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Abstract

We carry out an exact worldsheet computation of tree level three-
point correlators of chiral operators in type IIB string theory on AdS3 x
53 x T* with NS-NS flux. We present a simple representation for the
string chiral operators in the coordinate basis of the dual boundary CFT.
Striking cancelations occur between the three-point functions of the Hy
and the SU(2) WZW models which result in a simple factorized form for
the final correlators. We show, by fixing a single free parameter in the
Hy WZW model, that the fusion rules and the structure constants of
the N = 2 chiral ring in the bulk are in precise agreement with earlier
computations in the boundary CFT of the symmetric product of T* at
the orbifold point in the large N limit.
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1 Introduction

Within the family of AdS,4+1/CFT,, holographically dual theories [1-4], the
AdS3/CFT; case has a concrete realization in the form of a duality between
string theory in AdSs x 83 x M*, where M? is either a torus 7% or a K3
surface, and a two-dimensional CFT in the moduli space of a non-linear
sigma model whose target space is the symmetric product of M*.

In the heuristic derivation of this AdS3/CFT5 correspondence via the near
horizon of the D1/D5 system in type IIB 10D supergravity [1] (see [5,6] for
reviews), there is RR flux through the S® factor of the AdS3 x S3 x M*
geometry, which makes the theory more difficult to quantize [7,8]. It is con-
venient to use an S-dual description [9], where the D1/D5 system becomes
a system of ()1 fundamental-strings and Q5 NS5 branes. The near horizon
geometry is still AdSs x S x M4, but the RR flux is traded for k = Qs units
of NS flux through AdSsz and through S2, and the common radius of AdSs3
and S% is Vo/k. The resulting model has an exact worldsheet description
through level k supersymmetric SL(2, R) and SU(2) WZW models. This
allows a much more detailed treatment of the bulk theory that goes beyond
the leading supergravity approximation. In this controlled setting, the emer-
gence of the two-dimensional superconformal symmetry of the dual theory
from the worldsheet has been studied in [10-13].
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String propagation in this background is of interest because it is related
to the Strominger—Vafa black hole [14] and one can construct black hole
solutions by taking quotients [5,15].

Checks of the AdS3/CFTy duality in this background focused so far
in comparing the moduli space [16], and the spectrum of both theories
[9,17-19], and to our knowledge no successful comparison of dynamical
quantities was performed yet, of the kind done in [20,21] for the N =4
SYM/AdS;5 x S° duality. In this paper, we make a step in that direction.
We show that the fusion rules and the structure constants of the entire
N = 2 chiral ring of the symmetric product, computed at the orbifold point,
agree precisely with computations in the AdSs x S3 x M* worldsheet. The
correlators for the AdSs factor are better studied in its Euclidean version,
the Hy = SL(2,C)/SU(2) WZW model, and to find complete agreement
with the boundary we should fix a free parameter in the H:}f WZW model
to a specific value. In this work, we consider only “unflowed” SL(2, R) rep-
resentations [22]. We also consider only M* =T for simplicity, but the
results can be easily extended to M* = K3.

This precise agreement is quite surprising because our computations in
the bulk are carried out at a point in the moduli space which does not
correspond in the boundary SCFT to the orbifold point of the symmetric
product. One expects that the latter has a boundary B-field turned on as
theta angles, whereas in the bulk theory the corresponding field is switched
off since there is no background RR field. To go from one to other would
require for example to turn on RR field in the bulk or twist fields in the
boundary. Our results suggest a non-renormalization of these correlators
analogous to what is found in the context of AdS;/CFTy4 even though we
have only half as much supersymmetry in our case. Clearly, it would be very
interesting to understand this agreement from general principles.

In the bulk, we express the chiral spectrum in the isospin variables (z, %)
and (y,y) of the SL(2, R) and SU(2) current algebras, respectively. This
basis makes for an easy comparison between the boundary and bulk corre-
lators and is also well suited for computing the tensor products required in
the construction of the chiral operators. A crucial point of the computation
is that all the factors in the three-point function of the H;r WZW model
which mix the quantum numbers of the three vertices, cancel against similar

factors from the SU(2) WZW model.!

!This cancelation was first observed in [23] in the related background SL(2, R)/U(1) x
SU(2)/U(1). A similar cancelation occurs in the product of the Liouville and minimal
models three-point functions [24,25].
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The outline of the paper is as follows. In Section 2 we review the spec-
trum, operators and correlators of the chiral sector of the symmetric prod-
uct of T*. In Section 3, we review the relevant aspects of the SL(2, R)
and SU(2) WZW models and the chiral spectrum in the AdSz x S x T*
worldsheet. In Section 4 we show how the fusion rules and structure con-
stants of the symmetric product are obtained from the string worldsheet.
Finally, in Section 5 we discuss possible directions for further explorations.
Appendix A contains a detailed derivation of the chiral states in the bulk
in the (z,z) — (y,y) basis. In Appendix B we elaborate on the relationship
between the three-point functions of the Hi and SU(2) WZW models in
order to better understand the cancelations between them. In particular,
we show how the conformal bootstrap method used in [26] for Hj can also
be applied to SU(2).

2 The chiral ring of the symmetric product

The boundary theory is a (4,4) SCFT on the moduli space of the sym-
metrized product Sym® (M%) of N copies of M* Here N = Q;Q5 for
M*=T* and N = Q:Qs+1 for M* = K3. For simplicity we consider
M* =T*, but these considerations generalize easily to M* = K3.

We work at a point in the moduli space of the theory where we can think
of Sym™(T*) as an orbifold (T%)" /Sy, where Sy is the symmetric group
action on N objects. Before orbifolding, the (7*)Y theory has 4N free
bosons qbil that coordinatize the space, with ¢ =1,2,3,4and I =1,..., N.
Their superpartners are 4N Majorana—Weyl fermions £¢. We will define the
complex combinations

1 ;A2 3 ;A4
xjp= T 0L 35%5 (2.1)

V2
V2

A= DY N (2.2)

The fields are normalized as
X8(2) X P (w) ~ —6%61 7 1og(z — w), (2.3)
A4 (2)AP (w) ~ 00017 . a,b=1,2. (2.4)

zZ—Ww
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These fields form a representation of the N = 4 superconformal algebra with
c = 6N, with generators

. . 1 1
T(z) = —0X) 9Xi — 5 AT oNG 4 5 AN 2g,

T = DR AR,

7= 5 OAE - b,

7= S OB ), (25)
o =va[ it Joxp e va] B Joxp

G =va| M oxt o+ va| M ] ox
- )\% I + _)\-][_ I

There is a similar antiholomorphic copy of all the fields and the algebra.
The global part of the SU(2) R-symmetry algebra J¢ along with the anti-
holomorphic SU(2) correspond to the SO(4) ~ SU(2) x SU(2) isometries of
the S3 factor in the bulk.

We will be interested in (¢, ¢) and (a, a) fields under an N = 2 subalgebra,
satisfying [27] o
A=Q, A=Q (2.6)

 A=-Q, A=-Q, (2
respectively, where A, A are the conformal dimensions and @, are the
charges under J3, J3.2

and

2.1 Chiral spectrum

The Hilbert space of the symmetric orbifold is the direct sum of twisted
sectors, each sector corresponding to a conjugacy class of Sy. The latter
can be represented by disjoint cyclic permutations of various lengths n;,

(n) M (ng)N2 ... (n,) N (2.8)

such that

i
Twisted sectors are thus classified by the various ways of partitioning the
integer N in terms of smaller integers. The full twist operator of a given

?In the standard normalization of the N = 2 subalgebra, the U(1) R-current is 2.J°.
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conjugacy class can then be built as Sy invariant combinations of the Z,,
twist operators that generate cycles of lengths n;.

