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Abstract

We solve Bershadsky–Cecotti–Ooguri–Vafa (BCOV) holomorphic
anomaly equation to determine the higher genus Gromov–Witten invari-
ants (g ≤ 5) of the derived equivalent Calabi–Yau 3-folds, which are
of the appropriate codimensions in the Grassmannian Gr(2, 7) and the
Pfaffian Pf(7).

1 Introduction

Since the first successful application of the mirror symmetry to the Gromov–
Witten theory of the quintic hypersurface in P4 [1], and its highly non-
trivial generalization to higher genus g ≥ 1 in [2, 3], the mirror symmetry of
Calabi–Yau manifolds has been attracting attentions in both mathematics
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and physics. Now, according to Kontsevich’s homological mirror symmetry
[4], we consider that two Calabi–Yau manifolds X and Y are mirror sym-
metric to each other when the derived category of the coherent sheaves on
X, Db(Coh(X)), is equivalent to the derived Fukaya category DFuk(Y, β),
and vice versa. In this homological viewpoint, it is clear that Calabi–Yau
manifolds X, X ′, which are derived equivalent Db(Coh(X)) ∼= Db(Coh(X ′)),
are of considerable interest.

For a smooth projective variety X, the projective varieties having equiva-
lent derived category to X are called Fourier–Mukai partners of X, and the
set of their isomorphism classes is denoted by FM(X). In dimension two,
the set FM(X) has been studied in detail in [5] and it has been shown that
the number of Fourier–Mukai partners of a smooth minimal projective sur-
face X is finite, i.e., |FM(X)| < ∞. In particular, for a K3 surface X, a
necessary and sufficient condition for a K3 surface X ′ to be a partner of X
is known in terms of the Hodge isometry in the Mukai lattice [6]. Based on
the result in [6], a precise counting formula of the number of Fourier–Mukai
partners has been given in [7, 8].

In dimension three, however, since birational Calabi–Yau 3-folds share
the equivalent derived category [9], the counting problem should be con-
sidered under the birational equivalences. This contrasts with the fact in
two dimensions that two birational K3 surfaces are biholomorphic to each
other. Recently, an example of Calabi–Yau 3-folds which share the equiv-
alent derived category but are non-birational to each other has been con-
structed in [10, 11] based on the earlier observation in [12]. This example is
of our interest in this article.

In this paper, we apply the mirror symmetry to the derived equivalent
Calabi–Yau 3-folds X and X ′, that appeared in [10, 12], of appropriate codi-
mensions in the Grassmannian Gr(2, 7) and the Pfaffian Pf(7), respectively.
In particular, we determine the higher genus Gromov–Witten invariants
(g ≤ 5) integrating the holomorphic anomaly equation in [3] recursively. The
Gromov–Witten invariants at genus zero were determined earlier in [13] and
[12] following the method in [1]. See [14, 15, 16] for mathematical proofs
of the invariants. For the higher genus calculations, we solve the BCOV
holomorphic anomaly equation [2, 3]. In particular we utilize the gap con-
dition at the conifold singularities, which has been found recently in [17],
with slight improvements in the estimate of the unknown parameters in the
holomorphic ambiguities.

Both the Calabi–Yau manifolds X and X ′ have Picard number ρ = 1. Let
NX

g (d), NX′
g (d) be the Gromov–Witten invariant of degree d with respect

to the respective generator H of the Picard group. We denote by Fg(t)
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the generating functions of the Gromov–Witten invariants (the so-called
Gromov–Witten potential), which have the following form for g ≥ 2 in
general,

Fg(t) =
χ

2
(−1)g |B2gB2g−2|

2 g (2g − 2) (2g − 2)!
+

∑

d>0

Ng(d) qd, (q = e2πit) (1.1)

where χ is the Euler number of a Calabi–Yau manifold and Bg is the
Bernoulli number. The constant term above represents the Gromov–Witten
invariant Ng(0) of degree zero, and it represents the contribution from the

Table 1: Gopakumar–Vafa invariants nX
g (d) (g ≤ 5) of the Grassmannian

Calabi–Yau 3-fold X = Gr(2, 7)17

d g=0 g=1 g=2
1 196 0 0
2 1225 0 0
3 12740 0 0
4 198058 0 0
5 3716944 588 0
6 79823205 99960 0
7 1877972628 8964372 0
8 47288943912 577298253 99960
9 1254186001124 31299964612 47151720
10 34657942457488 1535808070650 7906245550
11 990133717028596 70785403788680 858740761340
12 29075817464070412 3129139504135680 73056658523632
13 873796023687033916 134357808679487260 5317135023839604
14 26782042513523921505 5648906799029453044 347478656042915187
15 834938101511448746224 233816422635171601176 20996780173465726448
16 26417440686921151630504 9563588497688111378163 1195726471411561809370
17 846787615783681427068332 387581693402348794414352 65017598161994032437484

d g=3 g=4 g=5
1 0 0 0
2 0 0 0
3 0 0 0
4 0 0 0
5 0 0 0
6 0 0 0
7 0 0 0
8 0 0 0
9 -1176 0 0
10 325409 0 0
11 956485684 -25480 0
12 301227323110 27885116 3675
13 52490228133616 67509270780 73892
14 6617949361316377 28917316111159 9783073244
15 676939616238018840 6764898614128228 13255130550228
16 59768711735781062098 1117634949252974670 6169573531612148
17 4730781899004364783412 146451269357268794212 1690718304511081104
18 344157075745064476608707 16239378567823605642392 332432097873830811843
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constant maps [3, 18]. We determine the potential Fg(t) for g ≤ 5 for X and
X ′. Also to see some implications of our results to the enumerative problem
of holomorphic curves and/or the moduli problem related to Donaldson–
Thomas invariants [19], we list the so-called Gopakumar–Vafa “invariants”
ng(d) [20] which are determined from Ng(d) by

∑

g≥0

λ2g−2Fg(t) =
∑

g≥0

∑

k≥1,d≥0

ng(d)
1
k

(
2 sin

kλ

2

)2g−2
qkd. (1.2)

The organization of this paper is as follows: In Section 2, we summa-
rize the constructions of the Grassmannian and the Pfaffian Calabi–Yau
3-folds, and their mirror orbifolds given in [12]. After introducing the
Picard–Fuchs differential equation of the period integrals, we determine the
g = 0, 1 Gromov–Witten prepotentials. We will also make a comment on a
similarity of the Picard–Fuchs differential equation to the corresponding dif-
ferential equation studied for a K3 surface with a non-trivial Fourier–Mukai
partner in [8]. In Section 3, we briefly introduce the BCOV holomorphic

Table 2: Gopakumar–Vafa invariants nX′
g (d) (g ≤ 5) of the Pfaffian Calabi–

Yau 3-fold X ′

d g=0 g=1 g=2
1 588 0 0
2 12103 0 0
3 583884 196 0
4 41359136 99960 0
5 3609394096 34149668 12740
6 360339083307 9220666238 25275866
7 39487258327356 2163937552736 21087112172
8 4633258198646014 466455116030169 11246111235996
9 572819822939575596 95353089205907736 4601004859770928
10 73802503401477453288 18829753458134112872 1586777390750641117
11 9831726718738661469404 3632247018393524104896 486768262807329916336
12 1346383795156980043546418 689243453496908009355852 137262882246594110683614

d g=3 g=4 g=5
1 0 0 0
2 0 0 0
3 0 0 0
4 0 0 0
5 0 0 0
6 1225 0 0
7 22409856 0 0
8 58503447590 25371416 3675
9 67779027822044 216888021056 33575388
10 50069281882780727 521484626374894 1111788286385
11 27893405899311185184 660609023799091444 5358750700883104
12 12822179880173592308422 568693999386204794172 11048054952421812976
13 5131002509749249793297316 377653013301230457157640 14053721920121779703948
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anomaly equation for g ≥ 2 and its solutions given in [3]. According to
[2, 3] we define the topological limit of the solutions. We also summarize the
recent results found in [21] about some polynomiality of the solutions. Then,
we introduce a “gap condition”, which has been found recently in [17], to
fix the holomorphic ambiguities contained in the solutions. In Section 4, we
present our calculations in some details to determine the Gromov–Witten
potentials. We determine the potentials up to g = 5 and list the resultant
Gopakumar–Vafa invariants in Tables 1 and 2.1 The conclusion and dis-
cussions are given in Section 5.

