
Kapustin and Li [62]. In this case we can even determine the full super-
potential by computing correlators. With our choice of boundary fermions,
we find:

〈ΦΨ1〉 = −1,

〈ΦΨ2〉 = 0,

〈Ψ1Ψ1Ψ1〉 = 1,

〈Ψ1Ψ2Ψ2〉 = 1,

〈Ψ1Ψ1Ψ2〉 = 〈Ψ2Ψ2Ψ2〉 = 0. (3.31)

This picks the second choice of effective superpotential in (3.30) as the one
compatible with our choice of open string states.

3.4 Moduli and Weff for all tensor product branes

We now list all tensor product branes which have moduli and compute the
effective superpotential. The boundary states that do not appear in the
tables below do not have any moduli.

3.4.1 d = 6

Our systematic search shows that, after implementing the (Z6)2 × Z3-
orbifold, which puts us on the mirror there are no fermionic charge 1 open
string states left. Thus, none of the d = 6 boundary states we have consid-
ered has open string moduli.
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3.4.2 d = 8

We collect the data about the boundary states with moduli in table 1. We
have taken into account the Z

2
8 × Z2 orbifold action with generators:

g′
1 : (6, 1, 1, 0, 0),

g′
2 : (3, 1, 0, 0, 4),

g′
3 : (4, 0, 0, 0, 4), (3.32)

where g′
j : xi → e2πig′

j,i/dxi.

We give the structure of the boundary states by giving R-charge and
Z2-degree of each minimal model component formatted as RZ2 .

3.4.3 d = 10

The list of tensor product branes with moduli can be found in table 2. We
have taken into account the (Z10)2 orbifold action with generators

g1 : (1, 9, 0, 0, 0),

g2 : (1, 0, 9, 0, 0). (3.33)

3.4.4 Comments

Tables 1 and 2 show that the general structure of the open string moduli and
the shape of the effective superpotential is always the same. Note however
that the open string states on the various branes have different matrix entries
since the fermionic minimal model state which has the required R-charge
looks different for every degree and L-label.

The bosonic open string states have the same structure and charge for
every L-label, only their number increases for increasing L. Bosonic open
string states with linear entries in the xi appear as soon as L ≥ 1. It so
happens that they also have the right R-charge in d = 8 and 10 such that
four of them can be tensored to give, together with the charge 0 fermionic
state of the x2

5 piece, a modulus. Whenever there is only one modulus this
is made up of these bosonic minimal model components.

If the L-label is high enough there are also fermionic minimal model states
which have the correct R-charge. These can then, in principle, be tensored
in every possible combination with the bosonic minimal model states of
correct charge. One would therefore naively expect much more moduli than
just two. The reason that there are at most two boundary moduli on our
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Table 1: Tensor product branes with moduli for d = 8.

Boundary state Number of moduli Structure of moduli

(1, 1, 1, 1, 0) 1 1
4
0 ⊗ 1

4
0 ⊗ 1

4
0 ⊗ 1

4
0 ⊗ 01

(2, 1, 1, 1, 0) 1 1
4
0 ⊗ 1

4
0 ⊗ 1

4
0 ⊗ 1

4
0 ⊗ 01

(3, 1, 1, 1, 0) 1 1
4
0 ⊗ 1

4
0 ⊗ 1

4
0 ⊗ 1

4
0 ⊗ 01

(2, 2, 1, 1, 0) 1 1
4
0 ⊗ 1

4
0 ⊗ 1

4
0 ⊗ 1

4
0 ⊗ 01

(3, 2, 1, 1, 0) 1 1
4
0 ⊗ 1

4
0 ⊗ 1

4
0 ⊗ 1

4
0 ⊗ 01

(2, 2, 2, 1, 0) 1 1
4
0 ⊗ 1

4
0 ⊗ 1

4
0 ⊗ 1

4
0 ⊗ 01

(3, 2, 2, 1, 0) 1 1
4
0 ⊗ 1

4
0 ⊗ 1

4
0 ⊗ 1

4
0 ⊗ 01

(3, 3, 2, 1, 0) 1 1
4
0 ⊗ 1

4
0 ⊗ 1

4
0 ⊗ 1

4
0 ⊗ 01

(3, 3, 3, 1, 0) 1 1
4
0 ⊗ 1

4
0 ⊗ 1

4
0 ⊗ 1

4
0 ⊗ 01

(2, 2, 2, 2, 0) 2
1
4
0 ⊗ 1

4
0 ⊗ 1

4
0 ⊗ 1

4
0 ⊗ 01

1
4
1 ⊗ 1

4
1 ⊗ 1

4
1 ⊗ 1

4
1 ⊗ 01

(3, 2, 2, 2, 0) 2
1
4
0 ⊗ 1

4
0 ⊗ 1

4
0 ⊗ 1

4
0 ⊗ 01

1
4
1 ⊗ 1

4
1 ⊗ 1

4
1 ⊗ 1

4
1 ⊗ 01

(3, 3, 2, 2, 0) 2
1
4
0 ⊗ 1

4
0 ⊗ 1

4
0 ⊗ 1

4
0 ⊗ 01

1
4
1 ⊗ 1

4
1 ⊗ 1

4
1 ⊗ 1

4
1 ⊗ 01

(3, 3, 3, 2, 0) 2
1
4
0 ⊗ 1

4
0 ⊗ 1

4
0 ⊗ 1

4
0 ⊗ 01

1
4
1 ⊗ 1

4
1 ⊗ 1

4
1 ⊗ 1

4
1 ⊗ 01

(3, 3, 3, 3, 0) 2
1
4
0 ⊗ 1

4
0 ⊗ 1

4
0 ⊗ 1

4
0 ⊗ 01

1
4
1 ⊗ 1

4
1 ⊗ 1

4
1 ⊗ 1

4
1 ⊗ 01

branes is due to the orbifold actions which allow only for highly symmetric
combinations of the minimal model components.

4 Geometric boundary conditions and normal functions

In this section we discuss how to extract the complexes E± of holomorphic
vector bundles on X and the geometric boundary conditions C± from the
matrix factorization Q±. Although this is not strictly necessary to determine
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Table 2: Tensor product branes with moduli for d = 10.

Boundary state Number of moduli Structure of moduli

(1, 1, 1, 1, 0) 1 1
5
0 ⊗ 1

5
0 ⊗ 1

5
0 ⊗ 2

5
0 ⊗ 01

(2, 1, 1, 1, 0) 1 1
5
0 ⊗ 1

5
0 ⊗ 1

5
0 ⊗ 2

5
0 ⊗ 01

(3, 1, 1, 1, 0) 1 1
5
0 ⊗ 1

5
0 ⊗ 1

5
0 ⊗ 2

5
0 ⊗ 01

(4, 1, 1, 1, 0) 1 1
5
0 ⊗ 1

5
0 ⊗ 1

5
0 ⊗ 2

5
0 ⊗ 01

(3, 2, 1, 1, 0) 1 1
5
0 ⊗ 1

5
0 ⊗ 1

5
0 ⊗ 2

5
0 ⊗ 01

(4, 2, 1, 1, 0) 1 1
5
0 ⊗ 1

5
0 ⊗ 1

5
0 ⊗ 2

5
0 ⊗ 01

(4, 3, 1, 1, 0) 1 1
5
0 ⊗ 1

5
0 ⊗ 1

5
0 ⊗ 2

5
0 ⊗ 01

(2, 2, 2, 1, 0) 1 1
5
0 ⊗ 1

5
0 ⊗ 1

5
0 ⊗ 2

5
0 ⊗ 01

(3, 2, 2, 1, 0) 1 1
5
0 ⊗ 1

5
0 ⊗ 1

5
0 ⊗ 2

5
0 ⊗ 01

(4, 2, 2, 1, 0) 1 1
5
0 ⊗ 1

5
0 ⊗ 1

5
0 ⊗ 2

5
0 ⊗ 01

(3, 3, 2, 1, 0) 1 1
5
0 ⊗ 1

5
0 ⊗ 1

5
0 ⊗ 2

5
0 ⊗ 01

(4, 3, 2, 1, 0) 1 1
5
0 ⊗ 1

5
0 ⊗ 1

5
0 ⊗ 2

5
0 ⊗ 01

(4, 4, 2, 1, 0) 1 1
5
0 ⊗ 1

5
0 ⊗ 1

5
0 ⊗ 2

5
0 ⊗ 01

(3, 3, 3, 1, 0) 2
1
5
0 ⊗ 1

5
0 ⊗ 1

5
0 ⊗ 2

5
0 ⊗ 01

1
5
1 ⊗ 1

5
1 ⊗ 1

5
1 ⊗ 2

5
0 ⊗ 00

(4, 3, 3, 1, 0) 2
1
5
0 ⊗ 1

5
0 ⊗ 1

5
0 ⊗ 2

5
0 ⊗ 01

1
5
1 ⊗ 1

5
1 ⊗ 1

5
1 ⊗ 2

5
0 ⊗ 00

(4, 4, 3, 1, 0) 2
1
5
0 ⊗ 1

5
0 ⊗ 1

5
0 ⊗ 2

5
0 ⊗ 01

1
5
1 ⊗ 1

5
1 ⊗ 1

5
1 ⊗ 2

5
0 ⊗ 00

(4, 4, 4, 1, 0) 2
1
5
0 ⊗ 1

5
0 ⊗ 1

5
0 ⊗ 2

5
0 ⊗ 01

1
5
1 ⊗ 1

5
1 ⊗ 1

5
1 ⊗ 2

5
0 ⊗ 00

the algebraic second Chern class which tells us about the existence of a
normal function, we can get valuable information from the bundle data.
For instance, we can check whether the charges of the given brane can be
cancelled by a suitable choice of orientifolds. We discuss a certain class
of O-planes in the Appendix. In this section we furthermore compute the
algebraic second Chern class C± = calg

2 (E±) for two branes of the d = 8 and
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10 hypersurfaces. The branes are chosen by the conditions that they have a
cubic effective superpotential and a tadpole cancellation condition which is
satisfied by the simplest O-plane configuration we could find.

Unlike in the other sections of this work, we will deal here with B-branes
E on X. The reason is that Y can be obtained as an orbifold of X by
the Greene–Plesser group GGP, see (2.23). This enormously simplifies our
lives since we will have to vary only one Kähler parameter. At the end of
this procedure, we will view the complexes E± as complexes on the singular
space X/GGP, and hence C± as curves on this singular space. In order to
make them into B-branes on Y we will have to resolve the singularities of
X/GGP. This is then the topic of Section 5.

4.1 Calabi–Yau/Landau–Ginzburg correspondence with branes

The authors of [44] give an explicit algorithm how to extract geometric data
out of a matrix factorization by making a detour through the linear sigma
model. The algorithm can be implemented in the following steps:

• Determine the R-charges of the matrix factorization and take into
account the twisted sectors of the Zd orbifold action. The representa-
tion of the orbifold group on the matrix factorizations is related to the
R-charges in the following way [65]:

γi = σeiπRe−iπϕi
, (4.1)

where σ = diag(1r,−1r) and the ϕi are determined by the condition
(γi)d = 1. This gives d Zd equivariant matrix factorizations with R-
charges shifted by the values of ϕi. The branes in the twisted sector are
in one-to-one correspondence with boundary states |L, M, S〉 with non-
zero M -labels. This gives R-charges Rn, where n labels the twisted
sectors.

• Going from the Landau–Ginzburg model to the Calabi–Yau manifold
we have to pass through the conifold point. In order to safely get
through the singularity we have to apply the “grade restriction rule”.
Defining S :=

∑
Qi>0 Qi, where the Qi are the positive linear sigma

model charges, we define a set of integers,

Λ =
{

q ∈ Z| − S

2
<

θ

2
+ q <

S

2

}
, (4.2)



1020 JOHANNA KNAPP AND EMANUEL SCHEIDEGGER

for any given θ in a “window” of length 2π. An appropriate choice
of this window always allows us to set Λ = {0, . . . , d − 1} with d the
degree of the hypersurface equation.

• Determine the linear sigma model charges (R̃n, qn) which are defined
via the following relations:

Rn = R̃n − 2qn

d
. (4.3)

The R̃n are integers with values R̃n = s mod 2 where s is even or odd
depending on the Z2-degree of the composite of boundary fermions,
and qn ∈ Λ.

• Construct a semi-infinite complex by placing O(qn + dk)⊕m, where m

is the multiplicity of the charge R̃n, at the position (i.e., the homologi-
cal degree) deg = R̃n + 2k, where k goes from 0 to ∞.

• From these complexes one can extract the bundle data using
“q-isomorphisms” which relate the infinite complexes to finite ones.
For tensor product branes, this is easily done by subtracting the com-
plex associated to a suitable trivial brane in the linear sigma model.

Note that for this procedure it does not matter whether the marginal bulk
deformation ψ is turned on or not since only the R-charges of the boundary
fermions enter in the calculation.

We will now perform these steps for two branes on the d = 8 and 10
hypersurfaces.

4.1.1 The d = 8 brane L = (3, 3, 2, 1, 0)

The R-charges of the boundary fermions ηi, η̄i can be read off from the
matrix factorization:

Q =
2∑

i=1

(x4
i ηi + x4

i η̄i) + x3
3η3 + x5

3η̄3 + x2
4η4 + x6

4η̄4 + x5η5 + x5η̄5. (4.4)

We have listed the R-charges in table 3. Using the procedure of [44], we get
the following semi-infinite complexes describing the D-branes in the twisted

Table 3: R-charges of the boundary fermions of the L = (3, 3, 2, 1, 0) bound-
ary state.