Chiral states in a manifold are in correspondence with the elements of its
Dolbeault cohomology [28]. Under this correspondence, an element of HP?
corresponds to a chiral operator with chiral charge p on the left and ¢ on
the right. For a symmetric product of a manifold M*, the cohomology can
be expressed as a Fox space of free particles [29]. In the AdS/CFT context,
this acquires a physical meaning in terms of the number of particles in the
gravity side [9,17]. The first quantized spectrum of the symmetric product
corresponds to the second quantized spectrum of the string dual. Chiral
vertex operators representing BPS single particle states in first-quantized
string theory correspond in the boundary to chiral primaries in the conjugacy
class of a single Z,, cycle.

For a Z,, cycle, the generator of the orbifold group acts cyclically on the
fields { X7} for [ = 1,...,n taking X{ — X7, for I <nand Xj} — X{, and
similarly on the A\?’s. To analyze the twist fields, we can diagonalize this
cyclic action by defining the fields

1 & :
Yi(z) = —= Y e ?InXE a=1,2 (2.10)
\/ﬁlzl
a 1 & —2mill/nya
yi'(2) = %Ze PTG (2) (2.11)
I=1

for 1 =0,1,2,...,(n—1) . These fields are orthogonal,

Y (2) Y, (w) ~ =698, log(z — w), (2.12)
56,
a tb ~ im
v (w) ~ 20 (213)

Therefore we have 2n independent complex bosons and fermions with bound-
ary conditions

}/la(ze%ri) _ eQm’l/n}/la(z), (214)
4 (ze) = o2/ 2), (215)

For each field Y}*, with [ > 1, this sector is created by the action of a twist
field of', with conformal dimension A = ﬁ(l — %) [30]. For the fermions,
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we can bosonize them as
Byt = il (2.16)
By = e (2.17)

)=
=

: a b _ ab _ : : (il/n)F}
with F*(2)F,) (w) ~ —61,,0%° log(z — w), and their twist fields are e !

elil/ ")Fl2, with conformal dimension 71722 Collecting the factors for all the
fields, the n-cycle twist operator is

n—1
2(12“%) _ H Ull(z, 2)012(2,7 Z)e(il/")(le+le)e(”/”)(F12+F12)’ (2.18)
=1
where we have included also the antiholomorphic dependence. For each [ in

the above product, the conformal dimension of the twist fields is

A—A—2><L 1,1 +2><£—i (2.19)
LmeT 2n n 2n2  n’ ’

and therefore the conformal dimension of ¥(15...,,) is

A:A:ZAlzngl. (2.20)

=1

The charge of each factor, measured with
i n—1 1 N
1 2
T =3 > (0F +0F?) + 5 TR+, (2.21)
=0 I=n+1

is I

Q= o= Ay, (2.22)

so the total charge is Q = A = "771, and also Q = A = ”?71, and therefore
2 (12...n) is chiral—chiral. More generally, every chiral operator in T4 will give
a chiral operator in every twisted sector [29], and ¥(12..n) corresponds to
the identity field in 7%. The other (c,c) fields in each T* are, for the scalar

sector (no sum on 1),

MNAG, a,a=1,2, (2.23)

which have A = Q = A = Q = 1/2 and correspond to the four (1,1) forms
in 7%, and o

MAZALNZ (2.24)
which has A = Q = A = @ = 1 and corresponds to the (2,2) form in T%. In
each case, we should multiply ¥(;5...,y by a combination of the above chiral
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fields invariant under the cyclic permutation. But this last requirement is
not restrictive enough. It turns out that there is a 2-fold ambiguity in the
construction of the chiral operators. The first ambiguity is related to the
fact that both [5,31]

S(12em) P AN (2.25)
I

and [32]

% (12m) (Z Xz’) (Z X?) (2.26)
I I

are such that the fermions are invariant under the cyclic permutation. The
second ambiguity is the range of I in the above sums. In order to obtain an
operator invariant under X(q5...,,), one can sum over [ =1,..., N [5] or I =
1,...,n[32,33] (more generally one could sum over I = 1,...,m for m > n).
Similar ambiguities exist for operators built from the chiral fields (2.24).

Clearly each option leads to different correlation functions. If we sum
as in (2.26), then the fermionic contributions will be factorized into holo-
morphic and antiholomorphic contributions, which will not be the case in
(2.25). Regarding the range of the sum, if it runs over I =1,..., N, the
fermions will not only commute with X(5...,,), but also with the spin field
associated with any other cycle. As a consequence, correlators will factor-
ize into a trivial part involving the fermions, and a part involving 3 (1a...p,)
which will be universal for a given choice of Z,, cycles. On the other hand,
for I =1,...,n, the fermions will generally not commute with the spin fields
corresponding to other cycles, and correlators will depend on the operators
multiplying each twist field.

The comparison we perform in the next sections with the string theory
correlators shows that the correlators in the gravity dual are factorized into
holomorphic and antiholomorphic contributions, and they do depend on
the type of fermionic dressing of the twist fields. Therefore, the boundary
operators we should consider are

Zg(l)’go..).n) = Y(12..n) (2.27)
2&?’2?)%) = Y12.m) Y695, @ a=1,2, (2.28)
Sy = B2y WY T T (2.29)
S = S(zen)Bodt,  ete. (2.30)

where y§ was defined in (2.11) and g§ is its antiholomorphic counterpart.
The fact that these operators have the form (2.26) is natural from the point
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of view of the orbifold twisting, since the orbifold action on the fermions is
diagonalized in the y; (2.15), and the fields yy are neutral under the orbifold
action. In each twisted sector therefore the chiral fields can be constructed
from the twist fields and the yq, 7o fields which do not suffer any twisting.

Using these operators in the Z, sectors, the chiral primaries in the full
Sy orbifold theory can be constructed by symmetrization. Summing over
all permutations, we obtain, for n > 1, the final expressions for the scalar
chiral primaries

0,0 2\ (0,0) _
000 (3, z) = NIV — )12 Z S myh-1 (2,2), (2.31)
heSn
O™ (2, 2) = TICEIE Z zh(l (2,%), (2.32)
1
2,2 -\ (2,2) _
022 (2, z) = ICEESTONE Z zh(L mn1(72); (2.33)
heSn

and similar expressions for non-scalar operators. The corresponding antichi-
ral fields are obtained by conjugation and the prefactors are fixed by nor-
malizing as [32]

(0LD1(00) 0L (0)) = (0P H(00) ORD(0)) =1,  (2.34)
(0L 1(00) OV (0)) = 520572, (2.35)

and similarly for non-scalar operators. For n = 1, the expressions (2.27) to
(2.30) are already normalized. To compare with the string theory computa-
tions, it will be useful to express n in terms of h defined as

n=2h—1. (2.36)

In terms of the variable h, the quantum numbers of the three families of
chiral operators can be summarized in the following table:

Field A =@ Rangeof A
oY h-1 o0, N1

. =
o h—1/2 L1, %
oF?  n 1,3, N

The form (2.18) for X(y5...,) was useful to find its quantum numbers, but it
is not useful to compute correlation functions of twist fields corresponding
to cycles which have a partial overlap.
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Correlators of twist fields in symmetric products were studied by different
authors along complementary lines . The works [34, 35], using the path

integral formalism, computed correlators of fields Oﬁla’a) with only «,a =
0,2, but considered all the elements of the SU(2) multiplet of the N =4
algebra, of which our N = 2 chiral and antichiral fields correspond to the
highest and lowest J$ eigenvalue.