2 Gromov–Witten invariants at g = 0 and g = 1

In this section, we briefly summarize the constructions of Calabi–Yau man-
ifolds, X and X ′, and their orbifold mirror construction following [12]. We
summarize the genus zero and one Gromov–Witten invariants using the
solutions of the Picard–Fuchs differential equation of the mirror family.

2.1 The Grassmannian and the Pfaffian Calabi–Yau 3-folds

Let us first summarize the construction of the Grassmannian Calabi–Yau
3-fold and its topological invariants. Let Gr(2, 7) be the Grassmannian
of the 2-planes in C7, and Q be the universal quotient bundle. The line
bundle ∧5Q determines the Plücker embedding i : Gr(2, 7) ↪→ P20, hence
σ1 = c1(Q) represents the class of a hyperplane section. Then

∫
Gr(2,7) σ10

1 =
42 gives the degree of the Grassmannian in the projective space. We denote
by Gr(2, 7)17 the complete intersection of Gr(2, 7) with seven hyperplanes in
P20. Then X = Gr(2, 7)17 defines a Calabi–Yau 3-fold since c1(Gr(2, 7)) =
7σ1. In fact, the Chern class of Gr(2, 7) is expressed by

c(Gr(2, 7)) = 1 + 7c1(Q) + (25c1(Q)2 − 3c2(Q))

+ 14(4c1(Q)3 − c1(Q)c2(Q)) + · · · ,

see e.g., [22], and for the complete intersection, we have

c(X) =
c(Gr(2, 7))

(1 + c1(Q))7
= 1 + (4c1(Q)2 − 3c2(Q)) − 7(c1(Q)3 − c1(Q)c2(Q)).

1One may further continue the calculations for g ≥ 5. The data nX
g (d), nX′

g (d) g ≤ 9
is available upon request to the first named author.
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Using
∫
Gr(2,7) σ10

1 = 42,
∫
Gr(2,7) σ8

1σ2 = 28 (σ2 = c2(Q)), and representing by
H the hyperplane σ1 on X, we have the following topological invariants

χ(X) = −98, c2(X) · H = 84, H3 = 42 (2.1)

Also we see h1,1(X) = 1 by Lefschetz hyperplane theorem, which implies
h2,1(X) = 50.

The construction of the second Calabi–Yau manifold X ′ is more involved
and utilizes the Pfaffian variety in the projective space P20. Let S be a 7 × 7
skew symmetric matrix S = (sij) with [sij ] ∈ P20. The rank of S is less
than or equal to 6, and in particular, the rank 4 locus (rkS ≤ 4) determines
a codimension three variety in P20, the Pfaffian variety. Explicitly, this
variety is determined by the ideal generated by the square roots of the
diagonal minors of S, p0(S), . . . , p6(S). Restricting this variety to a generic
projective space P6 ⊂ P20, i.e., specializing the parameters [sij ] to lie on a
generic P6, we have an exact sequence

0 → OP6(−7)
tp(S)−−−→ OP6(−4)⊕7 S−→ OP6(−3)⊕7 p(S)−−−→ OP6 → OX′ → 0,

where we set p(S) = ( (−1)i+1pi(S) )i=0,...,6 to be a row vector and use
p(S) S = 0, since (−1)i+jpi(S)pj(S) represents the ij-minor of S and
det(S) = 0. From this exact sequence, we see that the canonical sheaf of
X ′ is trivial, ωX′ ∼= Ext3(OX′ , ωP6) ∼= OX′ and therefore X ′ is a Calabi–Yau
3-fold. The degree of X ′ in P6 is 14 and H3 = 14 for the hyperplane sec-
tion H. Other topological invariants are determined by the general formulas
c2(X ′)H = 84 − 2d, c3(X ′) = −d2 + 49d − 588 (d = H3) valid for codimen-
sion 3 smooth Calabi–Yau varieties, see [23] for example. Thus we have the
following topological invariants

χ(X ′) = −98, c2(X ′) · H = 56, H3 = 14. (2.2)

We also have the Hodge numbers h1,1(X ′) = 1 and h2,1(X ′) = 50.

As noted in the reference [12], the construction of X and X ′ are dual in
the following sense,

X = Gr(2, 7) ∩ P13 ⊂ P20, X ′ = Pf(7) ∩ P̌6 ⊂ P̌20,

where P̌20 is the dual projective space to P20 and P̌6 is the annihilator of
P13 under the dual pairing. This duality has been utilized to prove the
derived equivalence Db(Coh(X)) ∼= Db(Coh(X ′)) [10, 11].
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2.2 The mirror manifolds and the Picard–Fuchs differential
equations

In a similar way to the orbifold construction of the quintic hypersurface in
P4 [24, 1], the mirror manifolds Y and Y ′ have been constructed, respec-
tively, for X and X ′ in [12]. Following [12], we introduce the mirror family
{Y ′

x}x∈P1 and the Picard–Fuchs differential equation for the period integral
of a holomorphic three form.

Consider the skew symmetric matrices

Ek(y) =
∑

i+j=k

yi−jEij (k = 0, 1, . . . , 6; yi + y−i = 0)

parametrized by [y1, y2, y3] ∈ P2, where the index of yi is understood modulo
7, and Eij(0 ≤ i, j ≤ 6) are the matrix units. We define

P̌6
[y1,y2,y3] = the projective span of {E0(y), . . . , E6(y)} ⊂ P̌20,

and consider the group G = 〈τ, σ〉 acting on P̌6
[y1,y2,y3] by

τ : Ek(y) �→ e2πik/7Ek(y), σ : Ek(y) �→ Ek+2(y).

Then X ′
[y1,y2,y3] = Pf(7) ∩ P̌6

[y1,y2,y3] is a special family of X ′, and its gen-
eral member has 49 double points at the orbit G · [y0, y1, . . . , y6]. When we
further specialize X ′

[y1,y2,y3] to a P1 family X ′
[y1,y2,0], we have additionally 7

double points at the fixed points of τ . These double points arise from the
process collapsing S3 to points, and may be blown up to P1 without affect-
ing the Calabi–Yau condition. Blowing up these 49 + 7 double points in
total, we have −98 + (49 + 7) × 2 = 14 for the Euler number of the resolved
space X̃ ′

[y1,y2,0]. Now, consider the quotient X̃ ′
[y1,y2,0]/〈τ〉. This quotient has

singularities which come from the 7 × 2 fixed points under the action of τ .
These singularities can be resolved under the Calabi–Yau condition, and for
the Euler number we have

χ

⎛

⎝
̂X̃ ′
[y1,y2,0]

〈τ〉

⎞

⎠ =
1

|〈τ〉|
∑

g,h∈〈τ〉
χ(X̃ ′

[y1,y2,0]|g,h) = 98

where X̃ ′
[y1,y2,0]|g,h represents the fixed points under g and h (i.e., the 7 × 2

points for (g, h) �= (e, e)). The Hodge numbers are determined in [12] by
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looking the blow-ups more closely. The results are h1,1 = 50, h2,1 = 1, justi-

fying the claim that Y ′
y := ̂X̃ ′

[y1,y2,0]/〈τ〉 is the mirror family of the Calabi–
Yau variety X ′.