η1 η̄1 η2 η̄2 η3 η̄3 η4 η̄4 η5 η̄5

0 0 0 0 1
4 −1

4
1
2 −1

2 0 0
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sectors, labeled by n, in the geometric regime6 :
n = 0 : [0]

O(0)⊕4 �

O(4)⊕4

⊕
O(3)⊕4

⊕
O(2)⊕4

⊕
O(1)⊕4

�

O(8)⊕4

⊕
O(7)⊕4

⊕
O(6)⊕4

⊕
O(5)⊕4

�

O(12)⊕4

⊕
O(11)⊕4

⊕
O(10)⊕4

⊕
O(9)⊕4

� · · · (4.5)

n = 1 : [1]

O(3)⊕4

⊕
O(2)⊕4

⊕
O(1)⊕4

⊕
O(0)⊕4

�

O(7)⊕4

⊕
O(6)⊕4

⊕
O(5)⊕4

⊕
O(4)⊕4

�

O(11)⊕4

⊕
O(10)⊕4

⊕
O(9)⊕4

⊕
O(8)⊕4

� · · · (4.6)

n = 2 : [1]

O(2)⊕4

⊕
O(1)⊕4

⊕
O(0)⊕4

�

O(6)⊕4

⊕
O(5)⊕4

⊕
O(4)⊕4

⊕
O(3)⊕4

�

O(10)⊕4

⊕
O(9)⊕4

⊕
O(8)⊕4

⊕
O(7)⊕4

� · · · (4.7)

n = 3 : [1]

O(1)⊕4

⊕
O(0)⊕4

�

O(5)⊕4

⊕
O(4)⊕4

⊕
O(3)⊕4

⊕
O(2)⊕4

�

O(9)⊕4

⊕
O(8)⊕4

⊕
O(7)⊕4

⊕
O(6)⊕4

� · · · (4.8)

We do not write down the remaining four complexes since they are the same
as the above ones, shifted one position to the right. This is a manifestation of
the selfduality of the brane, i.e., the fact that this brane is its own antibrane.

6The numbers in brackets denote the homological degree of the first term in the
complex.
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We now have to extract the relevant information about the vector bun-
dle. We proceed as described in [44] and subtract the semi-infinite complex
corresponding to a suitable trivial brane. This brane is given in terms of
a matrix factorization in the linear sigma model. For our case, the right
choice is the following:

QLSM
triv =

2∑

i=1

(x4
i ηi + Px4

i η̄i) + x3
3η3 + Px5

3η̄3 + x2
4η4 + Px6

4η̄4 + x5η5 + Px5η̄5.

(4.9)

This matrix factorization contains the P -field of the linear sigma model.

In order to build up the semi-infinite complex associated to this matrix
factorization, we have to determine the linear sigma model charges (R̃i, qi)
of the boundary fermions. These are determined by the following condi-
tions [44]:

R̃(λ)QLSM(λ2P, xi)R̃(λ)−1 = λQ(P, xi) ⇒ R̃i.

ρ(g−1)Q(g−NP, gxi)ρ(g) = Q(P, xi) ⇒ qi (4.10)

This yields the results presented in table 4. From these data we can extract
the following complex:

O(0) �

O(4)⊕3

⊕
O(3)
⊕

O(2)

�

O(8)⊕4

⊕
O(7)⊕3

⊕
O(6)⊕3

⊕
O(5)

�

O(12)⊕4

⊕
O(11)⊕4

⊕
O(10)⊕4

⊕
O(9)⊕3

�

O(16)⊕4

⊕
O(15)⊕4

⊕
O(14)⊕4

⊕
O(13)⊕4

� · · ·

(4.11)

We can now compare this complex to the complexes we have computed
above. These have additional entries which make up the non–trivial infor-
mation about the brane. Subtracting (4.11) from (4.5) we get:

Table 4: LSM-charges of the trivial brane.

η1 η̄1 η2 η̄2 η3 η̄3 η4 η̄4 η5 η̄5

R̃ 1 −1 1 −1 1 −1 1 −1 1 −1
q −4 4 −4 4 −4 3 −2 2 −4 4
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n = 0 : [0]

O(0)⊕3 �

O(4)
⊕

O(3)⊕3

⊕
O(2)⊕3

⊕
O(1)⊕4

�

O(7)
⊕

O(6)
⊕

O(5)⊕3

� O(9) (4.12)

In order to get the non-trivial piece of (4.6) we have to tensor (4.11) with
O(3) and shift it by one position to the right. Then we get:
n = 1 : [1]

O(3)⊕3

⊕
O(2)⊕4

⊕
O(1)⊕4

⊕
O(0)⊕4

�

O(7)
⊕

O(6)⊕3

⊕
O(5)⊕3

⊕
O(4)⊕4

�

O(10)
⊕

O(9)
⊕

O(8)⊕3

� O(12) (4.13)

Tensoring (4.11) with O(2) and shifting one position to the right, we get the
interesting information out of (4.7):
n = 2 : [1]

O(2)⊕3

⊕
O(1)⊕4

⊕
O(0)⊕4

�

O(6)
⊕

O(5)⊕3

⊕
O(4)⊕3

⊕
O(3)⊕4

�

O(9)
⊕

O(8)
⊕

O(7)⊕3

� O(11) (4.14)

Finally, we tensor (4.11) with O(1) and shift by one to the right and subtract
this from (4.8) to get:

n = 3 : [2]

O(1)⊕3

⊕
O(0)⊕4

�

O(5)
⊕

O(4)⊕3

⊕
O(3)⊕3

⊕
O(2)⊕4

�

O(8)
⊕

O(7)
⊕

O(6)⊕3

� O(10) (4.15)
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The complexes for n = 4, . . . , 7 are the same as the above ones, shifted to
the right by one position. Computing the Chern characters, we get:

n = 0 : −4 − 4H + 10H2 +
16
3

H3,

n = 1 : −8 + 4H + 10H2 − 16
3

H3,

n = 2 : −4 + 8H + 4H2 − 38
3

H3,

n = 3 : 8H − 4H2 − 38
3

H3.

This is in agreement with results obtained from conformal field theory cal-
culations [49]. The other four Chern characters are the same as the ones
given with an overall negative sign. The brane of interest is the one with
n = 1 and its antibrane with n = 5. Comparing with table 7 in the Appen-
dix, these branes have the correct charges to satisfy the tadpole cancellation
condition with an O9-plane. Furthermore, we observe that, as in the quintic
case, this brane is associated to a semi infinite complex which is periodic
from the beginning.

4.1.2 The d = 10 brane L = (4, 3, 2, 1, 0)

We have the following matrix factorization at the Gepner point:

Q = x5
1η1 + x5

1η̄1 + x4
2η2 + x6

2η̄2 + x3
3η3 + x7

3η̄3 + x2
4η4 + x3

4η̄4 + x5η5 + x5η̄5.
(4.16)

Taking into account the (Z10)
2 orbifold action, we find a particular brane

which is associated to the following semi-infinite complex via the algorithm
of [44]:

n = 1 : [1]

O(4)⊕2

⊕
O(3)⊕4

⊕
O(2)⊕4

⊕
O(2)⊕4

⊕
O(0)⊕2

�

O(9)⊕2

⊕
O(8)⊕4

⊕
O(7)⊕4

⊕
O(6)⊕4

⊕
O(5)⊕2

�

O(14)⊕2

⊕
O(13)⊕4

⊕
O(12)⊕4

⊕
O(11)⊕4

⊕
O(10)⊕2

� . . . (4.17)
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At n = 6 we find the antibrane of this. From table 1 we read off that the
effective superpotential encoding the obstructions of the deformations of this
brane is cubic.

To get the quasi-isomorphic finite complex we take a trivial brane in the
linear sigma model, given by

QLSM
triv = x5

1η1 + x5
1P η̄1 + x4

2η2 + x6
2P η̄2 + x3

3η3 + x7
3P η̄3 + x2

4η4

+ x3
4P η̄4 + x5η5 + x5P η̄5. (4.18)

The associated complex is:

[0]:

O(0) �

O(5)⊕2

⊕
O(4)⊕2

⊕
O(3)

�

O(10)⊕2

⊕
O(9)⊕4

⊕
O(8)⊕3

⊕
O(7)⊕2

�

O(15)⊕2

⊕
O(14)⊕4

⊕
O(13)⊕4

⊕
O(12)⊕4

⊕
O(11)

�

O(20)⊕2

⊕
O(19)⊕4

⊕
O(18)⊕4

⊕
O(17)⊕4

⊕
O(16)⊕2

� . . .

(4.19)

Tensoring this with O(4) and shifting by one position to the right we can sub-
tract this trivial complex from (4.17) to obtain the following finite complex:

[1]:

O(4)
⊕

O(3)⊕4

⊕
O(2)⊕4

⊕
O(1)⊕4

⊕
O(0)⊕2

�

O(8)⊕2

⊕
O(7)⊕3

⊕
O(6)⊕4

⊕
O(5)⊕2

�

O(12)
⊕

O(11)⊕2

⊕
O(10)⊕2

� O(15) � . . . (4.20)

Computing the Chern character we find

ch(E) = −8 + 4H + 18H2 − 28
3

H3. (4.21)
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As we can read off from table 8 the tadpole cancellation condition is not
satisfied if we just include the O9-plane, which has

ch(E)O9 = ±4(8 − 4H − 16H2 +
25
3

H3) (4.22)

However, we have also found a pair of O5-planes as fixed point sets of the
Z2 action

(x1, x2, x3, x4, x5) −→ (−x1, x2, x3, x4,−x5). (4.23)

The Chern characters of this configuration have been computed to be:

ch(E) =
{

±4(3H2 − 3
2H3),

±4(2H2 − H3). (4.24)

Adding the second combination, ±4(2H2 − H3), to (4.22) we get precisely
(4.21). Thus we get tadpole cancellation if we take the L = (4, 3, 2, 1, 0)
boundary state and add an O9-plane and a particular pair of O5-planes.
Note that this configuration is supersymmetric and that both the brane and
the orientifolds are compatible with deformations away from the Gepner
point.

4.2 Algebraic second chern class and normal function

In order to get appropriate boundary conditions for the normal function we
have to determine the algebraic second Chern class. It was argued in [14]
that this can be obtained directly from the periodic complex defined by a
matrix factorization. We write a matrix factorization Q as

Q =
(

0 f
g 0

)
. (4.25)

If we have pairs (Q+, Q−) of matrix factorizations such that W1 = f± · g±
as in (3.3) and (3.4), we can define E± = Ker g±. Note that the complexes
coming from the matrix factorizations are exact, therefore we can make use
of the relation Im f± = Ker g±.

Grothendieck defines in [66] the algebraic second Chern class calg
2 (E) of

a holomorphic vector bundle E as the codimension two locus where r − 1
generic sections of E fail to be linearly independent. For a more accessible
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explanation see [67]. In our case we view E as the restriction of a bundle
E′ on the ambient projective space P(w), i.e., E = E′|X . Therefore we still
need to intersect the resulting minors with the hypersurface X.

The next step is to construct a generic section s ∈ H0(E±). In all the cases
we consider we have det(f±) = W 8, which implies that the bundles we are
looking at have rank 8. The above prescription then amounts to determining
all the 7 × 7 minors of s and restrict them to X. Out of this calculation
one can extract a pair of algebraic curves C±, representing calg

2 (E±). The
topological second Chern classes are then [14]:

c2(E+) − c2(E−) = [C+ − C−] ∈ H4(X, Z) = H2(X, Z). (4.26)

If [C+ − C−] = 0 ∈ H4(X, Z) the cycle C+ − C− defines a normal function.
We now perform this calculation for our two branes.

4.2.1 The d = 8 brane L = (3, 3, 2, 1, 0)

From the deformed matrix factorization (3.16) for L = (3, 3, 2, 1, 0) we obtain
the following semi-infinite complex:

O(3)⊕4

⊕
O(2)⊕4

⊕
O(1)⊕4

⊕
O(0)⊕4

f±�

O(7)⊕4

⊕
O(6)⊕4

⊕
O(5)⊕4

⊕
O(4)⊕4

g±�

O(11)⊕4

⊕
O(10)⊕4

⊕
O(9)⊕4

⊕
O(8)⊕4

f± � · · · (4.27)

We define

E± = Ker(

O(7)⊕4

⊕
O(6)⊕4

⊕
O(5)⊕4

⊕
O(4)⊕4

g±�

O(11)⊕4

⊕
O(10)⊕4

⊕
O(9)⊕4

⊕
O(8)⊕4

) (4.28)

Using the exactness of the complex we take a section of O(3)⊕4 ⊕ O(2)⊕4 ⊕
O(1)⊕4 ⊕ O(0)⊕4 and apply the map f± to get a section s ∈ H0(E±). Cal-
culating all the 7 × 7 minors of s, the requirement that these minors vanish



1028 JOHANNA KNAPP AND EMANUEL SCHEIDEGGER

leads to the following conditions:

x5 + ux1x2x3x4
!= 0, x8

i + x8
j

!= 0, i �= j, i, j ∈ {1, 2, 3, 4} (4.29)

and moreover

t = −4ψ
!= −u2. (4.30)

Up to permutations in the variables x1, . . . , x4, we obtain the following alge-
braic curves:7

C± = {x1 + μx2 = 0, x3 + νx4 = 0, x5 ± 2
√

ψx1x2x3x4 = 0},

μ8 = ν8 = −1 (4.31)

Since [C+ − C−] = 0 ∈ H2(X) the cycle C+ − C− defines a normal function
for X.