On the other hand, the work [32], whose results we will mostly use in
this paper, applied the conformal bootstrap to the results of [36,37] and
computed the structure constants of all the N = 2 chiral ring, i.e., all the

operators 07({1’07) with o, @ =0, a,2.3

2.2 Fusion rules and structure constants

The chiral ring is defined by its fusion rules and its structure constants. The
scalar sector of the (¢, ¢) ring can be shown to be closed, and its fusion rules
are [32]

(0,0) x (0,0) = (0,0) + (2,2),

(0,0) x (2,2) = (2,2),

(0,0) x (a,a) = (a, a), (2.37)
(a,a) X (a,a) = (2,2),

where the length n of the cycle of each operator should be such that the chiral
charge is conserved. Therefore, there are five non-zero structure constants,
given by [32]4

n+k—1)3 1/2
n+k—1 n . ’

(00O 000 500y _ p(N,n, ) [( ’
n

(N —(n+k)+3) 1/2
(N—(n+k)+2)nk(n+k—3) ’

(O 0 00 = P |

3Tt would be interesting to study the chiral correlators of the symmetric product with
the topological field theory techniques used in [38] for abelian orbifolds.

4The expression in [32] for the second correlator in (2.38) has an additional factor of 2
which was corrected in [35].
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r 3 1/2
221 500 H22)y _ p(N o~
<On+k—10k O0,7) (N,n, k) k(n+k—1) ’

] ) : ST R
<O(a,a)T 01(60,0) O,(lb’b)> _ F(N, n, k) n (n +k 1):| 5(1(;6ab7

r 1/2
< n+k—1 "k n > ( y 1, ) (n—i—k:—l) § é ) ( )

where

(N —n)l (N —k)! 12
(N—(n+k— 1))!N!] ’

g:(‘l) é) (2.40)

and the operators were set at z =z = 0,1, co. All these correlators assume
n,k > 1, and in each case it can be checked that the chiral charge is con-
served.

F(N,n, k) = [ (2.39)

Both the fusion rules and the correlators are easily extended to the non-
scalar sector. From the analysis in [32], it follows that the process (0,0) x
(0,0) — (2,2) can only occur simultaneously in the holomorphic and anti-
holomorphic sector, but the other four processes in (2.37) can be combined
independently among themselves. Moreover, for these cases, the structure
constants are completely factorized into holomorphic and antiholomorphic
contributions and are given by multiplying pairwise the square roots of the
structure constants of (2.38). Thus the chiral ring is fully characterized by
1+ 4 x 4 =17 structure constants. It can also be shown that the (¢, a) ring
has the same fusion rules and structure constants of the (c, ¢) ring.

To compare with the bulk tree level computations, we fix the charges and
take N — oco. We also change the labels n, k and express them in terms of
h172 as

n=2h; —1, (2.41)
k= 2hy — 1. (2.42)

Using

1\ 1/2
lim F(N,n,k) = (N) , (2.43)

N—o0
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the tree level chiral structure constants become

1/2 3 1/2
(0,0) T ~(0,0) 50,0, _ ( 1 (2h3 — 1)
1/2 1 1/2
(22) 1 5(0,0) 50,0, _ (1 1
On,™ OO ) = <N) | (2h1 — 1)(2hy — 1)(2h3 — 1)]  (245)
1/2 1 3 S1/2
22)1~00) H22), _ (1 (2h — 1) o4
<Oh3 th Ohl > - <N> _(2h2 _ 1)(2h3 _ 1)- ) ( . 6)

_ 1/2 r 11/2 ~
(@a)t 0,0 by _ (1 (2h1 — 1)(2h3 — 1) ab sab
(02770, 0" = <N> B §5abgab. (2.47)

_ 1/2 1 11/2 ~
(22) T H(aa) H00)y _ (1 (2h1 — 1)(2he — 1) abeab
(O™ O, Op ) = < N) G| & @)

where h3 is fixed from the conservation of U(1l) R-charge, and is given
by hs = hy 4+ hg — 2 for (2.45) and by hg = h; + hg — 1 for the other cases.
The fusion rules and these simple factorized formulae for the structure con-
stants can be reproduced by a completely different worldsheet calculation
in the string theory dual as we show below.

3 The AdS; x S3 x T* worldsheet theory

The supersymmetric SL(2, R); model has symmetries generated by the
supercurrents ¥ + 0J4, A =1,2,3. Their OPEs are

k, AB iGAB C w
TA2)TB (w) ~ (222 e ZC_Jw( ), (3.1)
T8 () ), (52)
EnAB
VA" (w) ~ I, (3:3)

where €22 =1 and capital letter indices are raised and lowered with

N8 =nap = (+ + —). Similarly, the supersymmetric SU(2); model has
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supercurrents x* + 0K% a =1,2,3, with OPEs

k sab ie® K<(w
K%(2)K®(w) ~ (22_5 )2 Zii ) (3.4)
K2 ) ~ ), 35)
@5&1)
X (2 (w) ~ 2, (3.6)

and lower case indices are raised and lowered with 6% = 6,5 = (+, +, +).
We will often use the linear combinations

JE=J 102, gt =9t + i,
KT =K'+iK? yt=x'+ix%

As usual in supersymmetric WZW models, it is convenient to split the
JA, K® currents into

T =4+ 54 (3.9)
K% = k% + k%, (3.10)
where
= —%eABcw%C, (3.11)
k= _%EachbXC- (3.12)

The currents j* and k% generate bosonic SL(2, R) and SU(2) affine algebra
at levels k 4 2 and k — 2, respectively, and commute with the free fermions
YA, x*. The latter in turn form a pair of supersymmetric SL(2, R) and
SU(2) models at levels —2 and +2, whose bosonic currents are 74 and k°.
The spectrum and the interactions of the original level k& supersymmetric
WZW models are factorized into the bosonic WZW models and the free
fermions. In terms of the split currents the stress tensor and supercurrent
of the worldsheet theory are

1 1 1 1

T = i%a— 0" 00a+ oK ka — X Oxa + T(TY), (3.13)
T_2A~ %123 gAk_%123 TT4 14
F—k(¢JA+kwww)+k(X A kxxx)Jr r(T%), (3.14)

and one can check that the central charge adds up to ¢ = 15. Let us see now
some specifics of the SL(2, R) and SU(2) models separately.
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3.1 The SL(2, R) model: currents and observables
A primary field of spin h in the SL(2, R);+2 WZW model satisfies

DA, (z, 5w, W
) B, 75w, @) ~ — D 2T T WD) (3.15)

zZ— W

where the operators D2 are

D, = d,, (3.16)
D3 =20, + h, (3.17)
D} = 220, + 2hx, (3.18)

and there is a similar antiholomorphic copy. We will sometimes omit writing
explicitly the antiholomorphic dependence of the operators. The conformal
dimension of ®;(z,; 2, 2) is

- h(h—1
Ap=Ap = —(k>, (3.19)
and it can be expanded in modes as
Op(2,7) =Y Bpmma T, (3.20)

but the range of the summation is not always well defined [12]. Yet, the
action of the zero modes of the currents on ®y, ,, » is well defined and can
be read from (3.15) to be

30®hmm = MPh s (3.21)
35 Phaman = (m F (h— 1)) ®p s 1, (3.22)

and similarly for the antiholomorphic currents. In this work, we will mostly
use the (x,Z) basis. These variables are interpreted as the local coordinates
of the two-dimensional conformal field theory living in the boundary of AdSs.