For the concrete description of Y ′
y , we write in Appendix (A.1) the diago-

nal Pfaffians pk(S) of the skew symmetric matrix S(y) = S(y, [u]) for the
spacial family X ′

[1,y,0] with [u] = [u0, u1, . . . , u6] ∈ P6. From the explicit
form of the generators pk(S), we see that Y ′

e2πi/7y
∼= Y ′

y and hence x = y7

parametrizes the genuine mirror family. Then in terms of pi(S), the holo-
morphic 3-form of the family Y ′

x may be given by

Ω(x) = Res
(−1)εPf(Si3i4i5i6)dμ

pi0pi1pi2

, (2.3)

where dμ = du0du1 · · · du6 and Si3i4i5i6 is the 4 × 4 “diagonal” sub-matrix
of S specified by the index set {i3i4i5i6}, and ε represents the parity of the
order i0i1 · · · i6. Evaluating the period integral over a torus cycle as a power
series in x, the Picard–Fuchs differential operator Dx has been determined
in [12],

Dx = 9 θ4
x − 3 x(15 + 102 θx + 272 θ2

x + 340 θ3
x + 173 θ4

x)

− 2 x2(1083 + 4773 θx + 7597 θ2
x + 5032 θ3

x + 1129 θ4
x)

+ 2 x3(6 + 675 θ + 2353 θ2
x + 2628 θ3

x + 843 θ4
x)

− x4(26 + 174 θx + 478 θ2
x + 608 θ3

x + 295 θ4
x) + x5(θx + 1)4, (2.4)

where we define θx = x d
dx . Using this differential operator, and normalizing

the holomorphic three form suitably, we can determine the Yukawa coupling
to be

Cxxx := −
∫

Y ′
x

Ω(x) ∧
(

d

dx

)3

Ω(x) =
42 − 14x

x3(1 − 57x − 289x2 + x3)
. (2.5)

A similar orbifold construction works for the Grassmannian Calabi–Yau
variety X by taking the dual projective space P13

[1,y,0] to P̌6
[1,y,0]. Then the

mirror family {Yy} is given by a resolution of a suitable orbifold of Gr(2, 7) ∩
P13

[1,y,0]. The remarkable observation made in [12] is that we obtain the same
Picard–Fuchs differential operator as above, which has the property of the
maximally degeneration [25] at both x = 0 and x = ∞. This indicates that
the two Calabi–Yau varieties X and X ′ share the same the mirror family
{Yy} = {Y ′

y}, and that the complexified Kähler moduli of the two Calabi–
Yau varieties X and X ′ are unified in one complex structure moduli of the
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mirror family (Conjecture 10 in [12]). The structure of the singularities of
the Picard–Fuchs equation (2.4) (cf. [26, 27]) may be summarized in the
following Riemann’s P scheme listing the indices ρk at each regular singular
point; ⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x 0 α1 α2 α3 3 ∞
ρ1 0 0 0 0 0 1
ρ2 0 1 1 1 1 1
ρ3 0 1 1 1 3 1
ρ4 0 2 2 2 4 1

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

, (2.6)

where αk are the roots of the “discriminant” 1 − 57x − 289x2 + x3 = 0, for
which Y ′

x has double points.

Making the instanton expansions at each degeneration point, we find that
the expansion about x = 0 corresponds to the Kähler moduli of the Grass-
mannian Calabi–Yau X, and the expansion about x = ∞ to that of the
Pfaffian Calabi–Yau X ′. Our main objective in this paper is to extend the
instanton calculations to higher genera.

2.3 A digression to K3 surfaces

It is clear that the property of the Picard–Fuchs differential operator Dx

is closely related to the equivalence Db(Coh(X)) ∼= Db(Coh(X ′)). Here we
remark that essentially the same property may be observed in the case of
K3 surfaces.

Let us recall that the set of Fourier–Mukai partners for a smooth projec-
tive variety X is defined by

FM(X) = {Y |Db(Coh(Y )) ∼= Db(Coh(X))}/ ∼,

where ∼ represents the isomorphisms. When X is a K3 surface, one may
expect that the cardinality of |FM(X)| is finite since birational K3 surfaces
are biholomorphic. In fact, it is known that the number of Fourier–Mukai
partners is finite[5, 6]. In particular, for a K3 surface X of degree 2n and
the Picard number ρ(X) = 1, it is found [7] that the number of the Fourier–
Mukai partners has a simple form,

|FM(X)| = 2p(n)−1,

where p(n) is the number of the prime factors (p(1) := 1). The first non-
trivial case arises from p(6) = 2, i.e., we have FM(X) = {X, X ′} for a K3
surface X of degree 12. According to [28], the partner X ′ may be identified
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with a moduli space of the rank 2 stable sheaves with c1(E) = H, χ(E) =
2 + 3. Also explicit constructions of the K3 surfaces of degree 12 and the
mirror K3 surfaces are known in detail, see [29] and references therein. There
the modular group Γ(6)0+ appears as the monodromy group of the Picard–
Fuchs differential equation of the mirror (one-parameter) family. It is found
in [29] that one of the generators of the group Γ(6)0+ does not correspond to
any element in Auteq(Db(Coh(X))) under the mirror symmetry, and argued
that this generator represents the Fourier–Mukai transform ΦP defined by
the Poincaré bundle P over X × X ′. The rest of the generators defines the
index two subgroup Γ(6)0+6 of Γ(6)+.

Changing the monodromy group to the smaller group Γ(6)0+6 doubles the
moduli space of the mirror family (or the fundamental domain in the upper
half plane). This doubled mirror family may be found in the table of [30],
and it has the Picard–Fuchs differential operator,

D = θ3
x − x(2 θx + 1)(17 θ2

x + 17 θx + 5) + x2(θx + 1)3.

This differential operator shows exactly the same property as (2.4), i.e., it
has two maximal degeneration points at x = 0 and x = ∞. One may pursue
the similarity further in that the Fourier–Mukai partner X ′ has an explicit
construction using the orthogonal Grassmannian [28]. Here, a naive con-
struction of the Grassmannian K3 surface X = Gr(2, 6)16 , however, does
not give deg (X) = 12 but 14, and hence |FM(X)| = 1.

2.4 g = 0 and g = 1 Gromov–Witten invariants

We summarize the calculations of the genus zero and one Gromov–Witten
invariants of the Grassmannian and the Pfaffian Calabi–Yau varieties X, X ′.

(2.4.a) Let us first introduce the so-called mirror map [1]. We will denote
henceforth the local coordinate z = 1

x to analyze the local solutions of the
Picard-Fuchs equation (2.4) about x = ∞. At each degeneration point, we
have one regular series solution with other solutions having (higher)
logarithmic singularities. We normalize the regular solution and choose the
following linear-logarithmic solution

{
w0(x) = 1 + 5x + 109 x2 + 3317 x3 + 121501 x4 + · · · ,

w1(x) = log(x)w0(x) + 14 x + 357 x2 + 35105
3 x3 + 2669975

6 x4 + · · · .

(2.7)
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The choice of the linear-logarithmic solution w1(x) is up to the addition of
arbitrary multiple of w0(x). Here we fix this ambiguity so that the complex-
ified Kähler moduli 2πit = w1(x)

w0(x) has a “nice” form of the q-expansion,

1
x(q)

=
1
q

+ 14 + 189 q + 2534 q2 + 42826 q3 + 869162 q4 + · · ·,

where q := e2πit. In a similar way, we fix the regular solution w̃0(z) and the
linear-logarithmic solution w̃1(z) at z = 0,
{

w̃0(z) = z + 17 z2 + 1549 z3 + 215585 z4 + 36505501 z5 + · · · ,

w̃1(z) = log(z)w̃0(z) + 70 z2 + 7413 z3 + 3268573 z4

3 + 1138372375 z5

6 + · · · .

(2.8)
By defining 2πit̃ = w̃1(x)

w̃0(x) , q̃ = e2πit̃, we have

1
z(q̃)

=
1
q̃

+ 70 + 3773 q̃ + 232750 q̃2 + 18421802 q̃3 + 1781859058 q̃4 + · · · .

The expansions x = x(q) and z = z(q̃) are called mirror maps at the respec-
tive degeneration points, x = 0 and z = 0.

(2.4.b) Now, by the formula in [1], we determine the quantum corrected
Yukawa coupling Kttt(t) at x = 0 by

( 1
w0(x)

)2
Cxxx

(dx

dt

)3
= 42 + 196 q + 9996 q2 + 344176 q3

+ 12685708 q4 + · · · .

For the expansion at z = 0, we transform the Yukawa coupling (2.5) by

Czzz(z) = Cxxx(x)
(dx

dz

)3
=

14 − 42 z

z(1 − 289 z − 57 z2 + z3)
. (2.9)

Then the quantum Yukawa coupling Kt̃t̃t̃(t̃) at z = 0 is given by

( 1
w̃0(x)

)2
Czzz

(dz

dt

)3
= 14 + 588 q + 97412 q2 + 15765456 q3

+ 2647082116 q4 + · · · .