4.2.2 The d = 10 brane L = (4, 3, 2, 1, 0)

To obtain the geometric boundary condition from the deformed matrix fac-
torization (3.4) we define

E± = Ker(

O(4)⊕2

⊕
O(3)⊕4

⊕
O(2)⊕4

⊕
O(1)⊕4

⊕
O(0)⊕2

g±−→

O(9)⊕2

⊕
O(8)⊕4

⊕
O(7)⊕4

⊕
O(6)⊕4

⊕
O(5)⊕2

), (4.32)

where g± refers to the 16 × 16-block of the bulk-deformed matrix factori-
zation (3.4) associated to the L = (4, 3, 2, 1, 0) boundary state. In order
to obtain the algebraic second Chern class, we again calculate all the 7 ×
7 minors of a generic section s ∈ H0(E±). They vanish if the following

7Note that this brane does not have F-terms, cf. (3.18), and therefore does not have
discrete vacua. In fact, we obtain a family of pairs of curves C± parametrized by the line
in the open/closed moduli space given by (4.30).
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conditions are met:

x5 + ux1x2x3x4
!= 0, x10

i + x10
j

!= 0, x10
k + x5

4
!= 0,

i �= j �= k, i, j, k ∈ {1, 2, 3}
(4.33)

and moreover
5ψ

!= u2. (4.34)

Up to permutations in x1, x2, x3, we obtain the following algebraic curves:8

C± = {x1 + μx2 = 0, x2
3 + x4 = 0, x5 ±

√
5ψx1x2x3x4 = 0}, μ10 = −1.

(4.35)
The topological second Chern class is then

ctop
2 (E+) − ctop

2 (E−) = [C+ − C+]. (4.36)

This defines a trivial class in H2(X, Z), thus defining a normal function.

5 Resolution of singularities and toric geometry

In the last section, we have determined suitable geometric boundary con-
ditions C± which yield a normal function on X. However, we are actually
interested in the mirror manifold Y which be get by quotienting with a suit-
able finite group GGP as prescribed by the Greene–Plesser construction [35].
We now have to map C± to boundary conditions on the mirror Y , in order to
get a normal function on Y . Certain points on the curves C± may coincide
with the fixed points of the group action. The latter induce singularities
and have to be resolved. Since we are working with weighted projective
spaces we can invoke standard techniques of toric geometry for resolving
these singularities. This is the topic of the present section.

5.1 d = 8

The mirror of the d = 8 hypersurface X is Y = X/(Z8)3. The generators of
(Z8)3 can be written as:

g1 : (1, 7, 0, 0, 0),

g2 : (1, 0, 7, 0, 0),

g3 : (1, 0, 0, 7, 0). (5.1)

8The remark in footnote 7 applies mutatis mutandis to this case as well.
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In [37] it has been observed that there is the (Z8)3 contains a Z4 subgroup
which acts trivially. Therefore that group we have to quotient X by to
get the mirror is actually (Z8)2 × Z2. The generators of this group can be
chosen to be:

g′
1 : (6, 1, 1, 0, 0),

g′
2 : (3, 1, 0, 0, 4),

g′
3 : (4, 0, 0, 0, 4), (5.2)

where g′
3 generates the Z2 factor. Let us now define a plane P = {x1 +

μx2 = 0, x3 + νx4 = 0} and points p1 = {x1 = −μx2, x3 = x4 = x5 = 0} and
p2 = {x1 = x2 = x5 = 0, x3 = −νx4}. Now we find that we can combine the
generators of (Z8)2 × Z2 in the following way (modulo 8):

g̃1 : (7, 7, 2, 0, 0) ≡ 5(3, 1, 0, 0, 4) + 2(6, 1, 1, 0, 0) + (4, 0, 0, 0, 4)

g̃2 : (1, 7, 0, 0, 0) ≡ −(4, 0, 0, 0, 4) − (3, 1, 0, 0, 4)

g̃3 : (3, 3, 5, 5, 0) ≡ 6(3, 1, 0, 0, 4) − 3(4, 0, 0, 0, 4) + 5(1, 1, 1, 1, 4) (5.3)

We can, of course, also obtain these generators as combinations of the
Z8 generators (5.1). Note that g̃3 is a Z4-generator, whereas g̃1 and g̃2
are Z8-generators.

The reason why we have rewritten the gi in this form is that the plane P
is fixed under g̃3. We define S = P/Z4. Furthermore p1 is fixed under g̃1 and
g̃3 and p2 is fixed under g̃2 and g̃3. The singularities at p1, p2 and S have to
be resolved. The result will be two coordinate charts to be used around p1
and p2. It will turn out in Section 6 that the relevant contributions to the
integral over tubes around C± come from these points. Note that we cannot
just compute the integral of a tube around P because this would contain
both C+ and C− around the points p1 and p2.

The calculation includes the following steps:

• Make a proper choice of affine coordinates, suited for the points p1 and
p2.

• Resolve the singularity of S.
• Resolve the singularity of Y .
• Choose a coordinate patch of Y which reduces to the blowup of S when

restricting to S. This gives the local coordinates around p1 and p2.
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Let us first focus on the point p1. Choosing the affine patch x1 = 1, we have
p1 = (1,−μ−1, 0, 0, 0). We define the following affine coordinates:

t =
x2

x1
, u =

x3

x1
, v =

x4

x1
, w =

x5

x4
1
. (5.4)

The equation defining the Calabi–Yau hypersurface then becomes

1 + t8 + u8 + v8 + w2 − 4ψt2u2v2. (5.5)

The surface S is defined by t = −μ−1, v = −ν−1u. The group action on S
is then

(u, w) → (iu,−w). (5.6)

Now we can use toric geometry methods to resolve the singularity on S.
At first we have to pick a monomial basis. An arbitrary rational monomial
which is invariant under (5.6) can be chosen to be of the following form:

(w2)a(u2w−1)b = u2bw2a−b. (5.7)

For this monomial to be regular we must have b ≥ 0, 2a − b ≥ 0. These
equations define a cone spanned by the vectors (0, 1) and (2,−1). In order
to resolve the singularity we have to subdivide the cone by adding the vector
(1, 0). This is depicted in figure 1. The two subcones I and II are gener-
ated by the vectors (0, 1), (1, 0) and (1, 0), (2,−1), respectively. We have
a coordinate chart for each of these cones. For cone I the coordinates are
defined by

u2bw2a−b = ub
Iw

a
I , (5.8)

Figure 1: The resolution of S.
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which yields

uI = u2w−1, wI = w2 (5.9)

For cone II we have

u2bw2a−b = ua
IIw

2a−b
II , (5.10)

and thus

uII = u4, wII = u−2w. (5.11)

The exceptional divisor coming from the blow-up of the Z4 singularity is
then {uII = 0} = {vI = 0}. Choosing for instance μ = eiπ/8, ν = e−iπ/8, the
equation for Y , restricted to S becomes

(I) : wI(1 − 2
√

ψuI)(1 + 2
√

ψuI),

(II) : uII(wII − 2
√

ψ)(wII + 2
√

ψ). (5.12)

So, in chart I we have p1,± = (±(4ψ)−1/2, 0) and in chart II: p1,± =
(0,±(4ψ)1/2).

In order to get the resolution of the singularity in Y we have to consider
the quotient singularity C

3/Z8 × Z4, where the Z8 is generated by g̃1 in (5.3)
and the Z4 is generated by g̃3. An invariant monomial can be represented by

(u8)a(uvw)b(w2)c = u8a+bvbw2c+b. (5.13)

The inequalities 8a + b ≥ 0, b ≥ 0 and 2c + b ≥ 0 define a cone spanned by
the vectors (8, 1, 0), (0, 1, 0) and (0, 1, 2). We choose a particular resolution
of the singularity as shown in figure 2. The coordinates of the triangles

Figure 2: Resolution of C
3/Z8 × Z4.
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pointing towards (0, 1, 1) and (0, 1, 2) are:

(α, 1, β) (α + 1, 1, β) (0, 1, β + 1), (5.14)

where α and β are integers whose values can be read off from figure 2. We
can then define coordinates T = t, Xαβ , Yαβ , Zαβ via the following relation:

u8a+bvbwb+2c = Xaα+b+cβ
αβ Y

a(α+1)+b+cβ
αβ Z

b+c(β+1)
αβ . (5.15)

Solving this, we get

T = t,

Xαβ = u−7+α+β+αβv1+α+β+αβw(1+α)(−1+β),

Yαβ = u8−α−αβv−α(1+β)wα(1−β),

Zαβ = u−βv−βw2−β. (5.16)

The next step is to restrict to S and see whether the restriction is compatible
with the coordinates we have found after resolving the singularities there.
Thus, if we set for instance v = −eiπ/8u, and scan through the values of α
and β. We are lucky for the following two choices:

α = β = 1, X11 = i, Y11 = e−iπ/4uII, Z11 = −e−iπ/8wII,

α = 2, β = 1, X21 = e3iπ/4uII, Y21 = −i, Z21 = −e−iπ/8wII. (5.17)

Writing this again in terms of the xi we get the following choices of coordi-
nates in the neighborhood of p1±:

T =
x2

x1
, X =

x4
4

x4
3
, Y =

x6
3

x4
1x

2
4
, Z =

x5

x2
1x3x4

,

T ′ =
x2

x1
, X ′ =

x6
4

x4
1x

2
3
, Y ′ =

x4
3

x4
4
, Z ′ =

x5

x2
1x3x4

.

(5.18)

The defining equation of the Calabi–Yau in these patches is

1 + T 8 + XY 2 + X3Y 2 + XY Z2 − 4ψT 2XY,

1 + T
′8 + X

′2Y
′3 + X

′2Y ′ + X ′Y ′Z
′2 − 4ψT

′2X ′Y ′. (5.19)

This concludes our discussion concerning the coordinates in the neighbor-
hood of p1±. We omit the calculation for p2 because it is completely anal-
ogous. The local coordinates close to p2± can be obtained from (5.18) by
exchanging x1 ↔ x3 and x2 ↔ x4.
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For completeness we also give the coordinates on the patches defined by
the triangles pointing towards (8, 1, 0). The coordinates of these triangles
are:

(α, 1, 1) (α + 1, 1, 1) (α, 1, 0), α = 0, . . . , 3. (5.20)

The coordinates on the patches are defined via the following relations:

u8a+bvbw2c = (Xα)aα+b+c(Yα)a(α+1)+b+c(Zα)8a+b. (5.21)

From this we get

Xα = v8w8+2(−7+α),

Yα = v8w−8+2(8−α),

Zα = uvw−1. (5.22)

For none of the allowed values of α these coordinates reduce to those on S.

5.2 d = 10

We now look at the mirror Y = X/(Z10)2 of the Calabi–Yau X. Let us first
define the points p1, p2 and the plane P :

p1 = {x1 = −μx2, x3 = x4 = x5 = 0},

p2 = {x1 = x2 = x5 = 0, x4 = −x2
3},

P = {x1 + μx2 = 0, x2
3 + x4 = 0}. (5.23)

The generators of the (Z10)2–action are:

g1 : (1, 9, 0, 0, 0),

g2 : (1, 0, 9, 0, 0). (5.24)

For our purposes it is useful to reshuffle them in the following way.

g̃1 : (0, 0, 3, 2, 5) ≡ (1, 9, 0, 0, 0) + 8(1, 0, 9, 0, 0) + (1, 1, 1, 2, 5),

g̃2 : (1, 9, 0, 0, 0). (5.25)

We observe that p1 is fixed by g̃1 and p2 is fixed by g̃2. In contrast to the
quintic and the d = 8 hypersurface, the plane P is not fixed by any of the Z10
actions but by 5g̃1 ≡ (0, 0, 5, 0, 5) which is a Z2-generator. This Z2-action
is harmless in the sense that we do not have to choose new coordinates on
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S = P/Z2 since it acts with an overall minus sign. The singularities at p1
and p2 have to be resolved. This is what we will do next.

Let us start with the point p1. We choose the affine patch x1 = 1 and
coordinates:

t =
x2

x1
, u =

x3

x1
, v =

x4

x2
1
, w =

x5

x5
1
. (5.26)

The hypersurface equation in these coordinates is

1 + t10 + u10 + v5 + w2 − 5ψt2u2v2. (5.27)

An invariant monomial under the action g̃1 is:

(v5)a(w2)b(uvw)c = ucv5a+cw2b+c. (5.28)

Regularity imposes the inequalities c ≥ 0, 5a + c ≥ 0 and 2b + c ≥ 0. This
defines a cone spanned by the vectors (0, 0, 1), (5, 0, 1) and (0, 2, 1). The
toric diagram and a convenient triangulation are depicted in figure 3. For
each triangle, we get a set of local coordinates.