The spectrum of the bosonic SL(2, R);12 was obtained in [22] and con-
sists of delta-normalizable continuous representations, with h = % +¢R and
m=a+Z(a € |0,1)), and non-normalizable discrete highest/lowest weight
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representations, with h € R obeying

1 k+1

—<h<— 3.23

5 <h<—— (3.23)
and m=~h,h+1,... (lowest weight) or m = —h,—h —1,... (highest
weight). Along with these unflowed representations, one should include the
states generated from them by spectral flow [22], which will be treated in [39].

The bound (3.23) on h is slightly stricter than the bound 0 < h < k/2 + 1
needed for the no-ghost theorem to hold [40-47]. The stricter bound is
required for the normalizability of the primary operators [48], and its two
ends are consistent with the spectral flow symmetry, which relates a highest
weight representation with spin h to a lowest weight representation with
spin k/2+ 1 — h [22].

Expressions similar to (3.15) hold also for the total currents J4 and the
fermionic currents 74 of the decomposition (3.9). We will use the letters h,
h and H to denote the SL(2, R) spins associated to the currents 74, j4 and

JA. In particular, H is the conformal dimension of a field ®(z,Z) in the
dual CFT [10].

The OPEs like (3.15) between the currents J4 and a field ®5 () can be
expressed in a compact way by means of the current

J(z;2) = =T (2) + 22J3(2) — 2% T (2) (3.24)

as

1

Z—w

(21 — 22)%0y, — 2H (21 — z2)| Pp(z;w).

(3.25)
Similarly, the OPEs (3.1) between the currents J4 can be also expressed
through J(z, z) as

J(x1;2)P g (z2; W) ~

J(x1;2)J (225 w) ~ km
o _1 " [(z1 — 19)20, + 2(x1 — x2)]| J (w25 w), (3.26)

and from here we see that J(z;z) is not an SL(2, R) primary due to the first
term. On the other hand, its superpartner,

U(w;2) = =97 (2) + 209°(2) — 2% (2), (3.27)



424 ATISH DABHOLKAR AND ARI PAKMAN

satisfies

1

Z— W

J(z1; 2)Y (225 w) ~ [(x1 — 22)%0p, + 2(21 — 22)] Y(225w),  (3.28)

which follows from (3.2). Comparing with (3.25), we see that the field
¥(x;2) is an SL(2, R) primary with H = h = —1. It will appear below in
the construction of the chiral operators.

As in (3.9), the current J(z;z) can be split into purely bosonic and
fermionic terms as

J(z;2) = j(z;2) + )(2; 2), (3.29)
where
Masz) = =51 (2) + 225 (2) — 2?5 (2), (3.30)

and j(z; 2) is similarly expressed in terms of j4.

3.2 The SU(2) model: currents and observables

The bosonic SU(2);_o WZW model has primaries Vj,, » with m,m =
—J,...,+7j, and the spin j is bounded by [49, 50]

k—2
0<j<—— (3.31)
The conformal dimension of Vj , s is
) (i1
A:A:J(J; ). (3.32)

Similarly to the x, Z variables of the SL(2, R) model, isospin coordinates y, y
can be introduced for SU(2) [49], and the primaries are summed into

j
Viw:9) = D Vimmy "y, (3:33)
m=—j
The action of the k£ currents on V;(y; z) is

KV (g ) ~ I ) (3.34)

zZ—Ww
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where the differential operators

Py = -0, (3.35)
P} =ydy, — j, (3.36)
Pl =40, — 2jy, (3.37)

are the SU(2) counterparts of D2, and there is a similar antiholomorphic

copy. The action of the zero modes of k% on Vj, s can be read from (3.34)
to be

ko Vimm = mVim,m, (3.38)
kg Vimm = (Em+ 1+ §)Vimsrm  (m # £5) (3.39)
ko Vigan = kg Vi—jm = 0, (3.40)

and similarly for 12:8. There are similar expressions for ke and K ¢ and we
will denote by 7, 7 and J the spins associated to k%, k* and K®. Defining

now the current

K(y;2) = =K (2) + 2y K> (2) + v’ K~ (2), (3.41)

the OPEs (3.4) and the K® version of (3.34) can be expressed as

K (y1; 2)K (y2; w) ~ —km
+ > _1 w [(y1 — ¥2)0ys + 2(y1 — y2)] K (y2;w),  (3.42)
1

K(y1;2)Vy(y2;w) ~ P— [(y1 — ¥2)?0y, +2J (1 — y2)] Vi (y2;w). (3.43)
The superpartner of K (y),

X(W;2) = =xT(2) + 2ux° (2) + ¥*x " (2), (3.44)

is an SU(2) primary field of spin J = j = 1, which satisfies

K3 (0 0) ~ —— [ — 120y + 200 — )] xlaiw)  (3.45)

and will appear in the chiral operators below.
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Finally, the current K (y) can be split as
K(y; 2) = k(y; 2) + k(y; 2), (3.46)

where

~

Ry 2) = —kT(2) + 29k°(2) + 5 (2), (3.47)
and k(y; z) is similarly expressed in terms of k®.

3.3 Ramond sector

It is convenient to consider the Ramond sector of the SL(2, R) and SU(2)
models together. For this, let us bosonize the ¥4, y® fermions as

2
OH, = %wwl, (3.48)
2
OHy = %XQXI, (3.49)
2
OH3 = Ez’zp?’x?’. (3.50)
We normalize the four fermions of T4, 0%, i =1,...,4, as
. ; 54
¢ ~ .0l
e w) ~ (351)
and they can be bosonized as
OH, = n’nt, (3.52)
OHs = n'n?’. (3.53)
All bosons are normalized as
H;i(z)Hj(w) ~ —d;5log(z — w). (3.54)

In order to get the correct anticommutation among the fermions in their
bosonized form, we should also introduce proper cocycles [51]. For that, we
first define the number operators

N =i f O, (3.55)

and then work in terms of bosons redefined as

Hy=H;+7» Nj (3.56)

J<t
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The fermions are expressed in terms of H; as

oTif1 _ M’ oTifl2 _ M7 oTifls _ Mj (3.57)

vk vk VE
co, _ M EW g, Ein!
e =—— &€ =—, (3.58)
V2 V2
and the cocycles pick the right signs using the relation
laN; gibHj — gibHjgiaNjgiab = 5 — 9 4 (3.59)

The Ramond ground state is created by acting on the vacuum with the spin
fields

S(z) = e/2xreitln, (3.60)
where e; = £1, and the GSO projection imposes the mutual locality condi-
tion

5
[[e:=+1 (3.61)
I=1

In particular, the spin fields are used to build the spacetime supercharges as

Q= 7{ dze 9/25(z). (3.62)

BRST invariance imposes on the supercharges a constraint which is not
present in flat space [10]. Commutation of ) with the BRST charge requires
that no (z — w)~3/? singularities appear in the OPE between the supercur-
rent Tp and S. Let us express Tp in (3.14) as

Ty = Tg + Th + Tp(TY), (3.63)
where
TS = 1 e+iﬁ1j— 4 e—iﬁ1j+ + <e+iﬁ3 _ e—iﬁs) 43
vk ) ) ) ) (3.64)
+ eTiHzp= 4 gmiH2p+ (e“H‘“’ + e*"H3) kﬂ
and

Ty (i0Hy — idH1)e 2 + ({10, + iaﬁl)eﬂﬁﬂ . (3.65)

_ 1
- Vk
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Using these expressions, it is easy to check that to avoid (z — w)~3/2 singu-

larities in the OPE between T g and S, we must impose the constraint

3

[[er=+1. (3.66)

I=1

Equations (3.61) and (3.66) imply that eqe5 = +1 in S(z), and leave a total
of eight supercharges, which correspond to the eight supercharges of the
global N = 4 superconformal algebra in the boundary theory [10].