These Yukawa couplings are related to the Gromov–Witten potentials by

Kttt(t) =
(
q

d

dq

)3
F0(t), Kt̃t̃t̃(t̃) =

(
q̃

d

dq̃

)3
F̃0(t̃).
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Comparing the topological data given in (2.1) and (2.2), the degenerations
at x = 0 and z = 0 have been identified in [12], respectively, with the Grass-
mannian Calabi–Yau X and the Pfaffian Calabi–Yau X ′, i.e.,

F0(t) = FX
0 (t), F̃0(t̃) = FX′

0 (t̃).

We observe in (2.9) that the numerator of the Yukawa coupling, i.e., 42–
14 x, explains the difference of the leading term between the q- and the
q̃-expansions. This simple observation should be contrasted to the similar
calculations done for the “topology changes” (i.e., flops) [31].

(2.4.c) For the genus one invariants, we apply the BCOV formula [2] of
the holomorphic potential F (1)(x) to our case,

F (1)(x) =
1
2

log
{( f1(x)

w0(x)

)3+h1,1−χ/12(dx

dt

)
dis(x)−1/6 x−1−c2.H/12

}
, (2.10)

where dis(x) = 1 − 57 x − 289 x2 + x3 and f1(x) is some holomorphic func-
tion which we fix to f1(x) = 1 by requiring the regularity of F (1)(x) at
x = 0,∞, 3. Exactly the same form as F (1)(x) applies to F̃ (1)(z) with w̃0(z),
d̃is(z) = 1 − 289 z − 57 z2 + z3, f̃1(z) = z and the data (2.2). The holomor-
phic function f̃1(z) guarantees the regularity of F̃ (1)(z) at z = 0. Using the
topological data (2.1), (2.2) and the mirror maps x = x(q) and z = z(q̃), we
obtain the genus one Gromov–Witten potentials,

FX
1 (t) = F (1)(x(q)), FX′

1 (t̃) = F̃ (1)(z(q̃)).

Here we remark that, except that one has to replace w0(x) with w̃0(z) by
hand, one can verify the equality

F (1)(x) = F̃ (1)(z),

with x = 1
z . This relation holds because, by taking the topological limits,

the BCOV formulas (2.10) and F̃ (1)(z) follow from the “Quillen’s norm”
function

F (1)(x, x̄) =
1
2

log
{

e(3+h11−χ/12) K Gxx̄
∣∣∣dis(x)−1/6 x−1−c2.H/12

∣∣∣
2}

, (2.11)

of a certain holomorphic bundle over the moduli space [3], see also [32, 33].
We will define the topological limits in (3.5) and come to this point in the
next section, see Section 3.5.
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3 BCOV holomorphic anomaly equation

Here we introduce the BCOV holomorphic anomaly equation and its
topological limits at the degeneration points in the moduli space.

3.1 The special Kähler geometry

The mirror family {Yx}x∈P1 defines the so-called special Kähler geometry
on each neighborhood B0 of x0(�= 0, α1, α2, α3,∞) on the moduli space P1.
Let us denote Mcpl = P1 \ {0, α1, α2, α3,∞}. To describe the geometry on
Mcpl, let Ω(x) = Ω(Yx) (x ∈ B0) be the holomorphic three form (2.3), nor-
malized by (2.5). Consider the middle cohomology H3

x0
= H3(Yx0 ,Z), and

define the period domain,

D = {ω ∈ P(H3
x0

⊗ C)| (ω, ω) = 0, (ω, ω̄) > 0},

where (ω, ω′) := i
∫
Yx0

ω ∧ ω′. Making an identification H3(Yx,Z) ∼=
H3(Yx0 ,Z) for x ∈ B0, the choice of the holomorphic 3-form Ω(x) determines
the period map P0 : B0 → D. Let U be the restriction of the tautological
line bundle of P(H3

x0
⊗ C) to D. Then we have a holomorphic line bundle

L = P∗
0U over B0. Globalizing this local construction, we obtain a holo-

morphic line bundle L over a covering space M̃cpl with its covering group
(“modular group”) Γ ⊂ Sp(4,Z).

The special Kähler geometry on B0 is defined by the Weil–Petersson met-
ric Gxx̄ = ∂x∂x̄K(x, x̄) with the Kähler potential K(x, x̄) = − log(Ω(x), Ω(x)).
Since K(x, x̄) is monodromy invariant, we see that this local geometry
naturally glues together on Mcpl. Consider the metric connection given by
Γ x

xx = Gxx̄∂xGxx̄ and Γ x̄
x̄x̄ = Gx̄x∂x̄Gx̄x. This connection defines the covari-

ant derivative on the sections of the tangent bundle TMcpl ⊗ C = T ′Mcpl ⊕
T ′′Mcpl. Then we may write the so-called special Kähler geometry relation,

∂x̄Γ x
xx = 2Gxx̄ − CxxxCx̄x̄x̄e2KGxx̄Gxx̄, (3.1)

where K is the Kähler potential and Cxxx is the Yukawa coupling (2.5). It
is known that this relation follows from a certain local system over Mcpl

associated to H3(Yx,Z)[34].

Now let us introduce “Kähler connection” by Kx = ∂xK and Kx̄ = ∂x̄K.
We see that this connection defines the covariant derivative on the sections
of L and also its complex conjugate L̄, and the tensor products thereof. We
have Dxξ = ∂xξ + nKxξ + mKx̄ξ for a section ξ ∈ Γ(Ln ⊗ L̄m). Thus for a
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holomorphic tangent vector ξx taking a value in L̄, for example, we have
Dxξx = (∂x + Γ x

xx)ξx and Dx̄ξx = (∂x̄ + Kx̄)ξx.

3.2 BCOV anomaly equation and the general solutions F(g)

Using the special Kähler geometry and also the Griffiths transversality for
the period map, we can show that there exist potential functions which
express the Yukawa coupling (2.5) and its complex conjugate by

Cxxx = DxDxDxF (0)(x, x̄), Cx̄x̄x̄ = Dx̄Dx̄Dx̄F̄ (0)(x, x̄),

where F (0)(x, x̄) and F̄ (0)(x, x̄) are, respectively, a C∞ section of L2 and
a C∞ section of L̄2 [34]. The extension of F (0)(x, x̄) to genus one was
introduced in [2] by the t-t∗ equation,

∂x∂x̄F (1)(x, x̄) =
1
2
CxxxCx̄x̄x̄e2KGxx̄Gxx̄ − (

χ

24
− 1)Gxx̄.

Geometrically F (1)(x, x̄) is understood to represent a certain Hermitian
norm (“Quillen’s norm” or analytic torsion) of a holomorphic line bundle
[2] (see also [32, 33]) over the complex structure moduli space. The higher
genus generalization F (g)(x, x̄) (g ≥ 2) are defined by a kind of recursion
relation, the BCOV holomorphic anomaly equation,

∂x̄F (g) =
1
2
Cx̄x̄x̄e2KGxx̄Gxx̄

{
DxDxF (g−1) +

g−1∑

r=1

DxF (g−r)DxF (r)
}

, (3.2)

for C∞ sections F (g)(x, x̄) of L2−2g.

Recent progresses made in [35, 36] clarify the meaning of the anomaly
equation (3.2) using the wave function interpretation of the topological
string amplitude [37]. In particular, in [35], modular property of F (g) has
been discussed in relation to the quasi-modular forms in elliptic curves [38].

The general solutions of the BCOV anomaly equation have been obtained
by certain Feynman rules in [3]. To present the result, let us introduce
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the notation F (g)
r = Dx · · ·Dx︸ ︷︷ ︸

r

F (g) and define F (g)
r;s recursively by

F (g)
r;s+1 = (2g − 2 + r + s)F (g)

r;s (F (g)
r;0 = F (g)

r ),

with the conditions,

F (0)
r;1 = 0 (r ≤ 2); F (1)

0;1 =
χ

24
− 1, F (1)

0;0 = 0.