The triangles pointing towards (0, 1, 1) and (0, 2, 1) have the following
coordinates:

(α, β, 1) (α + 1, β, 1) (0, β + 1, 1) (5.29)

The values of the integers α, β can be read off from figure 3. The coordinates
T = t, Xαβ , Yαβ and Zαβ are defined via the following relation:

ucv5a+cw2b+c = Xaα+bβ+c
αβ Y

a(α+1)+bβ+c
αβ Z

b(β+1)+c
αβ . (5.30)

Figure 3: The resolution of the singularity at p1.
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From this, we obtain

T = t,

Xαβ = u1+α+β+αβv−4+α+β+αβw(1+α)(−1+β),

Yαβ = u−α(1+β)v5−α−αβwα−αβ ,

Zαβ = u−βv−βw2−β. (5.31)

The triangles pointing towards (5, 0, 1) have coordinates

(α, 1, 1) (α + 1, 1, 1) (5, 0, 1), α = 0, 1. (5.32)

The coordinates Xα, Yα and Zα are defined via

ucv5a+cw2b+c = Xaα+b+c
α Y a(α+1)+b+c

α Z5a+c
α . (5.33)

Solving this, we find

T = t,

Xα = u5w−3+2α,

Yα = u−5w5−2α,

Zα = uvw−1. (5.34)

Finally, we also have an exceptional triangle with the following coordinates:

(0, 2, 1) (3, 1, 1) (5, 0, 1). (5.35)

This leads to the following coordinates in this patch:

Xe = u5w, Ye = u−10, Ze = u6v. (5.36)

Now we have to choose the patch which is most suitable for our purposes.
For the quintic and the d = 8 hypersurface we had an additional condition
that the local coordinates when reduced to S = P/G, G some discrete group,
reduce to the coordinates of the resolution of S. Here, we do not have such
a condition. It turns out that a wise choice are the coordinates X ≡ X11,
Y ≡ Y11 and Z ≡ Z11:

t =
x2

x1
, X =

x4
3

x2
1x4

, Y =
x3

4

x4
1x

2
3
, Z =

x5

x2
1x3x4

. (5.37)

If we insert the boundary condition x4 = −x2
3, which amounts to the reduc-

tion to P , we have Y = −X2. So, on P , the coordinates X, Y behave like
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x3, x4. This is the analog of the condition we had on d = 8 and the quintic
without the difficulty that we have to resolve the singularity of S. This only
works in the patch α = β = 1.

Let us now turn to the point p2. In contrast to the previous cases, we
prefer to do the resolution of singularities all over again because the structure
is not so symmetric. We refrain from putting primes or tildes on all the
coordinates. The calculations around p2 will be done in the affine patch
x3 = 1, so we choose the following coordinates:

u =
x1

x3
, v =

x2

x3
, t =

x4

x2
3
, w =

x5

x5
3
. (5.38)

The hypersurface equation has the following form in these coordinates:

u10 + v10 + 1 + t5 + w2 − 5ψu2v2t2. (5.39)

A monomial that is invariant under the Z10-action g̃2 is given by

(v10)a(w2)b(uvw)c = ucv10a+cw2b+c. (5.40)

This defines a cone spanned by (0, 0, 1), (10, 0, 1) and (0, 2, 1). The corre-
sponding toric diagram and a triangulation are depicted in figure 4. The
coordinates of the triangles pointing towards (0, 1, 1) and (0, 2, 1) are

(α, β, 1) (α + 1, β, 1) (0, β + 1, 1). (5.41)

From this, we can define local coordinates Xαβ , Yαβ , Zαβ through the fol-
lowing relation:

ucv10a+cw2b+c = Xaα+bβ+c
αβ Y

a(α+1)+bβ+c
αβ Z

b(β+1)+c
αβ . (5.42)

Figure 4: The resolution of the singularity at p2.
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Solving for Xαβ , Yαβ , Zαβ , we get

T = t,

Xαβ = u1+α+β+αβv−9+α+β+αβw(1+α)(−1+β),

Yαβ = u−α(1+β)v10−α−αβwα−αβ ,

Zαβ = u−βv−βw2−β. (5.43)

The triangles pointing towards (10, 0, 1) have the following coordinates:

(α, 1, 1) (α + 1, 1, 1) (10, 0, 1), α = 0, . . . , 4. (5.44)

For each α we get coordinates Xα, Yα, Zα:

Xα = u10w−8+2α,

Yα = u−10w10−2α,

Zα = uvw−1. (5.45)

The distinguished patch is given by α = 2, β = 1 and we set X ≡ X21, Y ≡
Y21 and Z ≡ Z21, where:

T =
x4

x2
3
, X =

x6
1

x4
2x

2
3
, Y =

x6
2

x4
1x

2
3
, Z =

x5

x1x2x3
3
. (5.46)

Setting x1 = −μx2 we have the simple boundary condition Y = −X in the
new coordinates.

6 Picard–Fuchs equations

Having determined suitable boundary conditions and having resolved the
singularities we are now ready to derive the inhomogeneous Picard–Fuchs
equations. The crucial ingredient is the Griffiths–Dwork algorithm [25, 54]
(see [53] for a practical description which we will follow here). We will review
this method in the following subsection.

6.1 The Griffiths–Dwork method

The Griffiths–Dwork method achieves the reduction of the pole order of
rational differential forms on toric varieties modulo exact forms. These
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exact pieces will in the end be responsible for the inhomogeneous term of
the Picard–Fuchs equation.

We denote by Ω0 the canonical holomorphic four-form on a weighted
projective space P(w) = P(w1, . . . , wn+1) with weights wi, i = 1, . . . , n + 1.

Ω0 =
n+1∑

i=1

(−1)i+1wixidx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxn+1. (6.1)

Rational differentials of degree n on toric varieties are defined as expressions
of the form PΩ0

W � where P and W are weighted homogeneous polynomials of
weight

∑
i wi with degP +

∑
i wi = � degW . Now suppose that W (z) = 0

defines a family of (quasi–smooth) hypersurface Y in the weighted projec-
tive space P(w), depending on some parameters z (the coefficients of the
polynomial W ). The middle cohomology of such a hypersurface Yz is then
described by differential forms on P(w) with poles along Yz. To each differen-
tial form PΩ0

W � one can associate a cohomology class by a residue construction:
For an (n − 1)-chain Γz on Yz, the tube T (Γz) over Γz is an n-chain on P(w),
disjoint from Yz, analogously for (n − 1)-cycle γz on Yz. The residue of PΩ0

W �

is defined as follows:

∫

Γz

ResYz

PΩ0

W 	
=

1
2πi

∫

T (Γz)

PΩ0

W 	
. (6.2)

Since altering PΩ0
W � by an exact differential does not change the integrals,

the cohomology of Yz is represented by equivalence classes of differential
forms PΩ0

W � modulo exact forms. In particular, we obtain the holomorphic
three-form Ω on Yz in this way:

Ω̂(z) = ResYz

ρ(z)Ω0

W (z)
. (6.3)

Here ρ(z) is an arbitrary holomorphic function. Griffiths’ reduction of pole
order algorithm works as follows. For W and Aj weighted homogeneous
polynomials with degW = d and degAj = �d − wj −

∑
i wi we define

ϕ =
1

W 	

∑

i<j

(−1)i+j+1(wixiAj − wjxjAi)dx1 ∧ . . . ∧ d̂xi

∧ . . . ∧ d̂xj ∧ . . . ∧ dxn+1. (6.4)
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Then one computes

dϕ =

(
�
∑

Aj
∂W
∂xj

− W
∑ ∂Aj

∂xj

)
Ω0

W 	+1 =
�
∑

Aj
∂W
∂xj

Ω0

W 	+1 −
∑ ∂Aj

∂xj
Ω0

W 	
. (6.5)

Thus, any form whose numerator lies in the Jacobian ideal of W is equiva-
lent, modulo exact forms, to a form with smaller pole order.

This can be used to derive Picard–Fuchs equations. Since the cycles T (Γz)
do not change in homology as z varies locally we can exchange differentiation
and integration, up to a contribution from the boundary:

dk

dzk

∫

Γz

ResYz

PΩ0

W 	
=

1
2πi

∫

T (Γz)

dk

dzk

(
PΩ0

W 	

)

+
1

2πi

k∑

m=1

dk−m

dzk−m

(∫

T (∂Γz)

(
dm−1

dzm−1

(
PΩ0

W 	

))
(nz)

)
,

(6.6)

where nz is the normal vector representing the first-order variation of the
boundary ∂Γz with respect to z. The Picard–Fuchs operator L then has the
following property:

L
(

PΩ0

W

)
=

⎛

⎝ dn

dzn
+

n−1∑

j=0

Cj(z)
dj

dzj

⎞

⎠
(

PΩ0

W

)
= dϕ. (6.7)

If we integrate (6.7) over an n-cycle T (γ) the right-hand side will be 0. For
P = ρ(z), and W a hypersurface in P(w), we end up with the well-known
Picard–Fuchs equation satisfied by the periods � =

∫
γ Ω in (2.4). However,

if we integrate over a chain Γ with specific boundaries the right-hand side of
(6.7) will give a non-zero contribution. To determine Cj(z) and ϕ we have
to compute successive z-derivatives of PΩ0

W and use reduction of pole order
to determine a linear relation among these derivatives modulo exact forms.

Now, we specify W (z) to be one of the one-parameter degree d hyper-
surfaces in the weighted projective spaces P(w) given in (2.22) with the
standard deformation:

W (xi, ψ) =
n+1∑

i=1

x
d

wi
i − cψm(xi), (6.8)



ONE-PARAMETER CALABI–YAU HYPERSURFACES 1041

where
c = 6, m(xi) = x1x2x3x4x5 for P(1, 1, 1, 1, 2)[6],

c = 4, m(xi) = (x1x2x3x4)2 for P(1, 1, 1, 1, 4)[8],

c = 5, m(xi) = (x1x2x3x4)2 for P(1, 1, 1, 2, 5)[10].

(6.9)

Furthermore, we set

z =

{
(cψ)−d, d = 6,

(4cψ)−d/2, d = 8, 10.
(6.10)

We define the rational differential forms:

ω	 = (−1)	−1(� − 1)!c	−1 m(xi)	−1

W (xi, ψ)	
Ω0. (6.11)

With this definition we have

d

dψ
ω	 = −ω	+1. (6.12)

In order to get the Picard–Fuchs operator L one must find an expression
for ωn+1 as a linear combination of ω1, . . . , ωn modulo exact forms. This
choice of conventions makes it particularly simple to read off the Picard–
Fuchs operator. The calculation is most easily done using a Gröbner basis
algorithm which has been implemented in the computer algebra program
Singular [68]: Given a global form η	 with pole of order � one uses the
Gröbner basis of the Jacobian ideal J of W to reduce η	 and ω	 to standard
form. This gives a coefficient ε	 ∈ C(ψ) such that the numerator of η	 − ε	ω	

lies in J . Further application of the Gröbner basis reduction gives

η	 − ε	ω	 =
∑

j

A	j
∂W

∂xj
. (6.13)

The pole order reduction formula (6.5) then determines forms ϕ	 and η	−1
such that

η	 − ε	ω	 = dϕ	 + η	−1, (6.14)

where η	−1 has a pole of order � − 1. Starting with ηn+1 = ωn+1 there is a
relation

ωn+1 = ε1ω1 + · · · + εnωn + dϕ, (6.15)

where ϕ =
∑n

	=1 ϕ	. Using (6.12) one gets the Picard–Fuchs equation (6.7).
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Depending on the choice of ρ(z) and the ω	 one may still have to transform
the Picard–Fuchs operator L into its standard form LPF. The fundamental
period �0(z), i.e., the unique holomorphic solution to LPF near the point
z = 0 of maximal unipotent monodromy is

�0(z) =
∞∑

n=0

Γ(1 + dn)
∏5

i=1 Γ(1 + win)
zn. (6.16)

In order to get the standard integral (symplectic) basis of periods near this
point, we follow [69] and define a cohomology-valued period:

�0(z, H) =
∞∑

n=0

Γ(d(n + H) + 1)
∏5

i=1 Γ(wi(n + H) + 1)
zn+H ∈ H∗(Y, Z), (6.17)

where H is the restriction of the hyperplane class of P(w) to Y . Expanding
�(z, H) by cohomology degree yields

�0(z, H) = w0(z) + w1(z)H + w2(z)H2 − w3(z)H3 (6.18)

and the expansion coefficients define the period vector

�(L) = (w3, w2, w0, w1). (6.19)

Their behavior near z = 0 is of the form wi(z) = (log z)i + O(z), n = 0, 1,
2, 3. In terms of the deformation parameter ψ in (6.8), the choice of ρ(ψ)
which leads to the above basis of solutions is simply [37]

ρ(ψ) =

⎧
⎪⎨

⎪⎩

ψ for P(1, 1, 1, 1, 2)[6],
ψ

1
2 for P(1, 1, 1, 1, 4)[8],

ψ
1
2 for P(1, 1, 1, 2, 5)[10].

(6.20)

Then we also have to take into account that we are actually considering an
orbifold, i.e., Y = {Wψ = 0}/GGP. Hence, when integrating over cycles or
chains, we have to divide by the order of GGP, see Appendix B of [37]. This
leads us to the definition

Ω(ψ) =
|GGP|
(2πi)3

Ω̂(ψ) (6.21)

with Ω̂(ψ) as in (6.3).



ONE-PARAMETER CALABI–YAU HYPERSURFACES 1043

6.2 The d = 8 hypersurface

We now discuss the d = 8 hypersurface. One gets the following expressions
for the εi:

ε1 = − 1
16(ψ4 − 1)

, ε2 =
5ψ

ψ4 − 1
, ε3 = − 29ψ2

2(ψ4 − 1)
, ε4 =

8ψ3

ψ4 − 1
.