The currents are expressed in terms of the H; bosons as

7 =i0H,, (3.67)
jﬂ: — ieiigl (efiﬁg _ e+iﬁ[3) , (368)
k® = i0H>, (3.69)
= etifte (e7ifls o tifly) (3.70)

The spin fields provide two (%, %) representations of the 74, k* currents, with

opposite six-dimensional chirality. Defining

S| _ eile/2)H +i(52/2)ﬁ2+i(53/2)ﬁ37 (3.71)

€1,€2,€3]

then the (%, %) representation with ejeses = +1 is given by
’61762>+ = (_1)(1761)/2(i)(liez)/25[61,e2,e1e2]|O> (372)
and that with €jegez = —1 is

|€17 62)— = (i)(1762)/2s[€1,62,*6162] ‘O> (373>

In both cases the zero modes of the currents act as
A 01 o 0 0
a-(4 ) 5-(80) 5-(5). o
- A 0 1 A 0 0
k(?)):< )a k0:<0 0>7 k[):(l 0)7 (3'75)

and the phases that come from the cocycles in S|, , ] are crucial to obtain

11
272

O O
N O N O

these results. Given a ( ) representation, the linear combination

S(a,y)|0) = zy| — =) +x[ =) +yl+ )+ |+ +) (3.76)
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is a well defined primary in the (z,y) basis for SL(2, R) and SU(2), with
H=h=-1/2 and J = j = 1/2. For each chirality, the explicit expressions
of S(x,y) are

SHT(x,y) = —ayiS__y) — xS ) + YiS——) + S+ (3.77)
S~ (.17, y) = +$yZS[___] + l’S[__;'__H + yZ.SH___H + S[++_]. (378)
In the table below we summarize the properties of the fields ¢ (x), x(y) and
SE(z,y), defined in (3.27), (3.44) and (3.77) and (3.78). They all belong to

the Hilbert space of the free fermions and will play an important role below
in the construction of the chiral operators.

Field h 7 Sector Expansion
V() -1  — NS —¢t 42293 — 2%y~
x(y) — 1 NS —xTH2yd i

Si(x,y) -1/2 1/2 R FryiS—_4) F S 43 + YiS4—5) + 444

3.4 Spectrum of chiral operators

Chiral operators belong to SU(2) multiplets which satisfy
H=J (3.79)

A chiral (antichiral) operator corresponds to the state with K§ eigenvalue
M =J (M = —J), but it will be convenient to keep the whole SU(2) multi-
plet to compute the correlators. The spectrum of physical chiral operators
in the worldsheet of the bulk theory was obtained in [18] in the m, m basis.
In Appendix A, we rederive it in the x, T basis, which is more appropriate
for the computation of correlation functions.

The result is that all the chiral operators are built from the basic k — 1

operators
3 k
Oh(l’,y) Eq)h(ll?)Vh_l(y), hzlaﬁv"'a§7
where ®p,(x) and Vj,_1(y) are primaries of the bosonic SL(2, R);42 and
SU(2)i—2 models. Note that A(Op(x,y)) = 0 and that the operators cover
the whole range of k — 1 values for j = h — 1 allowed by the SU(2) bound

(3.31).

(3.80)

In the holomorphic sector, there are three families of chiral operators. In
the —1 (—1/2) picture of the NS (R) sector, they are obtained by multiplying



430 ATISH DABHOLKAR AND ARI PAKMAN

On(z,y) by any of the operators e~y (z), e ®x(y) or e*¢/2s‘l(:ﬁ,y) (a =
1,2), where
sk (z,y) = 5% (a,y)e (/D H—1), (3.81)
$2(2,y) = 5% (2, y)e~(/DH—1), (3.82)
and ¢ comes from the bosonization of the 5 — v ghosts [52]. We will use a

tilde (7) to denote the representation of the operators in the 0 and —3/2
pictures. We summarize the holomorphic spectrum in the following table:?

Op. Pic. Expansion H=J NSR Range of H
Op -1 e ?0(z,y)(2)
Oh 0 ((1=h)jx) +j(x)
+ 20(z)xaPy) On(z,y)
0r  —3 e 920 (z,y)s" (x,y)
Oy -3 —Vk(2h-1)"1
e IR0 (x, y)s% (2, y)
Of  —1 e ?On(z,y)x(y)
o; 0 (hk( )+ k(y)
ixX(W)YaDy') Op(w,y)

h=j+1 NS 1,3,....k

The antiholomorphic part of the operators is fixed by multiplying by an
antiholomorphic field e=?1(z), e ?x(j) or e ?/25% (z,7). The full chiral
operators have then the form

O = =400y (x, 2, y, 1) v(x) X () (3.83)

and so on, giving a total of nine families, whose spectrum and degeneracies
can be compared [18] with the KK modes of supergravity computed in [17,

53]. The scalar sector is composed by (’);LO’O) , Oéa,a) and (’)22’2).

As was studied in [54], the chiral operators are also chiral with respect to
the N = 2 superconformal symmetry of the worldsheet.

The labeling of the operators makes explicit the bulk-boundary dictio-
nary we propose in this work. This dictionary is based on matching the
lowest conformal dimension in each family, and in the degeneracy in the

5The correspondence with the notation in [18] is W;,_, « 0%, X,7 | < O3, VE |« Of.
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indices (a,a), which correspond both in the bulk and the boundary to the
elements of H(LD(T4).

Special mention deserves the h = 1 operator in the O}(lo’o) family, which
does not seem to have a counterpart in the boundary. In the zero picture it is

O = j(2)j (@) ®pr (2, 7). (3.84)

It has conformal dimension zero in the boundary, and appears in the central
extension of the boundary symmetries built from the string worldsheet [12].
But it fails to behave as the identity in a correlator, since its insertion in
an n-point function does not give the (n — 1)-point function, as we will see
below for n = 3. Several properties of this operator were studied in [55].

Assuming Q)5 = k, the number of operators in each family in the bulk is
Q5 — 1, less than the N = Q1Q5 operators in the boundary. Even though
this will not prevent us from performing a successful comparison of the
correlators for those operators present both in the bulk and in the boundary,
a few words on this point are in order.

A complete treatment of the SL(2, R) WZW model must include the spec-
trally flowed representations of SL(2, R) [22], to be considered in [39].5 But
including them leads to an infinite number of chiral operators in the bulk.
A resolution to this problem was proposed in [19,62]. The idea is that the
spectral flow parameter w, which in perturbation theory spans all the inte-
gers, should be restricted to 0 < w < Q1 — 1. This “stringy exclusion prin-
ciple” [9] is not seen in the worldsheet because the six-dimensional string
coupling is [10]

2_ @5

96 - Ql’
so string perturbation theory needs @)1 > 1. With this prescription, there
are @Q1(k — 1) operators in the bulk and the missing @); operators can be
explained away along the lines of [61].7

(3.85)

Given this split between ()1 and Q5 for the quantum numbers in the
string side, it was further suggested in [19] that the boundary theory is more

5These representations are necessary in order to obtain a modular invariant partition
function [56,57] (see also [58,59]), to ensure that the spacetime energy does not have an
unphysical upper bound, and to properly account for the states corresponding to the long
string excitations [60,61].

"It was argued in [63] that in the plane wave limit that the missing chiral operators
appear in the continuous representations of SL(2, R). Notice that if we would identify
Qs = k — 1 there would be no operators missing. This shift is allowed in the large Qs
limit needed for supergravity to be valid.
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naturally identified as a deformation of the iterated symmetric product
Sym®! (Sme5(M4)) . (3.86)

In this setting, the computations of this paper for the w = 0 sector in the
bulk would correspond to the identity sector in Sym®:.