Define perturbative interaction function P (J, φ) and the source function
G(J, φ) by

P (J, φ) =
∑

g≥0

∑

r,s≥0

λ2g−2F (g)
r;s

Jr

r!
φs

s!
, G(J, φ) = e−λ2(1/2 SxxJ2−SxJφ−1/2 Sφ2),

where λ is a parameter (string coupling constant) and Sxx, Sx, S represent
the propagators determined by integrating e2KDx̄DxDxF̄ (0) = ∂x̄Sxx and
similar relations for Sx and S, see Appendix (A.2). One may solve these
propagators in the following form,

Sxx =
1

Cxxx
(2 Kx − Γ x

xx +
1
vx

∂xvx), Sx =
1
2
DxSxx +

1
2
(Sxx)2 Cxxx + Hx

1 ,

S = Hx
1 Kx +

1
2
DxSx +

1
2
SxxSxCxxx + H2, (3.3)

where vx(x), Hx
1 (x) represent some (rational) vector fields and H2(x) is a

rational function on the moduli space. These propagators are C∞ sections
of L−2 with suitable tensor indices. We introduce the holomorphic (mero-
morphic) functions fg(x) on the moduli space to represent the “constants”
of the integration of the anomaly equation (3.2). Then the solutions of the
anomaly equation can be formulated in the following perturbative expan-
sion;

e−
∑

g λ2g−2fg = eP (∂/∂J,∂/∂φ)G(J, φ)
∣∣∣
J=φ=0

.

The logarithm of the right hand side represents summing over connected
Feynman diagrams with the interaction terms determined by P (J, φ), and
we see the perturbative expansion of F (g) at the coefficient of λ2g−2 (see
(6.16) in [3]).
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For example, we may write the resulting expression at the coefficient
λ2g−2 = λ2,

F (2) =
5
24

(Sxx)3 (F (0)
3 )2 − 1

8
(Sxx)2 F (0)

4 − 1
2
(Sxx)2 F (0)

3 F (1)
1 +

1
2
Sxx (F (1)

1 )2

+
1
2

Sxx F (1)
2 +

χ

24
Sx F (1)

1 − χ

48
SxSxxF (0)

3 +
χ

24
(

χ

24
− 1) S + f2 ,

where by definition F (0)
3 = Cxxx, and f2 = f2(x) is the holomorphic ambi-

guity. In general, F (g) is an element of Γ∞(L2−2g) and may be expressed by

F (g)(x, x̄) = Γ(Sxx, Sx, S; F (h<g)
r (x, x̄)) + fg(x), (3.4)

where Γ represents symbolically the summation over the Feynman diagrams.

3.3 Fg(t) from the topological limit

Following [2], we define the “topological limit” of (3.4). First, the data of
the topological limit consists of the normalized solutions w0(x) and w1(x)
at the degeneration point, which determines the mirror map t = t(x), and
also the initial data for g = 0, 1,

F
(0)
3 (x) = Cxxx, F

(1)
1 (x) = ∂xF (1)(x),

where Cxxx is the Yukawa coupling (2.5) and F (1)(x) is the BCOV formula
(2.10). Then the topological “limit” is defined by the following replacements,

Gxx̄ → dt

dx

dt̄

dx̄
, Kx → −∂x log w0(x), F (g)(x, x̄) → F (g)(x), (3.5)

in the solution (3.4), which gives

F (g)(x) = Γ(Sxx(x), Sx(x), S; F (h<g)
r (x)) + fg(x). (3.6)

This is a recursion relation that determines the holomorphic prepotentials
F (g)(x) as the holomorphic sections of L2−2g starting with the initial data
F

(0)
3 (x) and F

(1)
1 (x) above. Leaving aside the holomorphic ambiguity fg(x),
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the holomorphic prepotential gives the Gromov–Witten potential by

Fg(t) = (w0(x))2g−2 F (g)(x)

= (w0(x))2g−2 Γ(Sxx, Sx, S; F (h<g)
r (x)) + (w0(x))2g−2 fg(x). (3.7)

The meaning of the topological limit has been discussed recently [35, 36]
in terms of the wave function interpretation of exp(

∑
g≥0 λ2g−2F (g)) in [37],

however the connection of the holomorphic potential F (g)(x) to the Gromov–
Witten potential Fg(t) above is still open mathematically (cf. the so-called
“mirror theorem” by [39, 40] for g = 0). To determine the ambiguity fg(x),
we have to invoke some regularity arguments for Fg(t). This restricts the
possible form of fg(x). Although the regularity arguments put rather strong
constraints on the possible forms of the ambiguities, we need some “bound-
ary” conditions to fix them completely. We will describe in Section 3.6 the
gap conditions at the conifolds which has been recently introduced in [17].

3.4 Solving BCOV equation recursively

The general form (3.4) or its topological limit (3.6) is not so useful for higher
genus calculations, since it contains the contributions from the large number
of connected Feynman diagrams, even for g = 4 or g = 5. On this respect,
Yamaguchi and Yau [21] found a nice way to improve the situation. Their
idea is to formulate a recursion relation for the sections {F (g)(x, x̄)} in the
form of a differential equation. This avoids the large summation over the
Feynman diagrams.

(3.4.a) Following Yamaguchi and Yau [21], let us introduce the following
expressions,

Ak = Gxx̄ θk
x Gxx̄, Bk = eK(x,x̄) θk

x e−K(x,x̄)(k = 1, 2, . . .), (3.8)

where θx = x d
dx . By definition, these satisfy

θxAk = Ak+1 − A1Ak, θxBk = Bk+1 − B1Bk.

Also, since e−K(x,x̄) = (Ω(x), Ω(x)) satisfies the (holomorphic) Picard–Fuchs
equation (2.4) of the fourth order, there is a linear relation

B4 + r1(x) B3 + r2(x) B2 + r3(x) B1 + r4(x) = 0,
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with the rational functions rk(x) which follow from (2.4). Similarly for
A2(x), but from a non-trivial reasoning, we have [21]

A2 = −4 B2 − 2 B1(A1 − B1 − 1) + θx log(xCxxx) (A1 + 2 B1 + 4) + r(x),
(3.9)

with a rational function r(x), see Appendix (A.3). These relations (3.8) and
(3.9) entail an important property,

θx : C(x)[A1, B1, B2, B3] → C(x)[A1, B1, B2, B3], (3.10)

i.e., θx acts on the polynomial ring of A1, B1, B2, B3 with the coefficients
over the rational functions C(x).

(3.4.b) As for the ∂x̄ operation, it is easy to see

∂x̄ : C(x)[A1, B1, B2, B3] → C(x)[A1, B1, B2, B3][∂x̄A1, ∂x̄B1].

To show this property, let us note the relations B2 = θxB1 + B2
1 and ∂x̄B1 =

−x Gxx̄. Then for ∂x̄B2, we have

∂x̄B2 = −θx(xGxx̄) + 2 B1∂x̄B1 = (1 + A1 + 2 B1) ∂x̄B1,

where we use θxGxx̄ = A1 Gxx̄ = − 1
xA1∂x̄B1. Applying θx to this result and

using B3 = θxB2 + B1B2, we have

∂x̄B3 = (A2 + 2 A1 + 3 B1 + 3 B2 + 3 A1B1 + 1) ∂x̄B1.

This shows the claim above.

(3.4.c) Now let us focus on the recursion relation (3.6) for F (g)(x, x̄) with
the results obtained in (3.4.a) and (3.4.b) above. First, we note that the
initial conditions are given in the ring C(x)[A1, B1, B2, B3] since F (0)

3 (x) =
Cxxx and we have, from (2.11),

F (1)
1 (x, x̄)

=
1

2 x

{
− A1 − (3 + h11 − χ

12
)B1 − 1 − c2.H

12
+

x(57 + 578 x − 3 x2)
6 dis(x)

}
.

Also for the propagators we see that Sxx, Sx, S belong to the ring C(x)[A1,
B1, B2, B3], see (3.3). For example, we have

Sxx = − 1
x Cxxx

(A1 + 2 B1 + 4), Sx =
1

x2 Cxxx
(3 B1 + B2 + 2). (3.11)



HIGHER GENUS GROMOV–WITTEN INVARIANTS 481

The recursion relation (3.4) contains the covariant derivatives Dx to define
F (h<g)

r = Dx · · ·DxF (h<g)(x, x̄). Note that these covariant derivations act
inside the ring due to the property (3.10). Therefore, by induction, we
may conclude that the prepotentials F (g)(x, x̄) are in the ring C(x)[A1, B1,
B2, B3] for all g ≥ 2. This is the polynomiality found in [21].