(6.22)
From this we can read off the Picard–Fuchs operator:

L =
d4

dψ4 +
8ψ3

ψ4 − 1
d3

dψ3 +
29ψ2

2(ψ4 − 1)
d2

dψ2 +
5ψ

ψ4 − 1
d

dψ
+

1
16(ψ4 − 1)

.

(6.23)

With that we have
LΩ0

W = dϕ, (6.24)

ϕ is quite a complicated expression. Since it is not unique and its structure
not very enlightening we refrain from writing it down. Now we have to
integrate over the three-chain Γ. What we have to compute is therefore

∫

Tε(Γ)
dϕ =

∫

Tε(C+−C−)
ϕ, (6.25)

where Tε(C+ − C−) denotes a tube of radius ε around C+ and C−. Let us
focus on p1. We choose the unprimed coordinates in (5.18).9 After inserting
the boundary conditions T = −μ−1, X = ν−4 the coordinates for p1,± are

Y = 0, Z = ±2μ−1
√

ψ. (6.26)

We parameterize the tube Tε(C+; p1+) as follows:

T = −μ−1 + εeiχ f(r)
−8μ−7 + 8Y μ−1ν−4ψ

, X = ν−4, Y = reiφ,

z = 2μ−1
√

ψ + εμν4eiχe−iφ, (6.27)

where
0 ≤ χ ≤ 2π, 0 ≤ φ ≤ 2π, 0 ≤ r ≤ r∗, (6.28)

and f(r) is a C∞-function with f(0) = 1, and f(r) = 0 for r ≥ r∗ > 0.
Inserting this into the expression for ϕ the integration can be performed

9One can check that these two choices of coordinates lead to the same results.
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explicitly. For p1− we have to substitute
√

ψ → −
√

ψ into the result. The
calculation around p2 is analogous after exchanging x1 ↔ x3 and x2 ↔ x4 in
the definitions (5.18). There is no contribution from the terms in the second
line of (6.6). We find for the expression in (6.25)

∫

Tε(C+−C−)
ϕ =

1
(ψ4 − 1)

(
μ4

ν4
3π2

8
ψ− 5

2 − π2

16
ψ− 1

2

)
. (6.29)

In contrast to the case of the quintic studied in [14], the inhomogeneous term
now consists of two contributions. In the following, we will choose μ = eiπ/8

and ν = e−iπ/8.

The next step is now to relate the Picard–Fuchs operator (6.23) to the
standard differential operator which is

LPF = θ4 − 16z(8θ + 1)(8θ + 3)(8θ + 5)(8θ + 7). (6.30)

In order to determine how the variable z is related to ψ let us go back to
the deformation of the superpotential. Had we taken the standard form of
the Landau–Ginzburg superpotential, i.e.,

W = x8
1 + x8

2 + x8
3 + x8

4 + x2
5 − 8ψ̃x1x2x3x4x5, (6.31)

the appropriate choice for z would be z = (8ψ̃)−8. To get the deformation
we are using we have to use the equation of motion of x5:

x5 − 4ψ̃x1x2x3x4 = 0. (6.32)

Inserting this back into the superpotential we get

W = x8
1 + x8

2 + x8
3 + x8

4 + x2
5 − 16ψ̃2x2

1x
2
2x

2
3x

2
4. (6.33)

However, we have used the deformation 4ψx2
1x

2
2x

2
3x

2
4 because we preferred

to have a deformation which is linear in the deformation parameter (for
instance in the Griffiths–Dwork procedure). Taking this into account we
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find that in our conventions the right choice for the variable z is

z = (16ψ)−4. (6.34)

It is easy to see that this is compatible with the choice of z for the standard
deformation −8ψ̃x1x2x3x4x5:

z = (16ψ)−4 = (4 · 4ψ)−4 = (4 · 16ψ̃2)−4 = (82ψ̃2)−4 = (8ψ̃)−8. (6.35)

It is then easy to express (6.30) in terms of ψ since with (6.34) we have

z
d

dz
= −1

4
ψ

d

dψ
. (6.36)

Making this change of variables in LPF in (6.30) we find that the relation
to L in (6.23) is

LPF = (ψ4 − 1)
√

ψ
1
44 L 1√

ψ
. (6.37)

Combining (6.21) with |GGP| = 27, (6.3) with ρ(ψ) as in (6.20), plugging
this into (6.2) and applying (6.37) to it we find that

LPF

∫

Γ
Ω = − 1

32π4 (ψ4 − 1)
√

ψ

∫

Tε(Γ)

Ω0

W
. (6.38)

Inserting the value of the integral using (6.25) and (6.29) and substitut-
ing (6.34) we finally find that the domain wall tension TB in (2.12) satisfies
the following inhomogeneous Picard–Fuchs equation

LPFTB(z) = LPF

∫

Γ
Ω =

1
16π2

(
48z

1
2 +

1
32

)
. (6.39)

We immediately see that TB is also a solution to the homogeneous differential
equation LBTB = 0 with

LB = 8θ(2θ − 1)LPF, (6.40)

where we have introduced the factor 8 for later convenience.
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6.3 The d = 10 hypersurface

Griffiths–Dwork reduction yields the following expressions for the εi:

ε1 = − ψ

4(4ψ5 − 1)
, ε2 =

20ψ2

4ψ5 − 1
,

ε3 = − 2(29ψ5 − 1)
ψ2(4ψ5 − 1)

, ε4 =
2(16ψ5 + 1)
ψ(4ψ5 − 1)

. (6.41)

We also get a large expression for ϕ which we do not write down. From this
we can read off the Picard–Fuchs operator:

L =
d4

dψ4 +
2(16ψ5 + 1)
ψ(4ψ5 − 1)

d3

dψ3 +
2(29ψ5 − 1)
ψ2(4ψ5 − 1)

d2

dψ2 +
20ψ2

4ψ5 − 1
d

dψ
+

ψ

4(4ψ5 − 1)
.

(6.42)

We have to integrate the inhomogeneous term in the Picard–Fuchs equation
over a tube of radius ε around C+ and C−. Around p1 we choose T = −μ−1

and Y = −X2. From the hypersurface equation we obtain the following
coordinates for p1,±:

X = 0, Z = ±μ−1
√

5ψ. (6.43)

The tube Tε(C+; p1+) is parameterized as follows:

T = −μ−1 + εeiχ f(r)
−10μ−9 − 10X3μ−1ψ

, X = reiφ, Y = −X2,

z = μ−1
√

5ψ − εμeiχe−3iφ, (6.44)

where, as for the d = 8 case,

0 ≤ χ ≤ 2π, 0 ≤ φ ≤ 2π, 0 ≤ r ≤ r∗, (6.45)

and f(r) is a C∞-function with f(0) = 1, and f(r) = 0 for r ≥ r∗ > 0. For
Tε(C−; p1−) one just has to substitute

√
ψ → −

√
ψ in the result of the inte-

gral over Tε(C+; p1+).
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In a similar manner we proceed for p2. Here we have T = −1 and Y = −X.
The coordinates for p2± are:

X = 0, Z = ±
√

5ψ. (6.46)

The tube Tε(C+; p2+) is parameterized in the following way:

T = −1 + εeiχ f(r)
5 − 10X2ψ

, X = reiφ, Y = −X, Z =
√

5ψ − εeiχe−2iφ.

(6.47)
After the integration over the tube we get

∫

Tε(C+−C−)
ϕ =

1
(4ψ5 − 1)

π2(5ψ)
1
2 . (6.48)

The standard differential operator is

LPF = θ4 − 80z(10θ + 1)(10θ + 3)(10θ + 7)(10θ + 9). (6.49)

To find the relation between z and ψ we look at the d = 10 model with the
other deformation where one has z = (10ψ̃)−10:

W = x10
1 + x10

2 + x10
3 + x5

4 + x2
5 − 10ψ̃x1x2x3x4x5. (6.50)

Reinserting the equations of motion for x5,

x5 = 5ψ̃x1x2x3x4x5, (6.51)

we get
W = x10

1 + x10
2 + x10

3 + x5
4 + x2

5 − 25ψ̃2x2
1x

2
2x

2
3x

2
4. (6.52)

As in the d = 8 case we have chosen 25ψ̃2 ≡ 5ψ. Taking this into account
the proper choice for z is

z = (20ψ)−5. (6.53)

Consistency is easily checked:

z = (10ψ̃)−10 = (102ψ̃2)−5 = (4 · 25ψ̃2)−5 = (20ψ)−5. (6.54)

With that we find:

LPF = (4ψ5 − 1)
1

4 · 54
1√
ψ

L 1√
ψ

. (6.55)
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Combining (6.21) with |GGP| = 102, (6.3) with ρ(ψ) as in (6.20), plugging
this into (6.2) and applying (6.55) to it we find that

LPF

∫

Γ
Ω =

52

(2πi)4
1

4 · 54
1√
ψ

∫

Tε(Γ)

Ω0

W
. (6.56)

Inserting the value of the integral using (6.29) and substituting (6.53) we
finally find that the domain wall tension TB in (2.12) satisfies the following
inhomogeneous Picard–Fuchs equation

LPFTB(z) = LPF

∫

Γ
Ω =

1
16π2

√
5

100
. (6.57)

We immediately see that TB is also a solution to the homogeneous differential
equation LBTB = 0 with

LB = 5θLPF, (6.58)

where we have introduced the factor 5 for later convenience.

7 Monodromies and instantons

This section will be concerned with the properties of solutions to differential
equations of the type we have found in Section 6. We will study their analytic
continuation to the Gepner point, their monodromies around the Gepner
point, the large complex structure limit and the conifold point. Furthermore,
we will compute the instanton expansion and determine the BPS invariants.

7.1 Solutions to the Picard–Fuchs equations

We analyze the solutions to differential equations of the type

LBTB = 0, (7.1)

where LB is of the form

LB = (dθ + k)LPF (7.2)

and LPF is a differential operator of the generalized hypergeometric type.
Here, d denotes the degree of any of the hypersurfaces in (2.25). We have
seen examples in (6.40) and (6.56).



ONE-PARAMETER CALABI–YAU HYPERSURFACES 1049

A general solution of (7.1) can be obtained by standard techniques of
solving linear ordinary differential equations. In the context of Picard–
Fuchs operators and closed string mirror symmetry this is nicely explained
in [70]. We first have a look at the two examples. For the cases d = 8,
L = (3, 3, 2, 1, 0) and d = 10, L = (4, 3, 2, 1, 0) we found

L(8)
B = 8θ(2θ − 1)(θ4 − 16z(8θ + 1)(8θ + 3)(8θ + 5)(8θ + 7)), (7.3)

L(10)
B = 5θ(θ4 − 80z(10θ + 1)(10θ + 3)(10θ + 7)(10θ + 9)), (7.4)

respectively. Their indices, i.e., solutions to the indicial equations, are

singular point L(8)
B L(10)

B

z = 0
(
0, 0, 0, 0, 0, 1

2

)
(0, 0, 0, 0, 0)

z = zc (0, 1, 1, 2, 3, 4) (0, 1, 2, 3, 4)
z = ∞

(1
8 , 3

8 , 1
2 , 5

8 , 7
8 , 1
) ( 1

10 , 3
10 , 7

10 , 9
10 , 1

)
(7.5)

where zc = 4−8, zc = 4−45−5 are the conifold points of the d = 8 and 10
hypersurfaces, respectively. In particular, we observe that at z = 0 there
is no solution of the form z

1
2 + O(z) for L(10)

B . We expect to have such a
solution if we want to have non-trivial instanton contributions to TA in (2.9)
because of the following reason [10]. The Kähler parameter t measures
the area of a holomorphic sphere. A holomorphic disc can be viewed as
half a holomorphic sphere, so it should contribute to TA with q

1
2 . Now,

since the mirror map is of the form q = z + O(z2) and �0 = 1 + O(z), we
expect from (2.14), that TB should look like z

1
2 + O(z

3
2 ). From that we

conclude that there are no instanton corrections to the mirror of the brane
L = (3, 3, 2, 1, 0) in the d = 10 case10.

Hence, we will mainly focus on the differential operator L(8)
B in (7.3). The

solution corresponding to the index 1
2 can easily be found to be

τ(z) =
192
π2

∑

m≥0

Γ (8m + 5)

Γ (4m + 3) Γ
(
m + 3

2

)4 zm+ 1
2 . (7.6)

We have chosen the normalization such that τ(z) = z
1
2 + 98560

9 z
3
2 + · · · .