4 Three-point correlation functions
4.1 The basic cancelation

Since the basic building block of all the chiral operators is the field Oy (z,y) =
Oy (2)Vi—1(y), any three-point correlator among them will involve the
value of

(O (21,y1)Ony (22, Y2) Ons (73, y3)), (4.1)
which is the product of

<(I>h1 ($1, fl)q)ha (1‘27 jQ)(I)hg (x3a f3)>

_ Crr(ha, ha, hs) (42)
- |C512 |2h1+2h2—2h3 ‘x23 |2h2+2h3—2h1 ’3331 ’2h3+2h1—2h2

and
(Vi (Y1, 1) Vs (2, 52) Vs (43, §3)) = Cs(j1, jz, js) [y | 227258
% ‘y23|2j2+2j3—2j1 |y31|2j3+2j1—2j2

(4.3)
evaluated at
Jji=hi—1 (i=1,2,3). (4.4)

Equation (4.1) has no dependence on the z;’s because A(O}) = 0, and for
(4.2) and (4.3) the dependence on the z;’s is standard and we have omitted it.

The expressions Cy(hi, he, hs) and Cs(j1, j2, j3) are the three-point func-
tions of the Hy and SU(2) WZW models at levels k + 2 and k — 2, respec-
tively. For the SU(2) case, they are [49]

3 .
P(j — 2j;)
Cs(j1, j2, P(j+1) (4D
(.71 .]2 j3 317]27]3\/7 j H P 2]1 '7((231 + 1)b2) ( )
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where
J=J1+Jj2+Jjs (4.6)
b=1/Vk, (4.7)
V(z) = r(rﬁ)x) (4.8)

The function P(s) is defined for s a non-negative integer as
S
=[[~(n*), P)=1, (4.9)

and the coefficients Nj, j, j, are the SU(2);_2 fusion rules:
1 for k — 2 > j1 + jo + j3 > max(2j1, 2j2, 2J3),

Nj17j2,j3 = and ji + j2 + j3 = 0 mod 2, (4.10)
0 otherwise.

For the H; model, the three-point functions are [26,64]® (see also [65-71])

14262 3 B
Cu(hy, ha, h3) = — b T0) [yb2b2]*h+1 H T (2bh; — b)

2m2y(1 4 v?) -1 T(b(h — 2h;) )’
(4.11)
where
h = hy + ho + hs, (4.12)

and the function Y, introduced in [72], is related to the Barnes double
gamma function and can be defined by

log T(z) = /Ooodt [<Q _x)Qe—t sinb?(§ — 2)3) | (4.13)

bt [
t 2 sinh % sinh 5

The integral converges in the strip 0 < Re(z) < . Outside this range it is
defined by the relations

T(z+b) =027 (ba) Y (z), Y(x+41/b) =b 22/ (2/b)Y (z). (4.14)

8We use the normalization of [64].
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The two-point functions for delta-normalizable states (with h = % +ip,p €
R) can be obtained by taking one of the operators to be the identity and gives

<¢'h:1/2+ip<$1)(ph/:1/2+ip’ (z2))

= W (@ o4 (21) Pz j2 iy (22) Pe(233)) (4.15)
1 B(h)

—— = [s® _ / _

1P (5 (z1 —22)0(p+p) + |$12|4h5(p p)> : (4.16)
where
1/72h+1 )
B(h) = — 1—b2(2h — 1)). 4.1

(h) - ( ( ) (4.17)

To obtain (4.16) from (4.11) one should use that
Y(e) ~ €Y (b), (4.18)

which follows from (4.14), and the distributional limits

. €

o e = o), (4.19)
@

lim [2]~2+2 = 7 (%) (4.20)

e—0 €

After taking the limit (4.15), the resulting expression can be analytically
continued to non-normalizable states. The overall constant in Cy (4.11) is
not determined by the functional equations of the conformal bootstrap (see
Appendix B), and is fixed by requiring the coefficient of the first term in
(4.16) to be 1.

The parameter v is free in the H; WZW model. It is not a parameter
of the action, which only depends on the level &k, but rather of the vertex
operators, and in the conformal bootstrap is left undetermined by the cross-
ing symmetry (see Appendix B). In the interacting theory, vertex operators
are the sum of an incoming and an outgoing wave, and v appears in the
reflection coefficient between these two terms.? 1In [64] it was proposed to

9In the free field realization of the theory, v does appear in the action multiplying
the interaction term [10], because the latter is used to transform the vertex operators
of the free theory into those of the interacting theory, via insertion of screening charges
in the correlators. The value of v is also related to the dilaton in AdSs [55].
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fix v by demanding that the constant

_wl(1—b%)
Cy = m, (421)
which appears in the OPE
B (21)Pp(x2) ~ .0 (21 — 39) D (w2), (4.22)

be set to ¢, = 1. We leave v undetermined for the moment, and it will
be fixed below holographically by comparing the bulk and the boundary
correlators.

We will evaluate the expression (4.11) for Cy at values of h; such that
2h; and h are non-negative integers. For these values, equation (4.11) can
be expressed in terms of P(s), defined in (4.9), by means of the identity

_ X(sb+b) s((s41p2-1)
PG)= g7t , (4.23)

which is easily verified by iterating s times the first equation in (4.14). We
get thus

—h+1 3 _
Cra(ha, ha, hs) = _27722(1%2) P(hl_ 511 P(]:L(i’}; 3)1). (4.24)
We are interested in the product
C(h1, ha, h3) = Cu(hi, he, hg)Cs(h1 — 1,hg — 1, hz — 1), (4.25)
which, from (4.5) and (4.24) is equal to
y—h+1 3

C(h1,h2,h3) = Npy—1,hy—1,hs—1 4.26)

1
27r2b4\/WiHl v(®2(2h; — 1)) (

This expression has the remarkable property that the four P(s)’s, in Cg
and Cp that depend on more than one of the h;’s have canceled against
each other. In particular, the poles of Cy that appear at particular linear
combinations of several h;’s, whose physical meaning was analyzed in [73],
have disappeared. This cancelation of the structure constants follows from
the close relationship between SU(2) and H; structure constants, which
we explore further in Appendix B. Note that the remaining h;-dependent
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factors can be absorbed by rescaling the Oy, operators, as we will do below
when normalizing the chiral operators.

Finally, note that (O, Op,Op,) is independent of z;, Z;, again due to a can-
celation between the dependence on z;, Z; of the two factors (4.2) and (4.3).