Now we proceed to combine the polynomiality with the integration of
the BCOV anomaly equation (3.2). Following [21], let us introduce P

(g)
n ∈

C(x)[A1, B1, B2, B3] (P (g)
0 = P (g)) by

P (g)
n = (x3 Cxxx)g−1 xnDn

xF (g) (n = 0, 1, 2, . . .). (3.12)

Then it is straightforward to rewrite the BCOV equation as

∂x̄P (g) =
1
2
∂x̄(x CxxxSxx)

{
P

(g−1)
2 +

g−1∑

r=1

P
(g−r)
1 P

(r)
1

}
.

Both sides of this equation are linear in ∂x̄A1, ∂x̄B1, and if we assume these
two are linearly independent, then we have

2
∂P (g)

∂A1
−

(∂P (g)

∂B1
+

∂x̄B2

∂x̄B1

∂P (g)

∂B2
+

∂x̄B3

∂x̄B1

∂P (g)

∂B3

)
= 0,

∂P (g)

∂A1
= −1

2

{
P

(g−1)
2 +

g−1∑

r=1

P
(g−r)
1 P

(r)
1

}
.

(3.13)

The first equation implies that P (g) is a polynomial of essentially three
variables. This suppresses the length of the polynomial P (g) when g becomes
large. A nice choice of variables that respects the first equation is given
in [21] by

B1 = u, A1 = v1 − 2 u − 1, B2 = v2 + u v1,

B3 = v3 + u
(
2 v1 + θx log(xCxxx) v1 − v2 + 3θx log(xCxxx) + r(x) − 1

)
.

(3.14)
Note that the inverse relation to this may be found easily because the above
relation is of “upper triangular form”. Using the new variables for the first
equation of (3.13), we have ∂

∂uP (g) = 0 and conclude,

P (g) ∈ C(x)[v1, v2, v3] ⊂ C(x)[u, v1, v2, v3] = C(x)[A1, B1, B2, B3].

Furthermore, note that the both sides of the second equation in (3.13) are
polynomial in u of degree less than three. Then, writing 1

2{P
(g−1)
2 +

∑g−1
r=1
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P
(g−r)
1 P

(r)
1 } =: Q0 + u Q1 + u2 Q2, we have

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂P (g)

∂v1
= −Q0,

∂P (g)

∂v3
= Q2

∂P (g)

∂v2
= Q1 + (2 + θx log(xCxxx)) Q2

(3.15)

This is the equation we can solve recursively with the initial data P
(0)
3 = 1

and P
(1)
1 .

(3.4.d) The holomorphic ambiguity fg in (3.4) corresponds to the ‘con-
stants’ of integration of the differential equation (3.15). To make the cor-
respondence more precise, we note that fg in (3.4) may be identified by
the vanishing limit of the propagators, i.e., F (g) → fg when Sxx, Sx, S → 0.
Now assume that P (g) ∈ C(x)[v1, v2, v3] is a solution of the differential equa-
tion (3.15). We substitute in (x3Cxxx)1−g P (g)(v1, v2, v3) the expressions for
v1, v2, v3 in terms of the propagators, which follow from (3.11) and (3.14).
Then the vanishing limit of the propagators gives the holomorphic ambiguity
fg. In other words, we may write

F (g) = (x3Cxxx)1−gP (g) + fg(x), (3.16)

where we fix the integration “constant” in P (g) by the property P (g)

(v1, v2, v3) → 0 when Sxx, Sx, S → 0.

3.5 Relating the topological limits

Let us note that the topological limit (3.5) with the data w0(x), w1(x), t =
t(x) corresponds to the replacements

A1 →
(dx

dt

)
θx

( dt

dx

)
, Bk → 1

w0(x)
θk
xw0(x) (k = 1, 2, 3),

in the polynomial solutions F (g) = F (g)(A1(x, x̄), Bk(x, x̄), x). We denote
the resulting holomorphic potential F (g)(x).

Now we define F̃ (g)(z, z̄) to be the solutions of the BCOV equation in
z-coordinate with the initial conditions F̃ (1)

1 (z, z̄) and F̃ (0)
3 = DzDzDzF̃ (0).
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Since the initial data, in particular for g = 0, are related by

F̃ (0)
3 (z, z̄) = Czzz(z) = Cxxx(1

z )
(dx

dz

)3
= F (0)

3 (1
z , 1

z̄ )
(dx

dz

)3
,

we see that F̃ (g)(z, z̄) and F (g)(x, x̄) are in the same coordinate patch of a
trivialization of the line bundle L. Hence we have

F̃ (g)(z, z̄) = F (g)(1
z , 1

z̄ ), (3.17)

for the C∞ sections of L2−2g. Then, by the data w̃0(z), w̃1(z), t̃ = t̃(z) given
in (2.8), the topological limit of F̃ (g)(z, z̄) = F (g)(A1(1

z , 1
z̄ ), Bk(1

z , 1
z̄ ), 1

z ) may
be achieved by

A1(1
z , 1

z̄ ) =
(dx

dz

dx̄

dz̄
Gzz̄

)
(−θz)

(dz

dx

dz̄

dx̄
Gzz̄

)
→ −

(dz

dt̃

)
θz

( dt̃

dz

)
− 2 ,

Bk(1
z , 1

z̄ ) = eK̃(z,z̄)(−θz)ke−K̃(z,z̄) → 1
w̃0(z)

(−θz)kw̃0(z), (k = 1, 2, 3),

where the relations Gxx̄(1
z , 1

z̄ ) = dz
dx

dz̄
dx̄Gzz̄(z, z̄), K(1

z , 1
z̄ ) = K̃(z, z̄) have been

used. We denote the resulting holomorphic potential F̃ (g)(z).

According to [3], we finally obtain the Gromov–Witten potentials for X
and X ′ by

Fg(t) = (w0(x))2g−2 F (g)(x), F̃g(t̃) = (w̃0(z))2g−2 F̃ (g)(z), (3.18)

with the mirror maps t = t(x) and t̃ = t̃(z), respectively.

We remark that if we require Fg(t) and F̃g(t̃) are regular at x = 0 and
z = 0, respectively, then the relation (3.17) restricts possible behaviors of
the holomorphic (rational) function fg(x), near x = 0 and ∞. Taking these
reguarlity constraints into accounts, following [3], we may set the following
anzatz for fg,

fg(x) = a0 + a1x + · · · + a2g−2x
2g−2

+
b0 + b1x + · · · + b2g−3x

2g−3

(x − 3)2g−2 +
c0 + c1x + · · · + c6g−7x

6g−7

dis(x)2g−2 ,

(3.19)
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where dis(x) = 1 − 57 x − 289 x2 + x3. Alghough x = 3 does not corresponds
to any degeneration of the mirror family, we introduce b0, . . . , b2g−3 in this
general form (see Section 5 for more detailed analysis on this). In this form,
we see 10(g − 1) + 1 unknown parameters which grow linearly in g.

3.6 The gap conditions at conifolds

One of the most subtle parts in solving the BCOV anomaly equation is to fix
the holomorphic ambiguities fg(x) whose general form has been argued in
(3.19). To determine the unknown constants contained in fg(x), we may use
the first few terms of Ng(d) in the expansion (1.1) if they are known from
other methods, e.g., enumerative geometry. In many cases, one may expect
ng(d) = 0 for lower d assuming that ng(d) counts the number of genus g
curves in X of degree d and also some genus formula for curves, see e.g., [43].
However these conditions are not sufficient to determine fg(x) in general, and
this fact reduces the predictive power of the BCOV equation for determining
the Gromov–Witten potentials Fg(t). Recently, on this problem, Huang,
Klemm and Quackenbush [17] have found that a certain vanishing property
(the gap condition) at conifolds provides considerably strong conditions for
fg(x). The gap condition has been tested for quintic hypersurface in P4

and other cases that have the mirror family over P1 with only one conifold
singularity.

The gap condition in [17] arises from the topological limit made around a
conifold singularity. Let x = c be a conifold singularity of the mirror family,
or the corresponding singularity of the Picard–Fuchs differential equation.
In our case, c may be one of the three singularities α1, α2, α3 in (2.6). As
we observe in (2.6), the indices ρk at the conifold are all integral but have
one degeneracy, which indicates there exists one solution with logarithmic
singularity.

Assume (ρ1, ρ2, ρ3, ρ4) = (0, 1, 1, 2), and normalize the logarithmic solu-
tion log(s)wc

1(s) + O(s1) by requiring wc
1(s) = s + O(s2) (s = (x − c)).