10It would be interesting to understand the meaning of the constant terms in the
inhomogeneous terms f(z) of the Picard–Fuchs equations for the normal functions, such
as (6.39) and (6.57).
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7.2 Analytic continuation

For the analytic continuation of τ(z), we will first consider the slightly
more general form of solutions to the differential operator (dθ + k)L, where
k = 0, . . . , d − 1. We will then set k = d

2 at the end. The Barnes integral rep-
resentation for the solution to the Picard–Fuchs equation (dθ + k)L� = 0
takes the form

τ(z) =
K

2πi

∫

C
ds

Γ (ds + 1) Γ
(
−s + k

d

)
Γ
(
s + d−k

d

)
∏5

i=1 Γ (wis + 1)
eπi(s− k

d )zs, (7.7)

where

K =

∏5
i=1 Γ

(
wik
d + 1

)

Γ (k + 1)
(7.8)

and C = {it|t ∈ R}. For |z| < zc we close the contour on the positive real
axis, picking up the poles at s = m, m = 0, 1, 2, . . . we find

τ(z) = K
∑

m≥0

Γ (dm + k + 1)
∏5

i=1 Γ
(
wim + wik

d + 1
)zm+ k

d . (7.9)

Setting d = 8 and w = (1, 1, 1, 1, 4), and k = d
2 reproduces (7.6). For |z| > zc

we close the contour on the negative real axis picking up the poles at s +
d−k

d = −m, m = 0, 1, 2, . . ., and at ds = −m′ − 1, m′ = 0, 1, 2, . . . . Hence we
get from (7.7)

τ(z) = K
∑

m≥0

Γ (−dm − k + 1)
∏5

i=1 Γ
(
−wim + wik

d + 1
)z−m+ k

d

+
π

d
K
∑

m≥1

1
Γ(m)

∏5
i=1 Γ

(
1 − wim

d

) e−iπ k
d

sin π
(

m
d + k

d

)eiπ m
d

(d−1)z− m
d .

(7.10)

We analyze the two terms in (7.10) in turn for k = d
2 . The first one then

reads (up to the factor K)

∞∑

m=1

Γ(−dm + d
2 + 1)

∏5
i=1 Γ(−wim + wi

2 + 1)
z−m+ 1

2 . (7.11)

We have to be careful about possible poles in this expression. This depends
on whether d is even or odd. Using the facts that d =

∑5
i=1 wi and that



ONE-PARAMETER CALABI–YAU HYPERSURFACES 1051

∑5
i=1 1 − 2wi

d = 3 one finds that d is odd if and only if all wi are odd, and
that d is even if and only if at least one of the wi is even. In the former
case, −dm + d

2 + 1 is never an integer, hence there are no poles. If d is even,
however, −dm + d

2 + 1 is a negative integer for m ≥ 1, hence the numerator
always has a first order pole. But, since at least one the wi is even, the cor-
responding argument −wim + wi

2 + 1 in the denominator also is a negative
integer for m ≥ 1, and hence the denominator has at least a first order pole
whenever the numerator does.

In our examples, just one of the wi is even, call it w5, hence the poles
cancel. Using similar techniques as in Appendix A of [71] we compute

lim
z→m

Γ
(
−d(z + 1

2) + 1
)

Γ
(
−w5(z + 1

2) + 1
) = (−1)

d
2 − w5

2
w5

d

Γ
(
w5(m − 1

2)
)

Γ
(
d(m − 1

2)
) , m = 1, 2, . . . .

(7.12)
Taking this into account, we find for the first term in (7.10)

(−1)
d
2 − w5

2
w5

d
K

∞∑

m=1

Γ
(
w5(m + 1

2)
)

Γ
(
d(m + 1

2)
)∏4

i=1 Γ
(
wi(−m + 1

2) + 1
)z−m+ 1

2 . (7.13)

Next, we look at the second term in the analytic continuation (7.10) of
τ . From the general fact that τ is only defined up to periods, we expect
that its analytic continuation will consist of a solution τ (1) to the ana-
lytically continued differential equation LPFτ = f(z− 1

d ) and a contribution
τ (2) from the Gepner point periods. We choose as a basis of periods in
local coordinates near the Gepner point �(G) = (�0, �1, �2, �3) defined by
�k(ψ) = �0(αkψ) where α is a dth root of unity. For the one-parameter
Calabi–Yau hypersurfaces under investigation, they are given in [37]

�j(ψ) = −π

d

∞∑

n=1

1
Γ(n)

∏5
i=1 Γ(1 − n

d wi)
eiπ n

d
(d−1)

sin π n
d

e2πin
d

j (Cψ)n , (7.14)

and can be rewritten as, if w1 = 1,

�j(ψ) = −1
d

∞∑

n=1

Γ(n
d w1)

Γ(n)
∏5

i=2 Γ(1 − n
d wi)

eiπ n
d
(d−1)e2πin

d
j (Cψ)n . (7.15)

On the other hand, the second term in (7.10) can be rewritten (again up to
the factor K) as follows, if w1 = 1,

1
d

∞∑

n=1

Γ(n
d w1)

Γ(n)
∏5

i=2 Γ(1 − n
d wi)

e−iπ 1
2 sin π n

d

sin π
(

n
d + 1

2

)eiπ n
d
(d−1) (Cψ)n . (7.16)
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We would like to express (7.16) in terms of (7.15). For this purpose, we
first take a closer look at the periods �j . Suppose again that w5 is the
only even weight. Then we observe that the product

∏5
i=2 Γ(1 − n

d wi) has a
pole of order at least 1 for n ∈ d

w5
Z due to the factor Γ(1 − w5

d ), hence the
corresponding coefficient vanishes. In particular, we can replace the sum
in (7.16) as follows:

∞∑

n=1

−→
∞∑

n=1
n	= d

w5
mod d

(7.17)

without changing anything. For the expression in (7.16), however, the situa-
tion is slightly different if k = d

2 . Then the factor sinπ
(

n
d + 1

2

)
has a simple

zero for n = d
2 mod d, at which there is also a simple pole from the factor

Γ(1 − w5n
d ). The same way we derived (7.12), we then find that

lim
z→dm− d

2

1
sin π

(
z
d + 1

2

)
Γ(1 − w5z

d )
=

w5

π
(−1)m+w5

2 Γ(w5m − w5
2 ),

m = 1, 2, . . . . (7.18)

So we can decompose the sum into the terms for which n �= w5
d mod d (this

also excludes n = d
2 mod d) and those for which n = d

2 mod d, the remaining
terms vanish. We find

1
d

∞∑

n=1
n	= d

w5
mod d

Γ(n
d w1)

Γ(n)
∏5

i=2 Γ(1 − n
d wi)

e−iπ 1
2 sin π n

d

sin π
(

n
d + 1

2

)eiπ n
d
(d−1)(Cψ)n

+ (−1)
w5
2 − d

2
w5

dπ

∞∑

m=1

Γ(w1m − w1
2 )Γ(w5m − w5

2 )

Γ(dm − d
2)
∏4

i=2 Γ(−wim + wi
2 + 1)

× sin π
(
m − 1

2

)
(Cψ)dm− d

2 . (7.19)

Using sin(πz)Γ(z) = π
Γ(1−z) we can rewrite the second term of (7.19) and

obtain

1
d

∞∑

n=1
n	= d

w5
mod d

Γ(n
d w1)

Γ(n)
∏5

i=2 Γ(1 − n
d wi)

e−iπ 1
2 sin π n

d

sin π
(

n
d + 1

2

)eiπ n
d
(d−1)(Cψ)n

+ (−1)
w5
2 − d

2
w5

d

∞∑

m=1

Γ(w5m − w5
2 )

Γ(dm − d
2)
∏4

i=1 Γ(−wim + wi
2 + 1)

(Cψ)dm− d
2 .

(7.20)
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Including the contribution from (7.13) and observing that (−1)
w5
2 − d

2 = 1 we
find that the analytic continuation of τ becomes

τ = τ (1) + τ (2)

=
2w5

d
K

∞∑

m=1

Γ(w5m − w5
2 )

Γ(dm − d
2)
∏4

i=1 Γ(−wim + wi
2 + 1)

(Cψ)dm− d
2

+
1
d
K

∞∑

n=1
n	= d

w5
mod d

Γ(n
d w1)

Γ(n)
∏5

i=2 Γ(1 − n
d wi)

e−iπ 1
2 sin π n

d

sin π
(

n
d + 1

2

)eiπ n
d
(d−1) (Cψ)n .

(7.21)

For the remainder of this subsection we restrict ourselves to the case d = 8.
In order to express τ (2) in terms of the periods �j we have to rewrite the
quotient involving the sines. We set g = e−πi 2m−1

d and note that gd = −1.
Then we find

e− iπ
d sin π(2m−1

d )
sin π(2m−1

d + 1
2)

= −
d
2 −1∑

l=1

(
−g2)l . (7.22)

Hence, we find for d even (and k = d
2) that

τ (2) =
K

d

∞∑

n=1

Γ(n
d )

Γ(n)
∏4

i=1 Γ(1 − n
d wi)

d
2 −1∑

l=1

(−1)l+1g2leiπ n
d
(d−1) (Cψ)n

= −
d
2 −1∑

l=1

(−1)l�l,

(7.23)

where we take the index of �l modulo d. For the case d = 8 we obtain
therefore

τ (1) =
192
π2

∞∑

m=1

Γ(−8m + 5)
Γ(−4m + 3)Γ(−m + 3

2)4
z−m+ 1

2 (7.24)

and

τ (2) =
192
π2 (−�1 + �2 − �3) . (7.25)

7.3 Monodromies

Next, we want to study the behavior of τ around the Gepner point. There is
a Zd monodromy A around this point, sending �i(ψ) to A�i(ψ) = �i(αψ) =



1054 JOHANNA KNAPP AND EMANUEL SCHEIDEGGER

�i+1(ψ) in the Gepner point basis of periods (7.15). Here we need to express
�4 in terms of �0, . . . , �3 depending on the model. This basis is related to
the one near the large complex structure limit (6.19) by

�(L) = M�(G). (7.26)

This allows us to express the monodromy A in terms of the basis �(L) =
(w3, w2, w0, w1). We consider the case d = 8, k = 4. First, we need the
monodromy matrices and the change of basis M , which we can take from [37]
or [49] up to permutation of the rows and columns. We reproduce them here
in our conventions. The monodromy matrix A(G) in the basis �(G) reads

A(G) =

⎛

⎜⎜⎜⎜⎝

0 1 0 0

0 0 1 0

0 0 0 1

−1 0 0 0

⎞

⎟⎟⎟⎟⎠
. (7.27)

The basis transformation is

M =

⎛

⎜⎜⎜⎜⎝

−1 1 0 0
3
2

3
2

1
2 −1

2

1 0 0 0

−1
2

1
2

1
2

1
2

⎞

⎟⎟⎟⎟⎠
. (7.28)

This yields the monodromy matrix A(L) = MA(G)M−1. We will also need
the monodromy matrix T (L) around the conifold point and the monodromy
matrix T

(L)
∞ around the large complex structure limit in the large volume

basis �(L)

A(L) =

⎛

⎜⎜⎜⎜⎝

−3 1 −4 1

−1 1 −1 2

1 0 1 0

−1 0 −1 1

⎞

⎟⎟⎟⎟⎠
, T (L) =

⎛

⎜⎜⎜⎜⎝

1 0 0 0

0 1 0 0

−1 0 1 0

0 0 0 1

⎞

⎟⎟⎟⎟⎠
,

T (L)
∞ =

⎛

⎜⎜⎜⎜⎝

1 −1 4 1

0 1 −1 −2

0 0 1 0

0 0 1 1

⎞

⎟⎟⎟⎟⎠
. (7.29)
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Following the argument of [10], we can assume from the general form of the
A-model domain wall tension TA in (2.9) that the TB,± takes the form

TB,±(z) =
w1(z)

2
± bw0(z) ± aτ(z), (7.30)

where we write τ = τ (1) + τ (2) as before, and a and b are yet to be deter-
mined. Applying M−1 to the expression in (7.25), we can write it in terms
of the large complex structure basis

τ (2) =
π2

192
(7w0 + 4w3 − 2w2) . (7.31)

With this information we can now determine AT±. The monodromy sends
ψ → e

2πi
8 ψ, hence z− 1

8 → e
2πi
8 z− 1

8 . A look at (7.24) yields for τ (1)

A(G)τ (1) = −τ (1). (7.32)

Using (7.25) and (7.27) we obtain

A(G)τ (2) =
π2

192
(−�0 + �2 − �3), (7.33)

where we have used the relations [37]

�j + �4+j = 0, j = 0, . . . , 3. (7.34)

Next, we express this in terms of the basis �(L), by applying M−1 to it
which yields

A(L)τ (2) =
π2

192
(−7w0 + 2w2 − 3w3). (7.35)

Finally, we need the transformation of w0 and w1 under A(L) which we can
read off directly from (7.29). Plugging this and (7.32), (7.35), into (7.30) we
find

A(L)T+ =
w1

2
+
(

−1
2

+ b

)
w0 − aτ +

(
−1

2
+ b +

aπ2

192

)
w3. (7.36)

In order to obtain T− the w3 has to vanish, and together with the condition
for the w0 term we find a = 48

π2 and b = 1
4 . We could equally well take an
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integer multiple of a, however plugging this result into the ansatz (7.30)
shows that

TB,± =
w1

2
± w0

4
± 48

π2

∑

m≥0

Γ (8m + 5)

Γ (4m + 3) Γ
(
m + 3

2

)4 zm+ 1
2 (7.37)

is precisely a solution to the inhomogeneous Picard–Fuchs equation (6.39).