4.2 Three-point correlators of chiral multiplets

Now that we have the correlation function of three Op(z,y)’s, in order to
compute the three-point function of the chiral SU(2) multiplet we only need
to add factors involving the fermions, spin fields and current algebra descen-
dants. To illustrate the steps involved, let us compute in detail the following
correlator

(cé(’),(g’o) cEO}(g’O) cé(’jggo) ) (4.27)

where the pictures have been chosen so that the total picture number adds
up to —2. This correlator will be proportional to C'(hy, ha, h3), but we are
interested in the precise prefactor. The last term in (A.15) of the zero
picture vertex @,(L(;’O) can be discarded in this particular correlator since

(Xa) = (Xa) = 0. For the computation we need to use

2
(s 2 (s 22)) =k<21f; , (1.28)
and
(15 20 )b (wa; 20)j(w3; 23)) = fzk% (4.29)
which follows from
-k _ABC
(A (21 )P (22)5C (23)) = 22— (4.30)
2137223

We also need the value of (O, O, j(23)Op,), where normal order implies

J(23)Ony (23) = (—iF) + 2235 — 235 71) O, (23). (4.31)

The correlation functions of these current algebra descendants can be
expressed in terms of correlators of the primaries by combining the Ward
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identity

4 . oy N~ D ) .
(T (W) Pp, (w15 21) - - - Pry (35 23)) Z (Pp, (w15 21) - - Pry (235 23))

w — z;
=1 ¢

(4.32)
with the OPE

D¢
- A T3 - A
w)Pp, (3;23) ~ — D, (235 23) + 72, Pp. (235 2
J ( ) hs( 3 3) w 2 hd( 3 3) J-1 hd( 3 3) (433)

4§ ®, (233 23) (w — 23) 4 - - -

Expanding the i = 1,2 denominators in (4.32) as (w — 2;) ™' = (23 — 2;) ™"
n
> (M> , equations (4.32) and (4.33) give

2i—23

A DA
(On, (21) Oy (22) 521 Oy (23)) = (Zf; + Z;;) (Oh, (21)Opy (22) Oy (3)),

(4.34)

and using now the dependence of (Op, On,Oh,) on z; given by (4.2), we
obtain

y4 o3
<Oh1 Oth(.’Eg)Oh3> = (_hl —ho + h3) L2 23731 <Oh1 Oh2 Oh3>. (4.35)
231223 T12

Note that although (O, Op,Op,) is independent of z;, z;, the above expres-
sion does depend on z;. Using

(c(z1)c(22)c(z3)) = 212223231, (4.36)

collecting all the terms, and including the antiholomorphic factors, we get
finally

(2O ccO 0 ceO V) = govak®(hy + hy + hy — 2)C(h1, hy, hs)

2H1+2H>—2H3 2H2+2H3—2H,
Y12 Y23

T12

Y31

T31

(4.37)

Z23
2H3+2H,—2H>

where we have included the correct power of gs = g; 2™ and the volume
vy of the T%. The other correlators are computed similarly, and in all the
cases holomorphic and antiholomorphic contributions factorize. Labeling
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the operators with a, @ = 0, a, 2, all the correlators have the form (we omit
the dependence on z;,y;, which is the same as above)

(cé(’)}(f:l ,a1) cé(’)ﬁf ,a2) cé(’),(g&%) )

(4.38)
= gsv4C (h1, ho, h3)g(hs; a1, oo, a3)g(hi; o, a, ai3)
with

g(hi; 0,0, 0) = k‘(—hl — h2 — hg + 2), (439)

g(hi;0,0,2) = k(—hy — ho 4+ h3 + 1), (4.40)

9(hi;0,2,2) = k(—hy + ha + h3), (4.41)

(hi; ) (4.43)

( ) (4.44)

and the results are independent of the picture chosen for the operators, as
long as the total picture number is —2.

4.3 Two-point functions

In order to compare the three-point functions of the bulk to those of the
symmetric product orbifold, operators of both sides should be equally nor-
malized. In the symmetric product, the normalization is given by (2.34)
and (2.35). To compute a two-point function in the string theory side, when
fixing two vertex operators in the sphere there is a zero coming from divid-
ing by the volume of the conformal group. This zero is canceled against
the divergence of the delta §(hy — hs) in the two-point function in the H3
WZW model (4.16), which can be interpreted as the volume of the Killing
group in the target space which leaves invariant the positions x1, 9 of the
two operators [12]. As we review now, the finite result of this cancellation
is h-dependent.

The string two-point function can be obtained, following [73] (see also
[23]), by exploiting the Ward identity for affine currents in the boundary
CFT. Given an holomorphic affine current K°(z) in the inner CFT of an
AdS3 compactification, it was shown in [12] that the vertex operator

K(2:2) =~ K*(2i(2)®1(2.9) (4.45)
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is the corresponding holomorphic affine current in the dual CFT, with ¢,
defined in (4.21) and (4.22). Note that it has the correct conformal dimen-
sions (A, A) = (1,1) in the bulk, and (H, H) = (1,0) in the boundary.

The Ward identity for the above current in the boundary CFT is

<CEK“($)(I)}1($1)Pl‘bh<$2)P2> = <x 311‘1 + . 32'%2) <(I)h({L'1)P1(I)h($2)P2>,
(4.46)

where the Pj 2 stand for the ghosts, fermions and operators of the internal
theory, and g1 = —¢o are the charges of P under K“%(z). Note that the
expression for K*(x; z) in (4.45) is in the zero picture, so that on both sides
of (4.46) the operators @y (z;)P;(i = 1,2) are in the same picture. The lhs of
(4.46) can be computed as we did in the previous subsection (see equation
(4.35)). Comparing the resulting expression with the rhs yields the string
theory two-point function

1 (2h—1)Cg(1,h,h)pi2
0] P o Py = ——— 4.4
(@ (1) PL®p(22) P2) . gl ; (4.47)

where pio is

p12 = (c(00)é(00) Pr(1)Pa(0)). (4.48)
There are no powers of g5 for the two-point functions. Note that
b2 _b2
ot n =22 g, (4.49)
2y

so the difference between the string theory two-point function (4.47) and
that of the Hj WZW model (4.16) is the factor (2h — 1), plus h-independent
factors.

Choosing the chiral operators so that the total picture is —2, we get, for
the scalar sector,

AH
(06020’0)65(920’0)> = (cEOf’z)céOf’m) = —c; k(2h — 1)C(1, h, h)vs iﬁ 7
12
(4.50)
a b . AH
(@O ceO) = —c; (2 — 1) O, b s | P21 ()
12

where we used Cy(1,h,h) = C(1,h,h). In the last line we have taken
into account the prefactor carried by the operators in the —3/2 picture
(see (A.28)).
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The (¢, ¢) elements of the N = 2 chiral ring are those operators with M =
M = J, where M, M are the eigenvalues of K3, K3. Similarly, the (a,a)
operators correspond to M = M = —.J. Therefore, we define the normalized
(¢, c) operators as (see the expansion (3.33))

0% = cc0*V (y = § = 0) [—;  k(2h — (1, h, b)) 7, (4.52)
02 = cc0PP(y =5 =0) [—c;k(2h —1)C(1, h,h)va] />, (4.53)
i

0\ = ccO\™ ) (y = 5 = 0) [~c;}(2h — 1)2C(1, h, hyvs] /2, (4.54)

and the (a,a) operators as

001 = tim |y~ 0™ (y, 5) [~¢; k(2h — 1)C(1, h, h)vs] ",

Y,y—00
(4.55)

and similarly for @22’2” and (O);La’a)T. Note that we have included the ghosts
cc in the definition. These operators are thus normalized as

1

0,0 0,0 2,2 2,2
©10[”) = @0 = (456)
- absab
Aadigbby _ 070 4
(0,10, P (4.57)

One can define similarly normalized operators for the non-scalar sector.