Then, according to the Picard–Lefschetz theory, the series wc
1(s) represents

the (normalized) period integral of the vanishing cycle. wc
1(s) together with

the logarithmic solution corresponds to the indices ρ2 = ρ3 = 1. For the
index ρ4 = 2 we have the solution of the form wc

2(s) = s2 + O(s3). Then,
making a suitable linear combination with wc

1(s) and wc
2(s), we may fix the

solution for the index ρ1 = 0 by the property

wc
0(s) = 1 + O(s3).
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By the data of the topological limit at the conifold x = c, we mean the series
data wc

0(s), w
c
1(s) with the “mirror map” s = s(U) defined by

kUU =
wc

1(s)
wc

0(s)
,

where kU is a constant characterized below.

The gap condition arises from the topological limit F (g)
c (s, s̄) → F

(g)
c (s)

at each conifold. We define this topological limit, in the exactly same way
as described in Sections (3.3) to (3.5), by the replacements

A1(s + c, s̄ + c̄) → (s + c)
d

ds
log

dU

ds
, Bk → 1

wc
0(s)

(
(s + c)

d

ds

)k
wc

0(s).

in the relation F (g)
c (s, s̄) = F (g)(A1(x, x̄), Bk(x, x̄), x).

The observation made in [17] based on the physical interpretation of the
vanishing cycles [41] is the following: There exists a choice of the constant
kU , under which we have

F(g)
c (U) = (wc

0(s))
2g−2 F (g)

c (s) =
|B2g|

2 g (2 g − 2)
1

U2g−2 + O(U0), (3.20)

for g ≥ 2 (and F
(1)
c (s) = − 1

12 log U + O(U0)). Since the leading behavior
F

(g)
c (s) ∼ const.

U2g−2 + · · · can be verified in general, the above equation provides
(2g − 2) − 1 vanishing conditions for the coefficients of 1

Uk (1 ≤ k ≤ 2g − 3),
the gap condition. Note that once we find kU at some g, then the leading
term in (3.20) provides an additional condition for each other value of g.
It has been observed for the quintic and similar Calabi–Yau 3-folds [17]
that these vanishing conditions provides an efficient way to determine the
holomorphic ambiguity fg(x) for higher values of g.

4 Calculations

Here we present some details of our calculations of the Gromov–Witten
potentials FX

g (t) = Fg(t) and FX′
g (t̃) = F̃g(t̃), and list the resultant

Gopakumar–Vafa invariants, nX
g (d) and nX′

g (d) for g ≤ 5 in tables 1 and 2.
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4.1 Expansions about the conifolds

The evaluations of the Gromov–Witten potentials

Fg(t) = (w0(x))2g−2F (g)(x), F̃g(t̃) = (w̃0(z))2g−2F̃ (g)(z),

are straightforward with the topological data w0(x), w1(x), t = t(x) and
w̃0(z), w̃1(z), t̃ = t̃(z) as described precisely in the previous sections. For the
expansion about the conifolds, however, we need to make the series expan-
sions about x = αk (k = 1, 2, 3) given by the algebraic equation 1 − 57 x −
289 x2 + x3 = 0. To achieve this, we first write the Picard–Fuchs equation

4∑

k=0

pk(α, s)
( d

ds

)k
wc(s) = 0 (4.1)

in the coordinate s = x − α with some polynomials pk(α, s). Note that α
may be taken to be any of αk since we only need the relation 1 − 57 α −
289 α2 + α3 = 0 in the derivation. Now we try to find the solutions of the
form

wc(α, s) =
∑

n≥0

cn(α) sn+ρ,

for each choice of the index ρ = 0, 1, 1, 2. Namely we solve the differen-
tial equation over the ring Rα = C[α]/(α3 − 289 α2 − 57 α + 1). Solving the
Picard–Fuchs equation (4.1) over Rα is rather technical, but turns out quite
useful since we can impose the gap conditions at the three conifold points
αk at one time.

Recall that the gap conditions may be imposed by making the data
wc

0(α, s), wc
1(α, s) and s = s(U) as defined in the Section 3.6. After some

calculations, for the solutions, we obtain

wc
0(α, s) = 1 −

(82833753
33614

+
1555547739

134456
α − 16148435

403368
α2

)
s3 + · · ·

wc
1(α, s) = s −

(64163
1372

+
83161
343

α − 1151
1372

α2
)
s2 + · · ·,

and also, inverting the defining relation kUU = wc
1(α,s)

wc
0(α,s) , we have

s(U) = kUU +
(64163

1372
+

83161
343

α − 1151
1372

α2
)
(kUU)2 + · · ·
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Using the above data, we can evaluate the holomorphic potential F
(g)
c (s) in

the following form,

F(g)
c (U) =

R2g−2(α)
(kUU)2g−2 +

R2g−1(α)
(kUU)2g−3 + · · · +

R1(α)
(kUU)

+ O(U0),

with Rk(α) = ck,2 α2 + ck,1 α + ck,0. Since 1, α, α2 are linearly independent,
the gap condition (3.20) entails 3(2g − 3) conditions, or 3(2g − 2) conditions
once kU is fixed. Thus we can impose the gap conditions at the three conifold
points at once in this algebraic manipulation.

4.2 Examples (g = 2, 3)

We use the gap condition above extensively together with some natural
vanishing assumptions to fix the 10 g − 9 unknown parameters in fg(x), see
(3.19). Here we illustrate how we impose the additional vanishing conditions
using the cases g = 2 and g = 3. For g = 2, we have to fix 10 g − 9 = 11
unknown parameters among which 3 (2g − 3) = 3 may be determined from
the gap conditions. To fix the remaining 8 parameters, we note the following
g = 1 Gopakumar–Vafa invariants which follow from the BCOV formula
(2.10);

1 2 3 4 5 6
nX

1 (d) 0 0 0 0 588 · · ·
nX′

1 (d) 0 0 196 99960 34149668 · · ·
From the higher genus calculations done in several examples, see [42, 17]
for example, we observe that the vanishing ng−1(d) = 0 indicates ng(d) =
0. This observation seems to be a natural consequence of the geometrical
meaning of the Gopakumar–Vafa invariants that nh(d) is evaluating the
Euler numbers of the degeneration loci in the genus g curve of degree d [20,
43, 44]. Assuming that this vanishing condition holds in our case, we have

nX
2 (d) = 0(d = 1, . . . , 4), nX′

2 (d) = 0 (d = 1, 2), nX
2 (0) = nX′

2 (0) =
χ

5760
,

which provide 8 conditions sufficient to fix f2(x). Using these conditions we
obtain for the holomorphic potential F (2)(x),

F (2)(x) = (x3 Cxxx)−1
(2989

288
v3 +

49
24

v1 v2 − 5
24

v3
1 +

p2(x)
(x − 3)dis(x)

v2

+
p1,1(x)

(x − 3) dis(x)
v2
1 +

p1(x)
(x − 3) dis(x)2

v1 +
p3(x)

(x − 3) dis(x)2
)
+ f2(x),
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with some polynomials p1(x), p2(x), p3(x), p1,1(x), which we leave
implicit, and

f2(x) = −359293
2520

+
1850909 x

20160
− 2081 x2

6720
− 15739

24 (x − 3)2
+

38147
84 (x − 3)

+
1

dis(x)2
(264137

720
− 1881913

45
x +

39189063
40

x2 +
72541963

6
x3

+
7353789043

240
x4 − 8892629

90
x5

)
.

Also the leading term of the conifold expansion F
(2)
c (s) = 1

240
1

U2 + · · · deter-
mines the constant kU by

k2
U = 240

(1183163
1120

α2 +
58293
280

α − 4091
1120

)
.

The resultant Gopakumar–Vafa invariants nX
2 (d) and nX′

2 (d) are listed in
Tables 1 and 2.

For g = 3 calculation, since kU has been fixed as above, we have 3 (2g −
2) = 12 constraints from the gap condition to fix 10 g − 9 = 21 parameters
in f3(x). Fortunately, we have enough additional vanishing conditions from
the g = 2 results; nX

2 (d) = 0 (d = 1, . . . , 7) , nX′
2 (d) = 0 (d = 1, . . . , 4), see

Tables 1 and 2, We may adopt the following 9 conditions

nX
3 (d) = 0 (d = 1, . . . , 5), nX′

3 (d) = 0 (d = 1, 2),

nX
3 (0) = nX′

3 (0) =
−χ

1451520
,

to fix f3(x).