Next, we consider the monodromy around the conifold point. Using an
extension of an argument of [1], the following was shown in [10] for the
quintic. According to (7.29), w0 → w0 − w3 when going around z = zc.
Therefore, w0(z) = w3(z)(z − zc) + g(z) with g(z) a holomorphic function.
Furthermore, w3 is the vanishing period at the conifold point, i.e., it has
a expansion of the form w3 = A(z − zc) + B(z − zc)2 + O

(
(z − zc)3

)
. Sup-

pose τ(z) has an expansion Cw3(z)(z − zc) + h(z) with h(z) a holomorphic
function. Then upon taking second derivatives and taking the limit z → zc

one finds that C = 1 and g = h. The same is true here. Therefore

T (L)TB,± =
w1

2
± w0

4
∓ w3

4
± 48

π2 τ ± 48
π2

π2

192
w3 = TB,±. (7.38)

To conclude we have the following behavior of TB,± under the monodromies
of LPF:

• invariance under the conifold monodromy T ,
• the behavior under the B-field monodromy T∞ as described in (2.5)

and (2.6) of [10], i.e.,

TB,−(w1 + w0) = TB,+(w1), TB,+ + TB,− = w1, (7.39)

• the behavior under the Gepner monodromy

A(L)T+ = T−,

A(L)T− = T+,
(7.40)

• and finally

A(L)T (L)T (L)
∞ = 11. (7.41)
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These conditions are all consistent, and the extended monodromy matrices
take the form

A(L) =

⎛

⎜⎜⎜⎜⎜⎜⎝

−1 0 0 0 1

0 −3 1 −4 1

0 −1 1 −1 2

0 1 0 1 0

0 −1 0 −1 1

⎞

⎟⎟⎟⎟⎟⎟⎠
, T (L) =

⎛

⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 −1 0 1 0

0 0 0 0 1

⎞

⎟⎟⎟⎟⎟⎟⎠
,

T (L)
∞ =

⎛

⎜⎜⎜⎜⎜⎜⎝

−1 0 0 1 1

0 1 −1 4 1

0 0 1 −1 −2

0 0 0 1 0

0 0 0 1 1

⎞

⎟⎟⎟⎟⎟⎟⎠
. (7.42)

We note that
(
A(L)

)8
= 11. We observe that the extension takes the same

form as the one for the quintic in [10]. This can probably be argued to be
true in general on the basis of the behavior of the original monodromies and
the conditions imposed above.

7.4 Real BPS invariants

Now we are ready to compute the instanton expansion in (2.9). We collect
the ingredients for performing the open string mirror computation

TA(t) = �0(z(t))−1TB(z(t)). (7.43)

We get the fundamental period of the Picard–Fuchs operator in (6.30)
from (6.16):

�0(z) = w0(z) =
∞∑

m=0

(8m)!
(m!)4(4m)!

zm

= 1 + 1680 z + 32432400 z2 + O(z3). (7.44)
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The normal function part of the domain wall tension TB, which satisfies the
inhomogeneous Picard–Fuchs equation (6.39), is

TB(z) =
48
π2 τ(z) =

1
4

∞∑

m=0

Γ(8m + 5)
Γ(4m + 3)Γ(m + 3

2)4
zm+ 1

2

=
1
π2

(
48 z

1
2 +

1576960
3

z
3
2 +

339028738048
25

z
5
2 + O(z

7
2 )
)

. (7.45)

Furthermore, we need the logarithmic solution w1 from (6.18)

w1(z) = w0(z) log z + 4
∞∑

m=0

(8m)!
(m!)4(4m)!

zm[2Ψ(1 + 8m)

− Ψ(1 + 4m) − Ψ(1 + m)]

= w0(z) log z + 15808 z + 329980320 z2 + O(z3), (7.46)

where Ψ is the Polygamma function. This yields for the inverse z(q) mirror
map q(z) = e2πit(z) with t(z) = w1(z)

w0(z)

z(q) = q − 15808 q2 + 71416416 q3 + O(q4). (7.47)

Inserting all this into (7.43), we get

TA(q) = 48 q
1
2 +

196864
3

q
3
2 + O(q

5
2 ). (7.48)

By definition this is the (quantum part of the) generation function F (0,1) of
maps of holomorphic discs whose expansion is [5]

TA(q) = F (0,1)(q) =
∑

d≥0
d∈2Z+1

∑

k|d

1
k2 n

(0,1)
d q

dk
2 . (7.49)

From this we can read off the BPS invariants n
(0,1)
d . The result is displayed

in table 5.

We can now try to compute the BPS invariants for open worldsheets with
Euler character χ = 0. As mentioned in Section 2, we have not only to con-
sider holomorphic maps of annuli but also to include unoriented worldsheets
like the Klein bottle. In principle, we can determine the annulus invariants
using the extended holomorphic anomaly equations [12, 15]. The central
ingredient here is the Griffiths infinitesimal invariant [34] Δzz which, in the
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Table 5: BPS invariants n
(m,real)
d , m = 0, 1 for the A-brane on

P(1, 1, 1, 1, 4)[8] mirror to the B-brane L = (3, 3, 2, 1, 0).

d n
(0,real)
d n

(1,real)
d

1 48
2 −72
3 65616
4 −11111728
5 919252560
6 −423138356456
7 17535541876944
8 −15627318184690224
9 410874634758297216

10 −580819145044133296088
11 10854343378339853472336
12 −21851106460968509703283952
13 310521865321872322311676752
14 −31963310253709759062935592792857136
15 9401030537961826351061423123760

holomorphic limit, is related to the domain wall tension TB in the following
way11:

Δzz = DzDzTB(z). (7.50)

Furthermore, we will need the terminator Δz which has the following simple
form:

Δz = − Δzz

Czzz
. (7.51)

The holomorphic anomaly equation for the generating function F (0,2) of
holomorphic maps of Riemann surfaces with genus g = 0 and h = 2 bound-
aries (2.16) reads

∂ı̄∂jF (0,2)
B = −ΔjkΔk

ı̄ +
N

2
gı̄j . (7.52)

Since there is exactly one B-brane before the orientifold projection we set
N = 0. Then, (7.52) can be integrated to yield (for h1,1(X) = 1)

∂zF (0,2)
B = −ΔzzΔz + f (0,2)

z (z), (7.53)

where f
(0,2)
z (z) is the holomorphic ambiguity. In [12] it was observed in

three examples by comparison to a localization computation in the A-model
that this ambiguity can be set to zero. The localization computation is not

11In the following, we will restrict to the one-parameter case.
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available for our brane, since we do not know the explicit form of the A-
brane L. Therefore, we naively assume that we can set the ambiguity to
zero in our example as well. Defining the expansion

4AA = F (0,2)
A =

∑

d≥0
d∈2Z

∑

k|d
k∈2Z+1

1
k
n

(0,2)
d q

dk
2 , (7.54)

we find from integrating (7.53) using (7.51) with

Czzz =
2

1 − zc
(7.55)

the following result

AA = 144 q + 709632 q2 + 21513266688 q3 + O(q4). (7.56)

There is also a holomorphic anomaly equation for the Klein bottle contri-
bution KB (2.20) which depends on the choice of the orientifold projection.
We pointed out in Section 4.1 that the brane L = (3, 3, 2, 1, 0) satisfies the
tadpole cancellation with the trivial orientifold projection. The relevant
holomorphic anomaly equation is then

∂ı̄∂jKB =
1
2
CjklC

kl
ı̄ − Gı̄j . (7.57)

This can be integrated using the special geometry relation to

KB =
1
2

log
(

q

z

∂z

∂q

∣∣∣f (1,0)k

∣∣∣
2
)

. (7.58)

In [12] the holomorphic limit of KB was again compared with the localization
computation in the A-model with the result that the holomorphic ambiguity
f (1,0)k seems to have the universal property that

f (1,0)k = δ− 1
4 , (7.59)

where δ = 1 − zc is the discriminant at the conifold point. In the same way
as before, due to the lack of a localization computation in the A-model, we
assume that this behavior persists in our example as well. We find

KA = −288 q − 22933088 q2 − 867789979648 q3 + O(q4). (7.60)
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Finally, according to [12], we sum annulus and Klein bottle contributions
and expand in the holomorphic limit

AA + KA = 2
∑

d≥0
d∈2Z

∑

k|d
k∈2Z+1

1
k
n

(1,real)
d q

kd
2 (7.61)

to extract the real BPS invariants n(1,real). They are listed in table 5. We
do not know a reason for the n

(1,real)
d all being negative. The obvious guess

is that this is due to a wrong choice of the holomorphic ambiguities. The
integrality of the n

(1,real)
d is not a particularly strong consistency check on

this choice since it seems to be easy to adjust them and still get integers. It
could also, however, hint at a geometric property of the special Lagrangian
submanifold L. Similar effects are known from closed string BPS invariants.

One could now go on to worldsheets with larger Euler number for which
would have to solve in general a recursive system of holomorphic anomaly
equations. Here, the canonical generators for these recursions found in [18]
should turn out to be very useful.

7.5 Semi-periods

This section is more of speculative nature. Choose a local coordinate patch
xl = 1, l �= 1 of the weighted projective space P(w) with homogeneous coor-
dinates (x1 : . . . : x5) and inhomogeneous coordinates ξ

(l)
i , i = 1, 2, 3, 4. Then

one can define [72] particular V-shaped 3-chains Vk on X = P(w)[d] through

V
(l)
k = {(ξ(l)

i )|ξ(l)
l = 1, ξ

(l)
i1

, ξ
(l)
i2

, ξ
(l)
i3

, real and positive, for i1, i2, i3 �= 1, l;

x
(l)
1 is a solution to W = 0 on the branch

arg(ξ(l)
1 ) → π + 2πk

d asz− 1
d → 0}. (7.62)

The three-chain on the Calabi–Yau three-fold X is then the union over all
patches Vk =

⋃5
l=1 V

(l)
k . The monodromy matrix A around the Gepner point

(cf. 7.3) acts naturally on V by multiplying the coordinates xi by phases and
shifting arg(ξ(l)

1 ) by the angle 2πi
d . Hence one can build linear combinations

of three–chains Γm,k = AmVk such that certain boundaries B = ∂Γm,k get
identified. In particular, the three–chain

γ = (1 − Aw2)(1 − Aw3)(1 − Aw4)Vj (7.63)
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is a cycle. In the same way, one can build three-chains Γ such that ∂Γ =
C+ − C−, as required for a normal function. We would like to do this in
such a way that

LPF

∫

Γ
Ω(z) = f(z) (7.64)

for some f(z), say f(z) = z
1
2 . Here, the semi-periods come into the story.

By definition [73] a semi-period is a solution σ to the GKZ hypergeometric
system LGKZσ = 0 associated to a Calabi–Yau three-fold, which is not a
solution of the corresponding Picard–Fuchs operator, i.e., LPFσ �= 0. This
means that σ is necessarily an integral of Ω over a three-chain with non-
trivial boundary. Let us therefore briefly recall the relation between the GKZ
hypergeometric system and the PF system [55–57]. A weighted projective
space is a toric variety, and toric varieties can be encoded in terms of fans of
cones in a lattice polytopes (for a concise review in the context of Calabi–Yau
threefolds see [74]). We will not go into the details of toric varieties here
except for the fact that there are linear relations l(a), a = 1, . . . , h among
the lattice points of such a polytope. For example, the lattice polytope,
traditionally called Δ∗, of the weighted projective space P(w) with w1 = 1
is given by the vertices

ρi = ei, i = 1, . . . , 4, ρ5 = −w2e1 − w3e2 − w4e3 − w5e4, (7.65)

where ei is the standard basis for the lattice Z
4. It is straightforward to see

that there is one relation
∑5

i=1 l
(1)
i ρi = 0 among these vertices with l

(1)
i = wi.

Now, define l
(a)
0 = −

∑5
i=1 l

(a)
i . In our example, l

(1)
0 = −d. Given a basis l(a)

of such linear relations, the GKZ system of differential operators La is [71]

La =
∏

l
(a)
i >0

l
(a)
i −1∏

j=0

(
h∑

b=1

l
(b)
i θb − j

)
−
∏

l
(a)
i <0

−l
(a)
i −1∏

j=0

(
h∑

b=1

l
(b)
i θb − j

)
za, (7.66)

where θa = za
d

dza
and we represent a linear relation l(a) by a vector

l(a) = (l(a)
0 ; l(a)

1 , . . . , l(a)
s ). (7.67)

For one-parameter hypersurfaces this simplifies a lot. Here we have just

l = (−d; w1, w2, w3, w4, w5). (7.68)



ONE-PARAMETER CALABI–YAU HYPERSURFACES 1063

The fundamental period is

�0 =
∑

n1,...,nh

⎡

⎣

(
−
∑h

a=1 nal
(a)
0

)
!

∏s
j=1

(∑h
a=1 nal

(a)
j

)
!

h∏

a=1

(
(−1)l

(a)
0 za

)na

⎤

⎦ , (7.69)

and reduces for P(w) to the one given in (6.16). Considering the case
P(1, 1, 1, 1, 4)[8], we obtain from (7.66)

L(8)
GKZ = (4θ)(4θ − 1)(4θ − 2)(4θ − 3)(θ4 − 16(8θ − 1)

(8θ − 3)(8θ − 5)(8θ − 7)z). (7.70)

Returning to the semi-periods σ, it was argued, though not proven, in [73]
that there are three-chains Γ that are appropriate linear combinations of
the Γm,k such that σ =

∫
Γ Ω is a solution to LGKZσ = 0. We observe that

the last factor in (7.70) is precisely the Picard–Fuchs operator LPF in (6.30)
and moreover that

L(8)
GKZ = (4θ − 1) (4θ − 3) L(8)

B , (7.71)

where L(8)
B is precisely the differential operator annihilating the normal func-

tion TB in (6.40). Hence, we conclude that the normal function is a semi-
period. This was already observed in the case of the cubic elliptic curve
in [75]. This discussion reveals that we have an alternative representation
of the three-chain Γ in Section 6.2 that led to TB, namely in terms of the
building blocks Γm,k = AmVk. It would be interesting to relate the two ways
of obtaining such three-chains. In particular, we could turn the argument
around and use the procedure presented in this section to construct nor-
mal functions with desired properties such as inhomogeneous terms f(z) of
a particular form like e.g., z

1
2 . If this should turn out to be a practical

way to get such normal functions, it would be interesting to know which
branes, i.e., which complexes E or matrix factorizations Q they could be
associated to. Note also that in the context of Landau–Ginzburg models
in one variable such chains were directly related to domain walls of the
Landau–Ginzburg superpotential in [76]. In the case of B–branes on non-
compact Calabi–Yau three-folds, the domain wall tension is annihilated by
an extended GKZ system, first discussed in [77,78], the extension being rele-
vant for the dependence on continuous open string moduli, which are absent
here.
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8 Conclusions and outlook

In this article we have discussed B-branes for the one-parameter Calabi–Yau
hypersurfaces in weighted P

4. In particular, we focused on their normal func-
tion and derived its associated inhomogeneous Picard–Fuchs system. Our
starting point was a discussion of tensor product branes and their moduli
using the language of matrix factorizations. We found that for the degree
d = 6 hypersurface none of tensor product branes has moduli. For the d = 8
and the 10 hypersurface we then picked a certain D-brane and derived the
inhomogeneous Picard–Fuchs equations.

In our choice of branes we used the following criteria: the brane moduli
should have (a family of) at least two brane vacua separated by a single
domain wall. To find such a brane we have calculated the effective super-
potential which encodes the obstructions to deformations of the brane and
the bulk. Our second criterion was tadpole cancellation. In order to check
the tadpole cancellation condition we transported the matrix factorization
to the large volume limit using the methods of [44]. We chose branes where
the tadpole cancellation condition was satisfied by adding as few O-planes
as possible.

Having picked a certain brane we derived geometric boundary conditions
from the matrix factorizations and showed the existence of a normal function
by verifying the vanishing of the algebraic second Chern class in cohomol-
ogy. These boundary conditions could then, after resolving singularities
coming from the Greene–Plesser orbifolds, be inserted into the inhomoge-
neous Picard–Fuchs equations which were derived using the Griffiths–Dwork
algorithm. For the d = 8 model we were able to calculate the domain wall
tension and compute the BPS invariants for maps of holomorphic disks. As
a consistency check we verified that the domain wall tension can be analyti-
cally continued to the Gepner point and is well–behaved under large radius
monodromies. Moreover, we gave a prediction for the BPS invariants for
maps of annuli and Klein bottles. Finally, we speculated on a connection
between the solution to the inhomogeneous Picard–Fuchs equations and the
GKZ system of differential equations.

Given the technical and conceptual complexity of the subject we have not
achieved a complete discussion of open string mirror symmetry for this class
of models. Our calculation has been done in the B-model, and of course
our results should be verified by comparing with the A-model. Due to the
limited knowledge of A-branes this may turn out to be very tedious since,
at present, the only Lagrangians that are known are those defined by the
real locus of the hypersurface equations.
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In contrast to the quintic there are much more tensor product branes
with moduli12 , and one should repeat the calculation for all of them. In
particular, it would be interesting to go through the whole program for a
brane which has a bicubic effective superpotential. In general, it is desirable
to find models with branes whose moduli are obstructed at higher order.

Of course the tensor product branes, corresponding to the Recknagel–
Schomerus boundary states, are not the only ones which appear in these
models and one might miss interesting phenomena by just focusing on those.
It may therefore be instructive to study more general branes.

Another obvious direction to continue research on this subject is to study
models with more than one bulk parameter. In analogy to closed string
mirror symmetry, these models are expected to be more complicated but
may reveal a deeper understanding of the concepts presented here.

In the inhomogeneous Picard–Fuchs equations we have derived here, we
noticed the appearance of an additional constant term that was not present
on the quintic. We believe that this term deserves further understanding.

As for the real BPS invariants, we have only computed them for the sets
of worldsheets with Euler numbers −1 and 0. For completeness one should
also compute the BPS invariants for worldsheets with greater than zero.
This would involve solving the extended holomorphic anomaly equations
and this might turn to be hard since we do not know the corresponding
A-brane explicitly.

Finally, it would be interesting to check whether the suggestion to find
normal functions from the GKZ system can be used to simplify the whole
procedure we have gone through in this paper.
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Appendix A Orientifolds

In this appendix, we discuss orientifolds for the one-parameter hypersur-
faces. Apart from the fact that tadpole cancellation arguments lead us to
a particular choice of branes to work with this discussion is independent of
the rest of the paper.

Let us start with some generalities. Given a space–time manifold X with
an involution τ and a D-brane supporting the complex vector bundle E.
The tadpole cancellation condition for the τ -orientifold of this system is

ch(E)e−B
√

Â(X) = 22dimc(Xτ )−dimcXε [Xτ ]

√
L(1

4TXτ )
L(1

4NXτ )
. (A.1)

In the above formula B is the B-field, Xτ is the O-plane, dimc is the complex
dimension not only of the internal components but includes also the space–
time part which contributes two complex dimensions. Furthermore, [Xτ ]
denotes the Poincaré dual of the O-plane and ε is a sign determined by the
orientation of the orientifold plane. Â is the Dirac genus.

We also review some facts about parity actions following [52, 79]. The
total parity action consists of an orientation reversal on the worldsheet,
usually denoted by Ω and an action on the target space variables, denoted
by τ . There are two kinds of parity actions, A-parity and B-parity. A-parity
is compatible with the topological A-twist and it is an antiholomorphic,
isometric involution. B-parity is compatible with the topological B-twist;
it is a holomorphic involution. Orientifold planes are the fixed point loci
of the parity actions. For A-type parities these are O6-planes, wrapping
Lagrangian submanifolds in the Calabi-Yau. Orientifold planes fixed under
B-type parity are O3-, O5-, O7- and O9-planes. Under mirror symmetry, A-
parity translates to B-parity on the mirror. In order for supersymmetry to be
preserved, we have to pick Odi-planes such that di = 0 mod 4. Furthermore,
the orientifold action τ must be compatible with the U(1) action on the
Calabi–Yau.
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Note that for O9-planes the tadpole cancellation condition (A.1) reduces
to [52]:

ch(E)e−B = 32 + 2ch2(X). (A.2)

Let us now start with the description of orientifolds in the linear sigma
model [52] with superpotential W = PG(xi, ai), where G(xi, ai) is assumed
to be a tensor product of minimal models of type Ak with superpotential
xki+2

i and possible complex structure deformations parameterized by the ai.
A-parities combine a worldsheet parity action ΩA with

τA
m,σ :

P → P̄

xi → e
2πimi
ki+2 xσ(i).

(A.3)

The vector m labels elements of the global symmetry
(∏N

i=1 Zki+2

)
/ZH ,

where H = lcm(ki + 2). σ(i) is an order 2 permutation with kσ(i) = ki. The
above transformation is involutive if and only if:

mi = mσ(i) (mod ki + 2). (A.4)

We also have to take into account that a change of variables of the form x′
i =

e
2πini
ki+2 xi. Therefore there is an equivalence relation m ≡ m′ iff m′

i = mi +
ni + nσ(i) (mod ki + 2). From the above transformations we also deduce:

G(e
2πimi
ki+2 xσ(i), ai) = G(xi, ai).

B-parity combines a worldsheet action ΩB with:

τB
m,σ :

P → −P

xi → e
2πimi
ki+2 xσ(i)

(A.5)

Here, σ is again an order two permutation, as above. The condition to be
involutive is now:

mi + mσ(i) = 0 (mod ki + 2). (A.6)

Due to possible reparameterizations, two vectors m and m′ are equivalent iff

m′
i = mi + ni − nσ(i) (mod ki + 2). This implies G(e

2πimi
ki+2 xσ(i), ai) =

G(xi, ai).

If we go to the Gepner point, the field P gets an expectation value. The
Gepner model is the IR limit of a Landau–Ginzburg orbifold of G(xi). The
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Landau–Ginzburg fields then transform as follows under A- and B-parity:

τA
m,σ : xi → e

2πimi
ki+2 xσ(i),

τB
m,σ : xi → e

2πimi
ki+2 e

πi
ki+1 xσ(i). (A.7)

Note that we have to combine B-parity with a gauge transformation such
that the Landau–Ginzburg superpotential changes its sign. This can be
understood in terms of the Landau–Ginzburg action [79]. The action con-
tains a term with the superpotential and two fermions. Worldsheet parity
flips the positions of the two fermions. If we demand parity invariance of
the action we get an minus sign from putting the fermions into their original
order. This sign is compensated by demanding that the Landau–Ginzburg
superpotential changes its sign under B-parity.

At the Gepner point there are extra symmetries, the quantum symmetries,
which form the group Γ̂ ∼= ZH . We can modify the parity action using this
quantum symmetry. The most general parity transformations at the Gepner
point are then the following:

PA
ω;m,σ = gωτA

m,σΩA,

PB
ω;m,σ = gωτB

m,σΩB, (A.8)

where the quantum symmetry gω associated to the H-th root of unity ω
multiplies the �-twisted states by a phase ω	.

In the following we will discuss B-type orientifolds for the one-parameter
hypersurfaces, restricting ourselves to parity actions where the permutation
σ is trivial.

Note that in all cases we will insert the value B = −H
2 for the B-field. If an

O-plane has different components we can add or subtract them with relative
sign factors. In the tables below we have chosen a particular combination
of signs in most cases.

A.1 d = 6

Let us start by collecting the relevant data of this model. The hypersurface
equation is

x6
1 + x6

2 + x6
3 + x6

4 + x3
5. (A.9)
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Table 6: O-planes for the d = 6 hypersurface.

Parity action O-plane type Tadpole cancellation
(x1, x2, x3, x4, x5) O9 ch(E) = 4(8 − 4H − 6H2 + 10

3 H3)

(x1, x2, x3, x4,−x5) O7 ch(E) = ±4(4H − 2H2 − 10
3 H3)

(−x1, x2, x3, x4, x5) O3/O7 ch(E) = ±4(2H − H2 − 5
3H3)

(−x1,−x2, x3, x4, x5) O5 ch(E) = ±4(H2 − H3

2 )

In the geometric regime the Calabi–Yau threefold X is defined by the hyper-
surface equations W = 0. We have the following U(1) action:

(x1, x2, x3, x4, x5) −→ (λx1, λx2, λx3, λx2, λ
2x5), λ6 = 1. (A.10)

We will need the following topological data:

c(X) = 1 + 14H2 − 68H3,

Â(X) = 1 +
7
6
H2. (A.11)

We collect the data about the orientifolds in table 6.

A.2 d = 8

The hypersurface equation is

x8
1 + x8

2 + x8
3 + x8

4 + x2
5. (A.12)

We have following the U(1)-action:

(x1, x2, x3, x4, x5) −→ (λx1, λx2, λx3, λx4, λ
4x5) (A.13)

The Chern class and A-roof genus of the Calabi–Yau hypersurface are

c(X) = 1 + 22H2 − 148H3,

Â(X) = 1 +
11
6

H2. (A.14)

We collect the data about the orientifolds in table 7.
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Table 7: O-planes for the d = 8 hypersurface.

Parity action O-plane type Tadpole cancellation

(x1, x2, x3, x4, x5) O9 ch(E) = 4(8 − 4H − 10H2 + 16
3 H3)

(x1, x2, x3, x4,−x5) O7 ch(E) = ±4(8H − 4H2 − 38
3 H3)

(−x1, x2, x3, x4, x5) O3/O7 ch(E) =

{
±4(2H − H2 − 29

12H3)

±4(2H − H2 − 8
3H3)

(−x1,−x2, x3, x4, x5) O5 ch(E)e−B = ±2kH2, k = 0, . . . , 2

Table 8: O-planes for the d = 10 hypersurface.

Parity action O-plane type Tadpole cancellation

(x1, x2, x3, x4, x5) O9 ch(E) = 4(8 − 4H − 16H2 + 25
3 H3)

(x1, x2, x3, x4,−x5) O3/O7 ch(E) =

{
±4(10H − 5H2 − 301

12 H3)

±4(10H − 5H2 − 76
3 H3)

(x1, x2, x3,−x4, x5) O7 ch(E) = ±4(4H − 2H2 − 25
3 H3)

(−x1, x2, x3, x4, x5) O3/O7 ch(E) =

{
±4(2H − H2 − 41

12H3)

±4(2H − H2 − 14
3 H3)

(−x1, x2, x3, x4,−x5) O5 ch(E) =

{
±4(3H2 − 3

2H3)

±4(2H2 − H3)

A.3 d = 10

The hypersurface equation is

x10
1 + x10

2 + x10
3 + x5

4 + x2
5. (A.15)

The U(1)-action on the variables is

(x1, x2, x3, x4, x5) −→ (λx1, λx2, λx3, λ
2x4, λ

5x5). (A.16)

The Chern class and the A-roof genus can be shown to be

c(X) = 1 + 34H2 − 288H3,

Â(X) = 1 +
17
6

H2. (A.17)

The O-plane data can be found in table 8.
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