We have continued this process up to g = 5. Although we may continue
this further to higher g, the exact value of g where this process might break
down is not clear to us (see the discussion in the next section).

5 Conclusion and discussions

We have determined the Gromov–Witten potentials FX
g and FX′

g , up to g = 5,
of the Grassmannian and the Pfaffian Calabi–Yau 3-folds using the mirror
symmetry. Our calculations are based on the original BCOV holomorphic
anomaly equation [2, 3] and the polynomiality in the solutions found in [21].
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In particular, following [17], we used extensively the gap conditions at the
conifold singularities to determine the holomorphic ambiguities fg.

Apart from these computational aspects of the Gromov–Witten invari-
ants, we have also remarked that the (mirror) Picard–Fuchs differential
equation has a similar property to that appeared in the mirror symmetry
of a K3 surface of degree 12. For a K3 surface of degree 12, the number
of the Fourier–Mukai partners is two, i.e., |FM(X)| = 2 [7, 29]. One may
expect a similar result for the Grassmannian and the Pfaffian Calabi–Yau
manifolds, i.e., there is no more variety which is derived equivalent to these
up to isomorphisms. Also one may expect that X ′ appears as a suitable
moduli space of stable sheaves on X, which is the case for the K3 surfaces
of degree 12.

Finally we comment on the singularity we see at x = 3 in (2.6). This point
does not corresponds to a singularity of the mirror manifold Yx in (2.1), see
[12] for more details. In fact, we see from the indices at x = 3, there is no
local monodromy around this point. However, we can formulate additional
“gap condition” which may be used to determine the holomorphic ambiguity
fg. Let us fix the local solutions corresponding to ρ = 0, 1, 3, 4, respectively,
by the following properties;

w0(s) = 1 − s2

42
+ O(s5), w1(s) = s − 8

21
s2 + O(s5),

w2(s) = s3 − 191
210

s4 + O(s5), w3(s) = s4 + O(s5),

where s = x − 3. Then similarly to the conifold points, one may define the
topological limit with the data w0(s), w1(s) and the mirror map U = w1(s)

w0(s) .
Then corresponding to the gap condition (3.20) at the conifolds, we observe
that the following vanishing property,

F(g)(U) = (w0(s))2g−2 F (g)(s) = 0
1

U2g−2 + · · · + 0
1
U

+ O(U0),

holds for g ≤ 5. Note that by the form fg in (3.19) this expansion can
start from 1

U2g−2 in general. However the F(g)(U) is regular as above since
there does not appear any massless state (or vanishing cycle) at x = 3. We
may utilize this property to determine the unknown constants in fg. Thus,
together with the gap conditions at the conifolds, we have 8(g − 1) conditions
in total, and hence in order to fix fg completely we need additionally 2 g − 1
vanishing conditions, nX

g (d) = 0, nX′
g (d′) = 0 for lower degrees d and d′.

From the results at g = 5, one may expect that the calculations done in
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Section 4 may be continued to considerably higher value of g, like the case
of the quintic [17].

Appendix A

A.1 The Pfaffians of S(y)

The 7 × 7 skew symmetric matrix S(y) parametrized by [1, y, 0] in the Sec-
tion 2.2 has the following form,

S =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −u3 −y u4 0 0 y u0 u1
u3 0 −u5 −y u6 0 0 y u2

y u4 u5 0 −u0 −y u1 0 0
0 y u6 u0 0 −u2 −y u3 0
0 0 y u1 u2 0 −u4 −y u5

−y u0 0 0 y u3 u4 0 −u6
−u1 −y u2 0 0 y u5 u6 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where [u0, . . . , u6] ∈ P̌6. Then the explicit form of the Pfaffians, pk(S) are

p0(S) = y3 u1u2u3 − y2 (u3u
2
5 + u1u

2
6) − y u0u2u4 + u2u5u6,

p1(S) = y3 u3u4u5 − y2 (u5u
2
0 + u3u

2
1) − y u2u4u6 + u0u1u4,

p2(S) = y3 u0u5u6 − y2 (u5u
2
3 + u0u

2
2) − y u1u4u6 + u2u3u6,

p3(S) = y3 u0u1u2 − y2 (u2u
2
4 + u0u

2
5) − y u1u3u6 + u1u4u5,

p4(S) = y3 u2u3u4 − y2 (u2u
2
0 + u4u

2
6) − y u1u3u5 + u0u3u6,

p5(S) = y3 u4u5u6 − y2 (u6u
2
1 + u4u

2
2) − y u0u3u5 + u1u2u5,

p6(S) = y3 u0u1u6 − y2 (u1u
2
3 + u6u

2
4) − y u0u2u5 + u0u3u4.

A.2 Propagators Sxx , Sx , S

These propagators are defined in [3] by integrating

e2KDx̄DxDxF̄ (0) = ∂x̄Sxx, Gx̄xSxx = ∂x̄Sx, Gx̄xSx = ∂x̄S.

Using the special Kähler geometry relation (3.1), one may easily verify that
(3.3) solves these equations. The explicit forms vx(x), Hx

1 (x), H2(x) are
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determined following [3],

vx(x) =
1
x4 , Hx

1 (x) = −1
2

1
x2 Cxxx

(12 − r(x)), H2(x) = −1
x

Hx
1 (x),

where r(x) is the rational function in (3.9), see also (A.2) below. The topo-
logical limits of these propagators in the z coordinate have similar forms to
those found in [3] for the quintic,

Szz =
1

Czzz
∂z log

{( f(z)
w̃0(z)

)2 dz

dt̃

}
,

Sz =
1

Czzz

{(
∂z log

f(z)
w̃0(z)

)2 − ∂2
z log

f(z)
w̃0(z)

}
,

S =
{

Sz − 1
2
DzS

zz − 1
2
(
Szz

)2
Czzz

}
∂z log

f(z)
w̃0(z)

+
1
2
DzS

z +
1
2
SzzSzCzzz,

where f(z) = z. Rather complicated forms of vx, Hx
1 , H2 above have been

found from the latter expressions of Szz, Sz, S.

A.3 The derivation of A2 in (3.9)

The relation (3.9) follows from the definitions

∂x̄Sxx = e2K(Gxx̄)2Cx̄x̄x̄, ∂xCx̄x̄x̄ = 0,

where Cx̄x̄x̄ = Dx̄Dx̄Dx̄F̄ (0)(x, x̄) is the anti-holomorphic Yukawa coupling.
From these relations, after some algebra, we have

∂x̄(xCxxx θxSxx) = 2x {Kx − Γ x
xx}∂x̄(xCxxxSxx).

Now from the special geometry relation (3.1), we have ∂x̄(Kx − Γ x
xx) =

−Gxx̄ + Cxxx∂x̄Sxx. Using this relation for ∂x̄(xCxxxSxx) in the right hand
side, we obtain

∂x̄(xCxxx θxSxx) = 2x (Kx − Γ x
xx)

{
∂x̄

(
x(Kx − Γ x

xx)
)

+ x Gxx̄

}

= ∂x̄

{
(xKx − Γ x

xx)2 + (xKx)2 − 2(θx − 1)(xKx)
}

. (A.1)
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We may express this relation in terms of A1, B1, B2 and B3 as follws,

∂x̄(xCxxxθxSxx)

= ∂x̄

(
− A2 + A2

1 − 2 B2 + 2 B2
1 + θx log(xCxxx) (A1 + 2 B1 + 4)

)

= ∂x̄(A2
1 + 2 A1B1 + 2 B2 − 2 B1),

where, for the first line, we use the expression Sxx = −1
xCxxx

(A1 + 2 B1 + 4)
in (3-4.c) and the relation θxA1 = A2 − A2

1. This determines the form A2(x)
up to a holomorphic (rational) function. Substituting the series data (2.7)
under the topological limit (3.5), we finally find

r(x) = 11 − 36
7 (x − 3)

−
4
(
10 − 331 x − 751 x2

)

7 dis(x)
,

in the relation (3.9).
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