4.4 Fusion rules

Before computing the structure constants, let us see how the boundary fusion
rules (2.37) are obtained in the bulk. The chiral (antichiral) operator in each
SU(2) multiplet corresponds to M = J (M = —J). Therefore, conservation
of the U(1) R-charge, measured with K3, implies that the fusion

O}, X O, = [0}.] (4.58)
is possible only if
J3 = J1 + Jo. (4.59)
On the other hand,
Ji = Ji + Jis (4.60)

where j; = 0,1/2,1 for O°, 0% 02, respectively. Now, from the fusion rules
(4.10) it follows that
Js < Jj1+J2, (4.61)
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and therefore (4.59) implies!®
J3 =+ Ja. (4.62)

The equality corresponds to the four cases

(0) x (0) = (0),
(0) x (2) = (2),
(0) () = (a), (469
(a) x (a) = (2),
and the inequality to the case
(0) x (0) = (2). (4.64)

Note that operators of the Ramond sector appear in pairs. For the antiholo-
morphic quantum numbers we get similarly

73> 1+ Ja- (4.65)

For chiral operators we should combine both rules (4.62) and (4.65), taking
into account that the j; quantum numbers are the same for holomorphic and
antiholomorphic part. This implies that the four cases (4.63) can be freely
combined between holomorphic and antiholomorphic, and the case (4.64)
should be the same in the holomorphic and antiholomorphic sectors. These
are precisely the same fusion rules as in the boundary theory, associated to
the same 1 + 4 x 4 = 17 processes.

4.5 Structure constants

We have already all the elements to compute the structure constants of
the chiral ring. Consider first <@§L(;’O)T@§LOQ’O)@§3’O)>. From Hs = H; + H>
we get hg = h; + ha — 1. Plugging this into (4.37) and using (4.26), (4.52)
and (4.55) give

(000100000 _ 95 2 1/2 (2hs —1)3 1/2
ha he e D o Ny (14 12) (2h1 — 1)(2hs — 1)
(4.66)

The inequality (4.62) does not mean that there is a violation of the rules of SU(2)
tensor product for the k® algebra. Since the operators appear in different pictures, the
label 7; here only denotes the family to which an operator belongs, but not necessarily its
spin under k.
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where we have fixed x1 = 1 = 0,22 = Ty = 1,23 = T3 = 0o. In order to get
the prefactor N~/2 to agree with (2.44), we use that

IR - S G
VN  V@QiQs Q1Q5_g6Q5_ U1 Q5

and this fixes the value of v, which was the only free parameter in the ng
WZW model, as

(4.67)

27
V= ——————.
biy(1 + b2)
We are considering fixed Q5 but large Q1 so that the string coupling is small

and N is large. With this value for v, the other four scalar correlators are
computed similarly and are

(4.68)

(2,2) t (0,0) ~(0,0) 1\ 2T 1 1/2
(0,7 0, "0y,7) = (N) @hy —1)(2hs — 1)(2h3 — 1)] (4.69)
1/2 r 3 - 1/2
(22100722, _ (1 (2h1 — 1)
<©h3 @hg @hl > - (N) _(2h2 _ 1)(2h3 — 1)_ , (470)

_ 1/2 11/2 _
(@,a) (0,0 (8, _ [ L (2h1 — 1)(2h3 — 1) absab
(022100 = <N> 1| 50570 (4.71)

_ 1/2 1 11/2 -
(22) 1 glaa) by _ (1 (201 = 1)(2h2 = D |77 b pab
(0.7 "o 0"y = (N> -1 | & (4.72)

where in all the cases h3 is a obtained from hy2 using Hz = Hy + Hy. All
correlators coincide precisely with the boundary results (2.44) to (2.48). It
is immediate to extend the agreement to the 12 correlators of the non-scalar
sector, using the factorization of the structure constants into holomorphic
and antiholomorphic contributions, which holds both in the bulk and in the
boundary. Much like in the boundary, it is easy to see that the (¢, a) ring in
the bulk has the same fusion rules and structure constants as the (c, ) ring.

Contrary to the boundary correlators (2.44) to (2.47), the above bulk
correlators are defined for @gi)p but, as we mentioned above, the three-
point functions do not reduce to the two-point functions as would be for an

identity operator.

Given the different normalizations of the Oy, operators and the different
powers of k in (4.39) to (4.44), it is remarkable that the definition (4.68)
gives the correct prefactor in all the cases.

Note that the volume v, of the inner 7% disappears from the correlators
and from v, and we could have used gg from the beginning. This is consistent
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with the supergravity result that in the frame with NS-NS flux, the value
of vy is an arbitrary number not related to the value of 7% in the boundary
or to other parameters of the theory.

5 Discussion

The remarkable agreement between bulk and boundary quantities computed
at different points in moduli space begs for an explanation. A similar agree-
ment between the three-point correlators of N = 4 super Yang—Mills theory
and the dual AdSs x S% case [20,21] was explained by showing that two-
and three-point functions do not receive g%,, corrections [74-80]. We con-
jecture that a similar non-renormalization exists in our case, which should
be further investigated.

Another possibility, if we accept the model of the iterated structure (3.86),
is that the Zy twists which deform the orbifold [81] to the point where the
bulk string theory has NS-NS flux only are such that they only mix different
()1 copies but do not mix the Q)5 copies, and therefore the deformation is
not seen when considering unflowed SL(2, R) representations in the bulk.
To settle this question definitively more work is needed. In particular, it
would be useful to compute the correlators of spectrally flowed operators in
the bulk as well as the correlators in the iterated symmetric product in the
boundary. These computations would hopefully provide enough additional
information to arrive at the correct interpretation. We plan to return to
these questions in [39].

In other AdS,+1/CFT,, backgrounds with RR fields, bulk computations
are mostly limited to supergravity and it is not clear how to even begin
the computation of loop amplitudes. An important advantage of the AdSs/
CFT3 background with NS-NS flux considered here is that one has an exact
worldsheet description available for the bulk string theory. It is natural to
ask if the striking agreement found at tree level extends to higher loops.
Fortunately, exact answers for finite /N are available in the boundary. In the
bulk, quantum corrections to three-point correlators can in principle be com-
puted systematically by evaluating higher genus string amplitudes. It would
be very interesting to see if the technical tools can be developed sufficiently
to carry out such a comparison. We hope our results and further investiga-
tions will lead to a better understanding of the chiral sector of the theory
for finite N and also to more stringent tests of the gauge-string duality.

The cubic couplings of chiral primaries in this background have been
studied in the supergravity limit in [82-85], but no agreement was found
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with the boundary results. We believe our results might help to better
understand those computations.

More generally, it has been pointed out in the past that some aspects of
holography in this background follow a paradigm close to the matrix models
duals of non-critical strings [31]. The cancelations between the three-point
functions, similar to the minimal strings case, strengthen this idea. Note
that in our case the holographic correspondence does not involve legpole
factors. Moreover, a ground ring exists also in our background [54],!1 and
much like for non-critical strings, it might lead to an integrable structure
shared by the two holographic descriptions.

Note: Upon completion of this work, we learnt of the preprint [86], where
one of the five families of correlators discussed here has been computed
independently.
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A Derivation of the chiral spectrum in the bulk

In this appendix we will compute the spectrum of chiral operators of the bulk
theory [18] in the z,Z basis. Chiral operators belong to SU(2) multiplets

HThe existence of a ground ring in AdSs backgrounds is not in contradiction with the
vanishing theorem shown to hold in [46,47], which states that the cohomology of strings in
AdS3 backgrounds is concentrated at ghost number one (except for a few states at ghost
number zero). The reason is that the vanishing theorem assumes that the SL(2, R) spin
satisfies the bound (3.23), and the ground ring elements violate this bound.
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satisfying

H=. (A.1)
From (3.9) and (3.10), we see that the representations of JA, K@ arise as
tensor products of those of the bosonic currents j*, k% and the fermionic
currents 7 k:“ The latter have representations of spins h ,7=0,11in the NS
sector, and h = j = 1/2 in the R sector.

Since 2J € Z7, it follows from (A.1) that the SL(2, R) factor of a chiral
operator will belong to a discrete representation. States in the Hilbert space
of the bosonic SL(2, R) and SU(2) WZW models should then satisfy the
bounds (3.23) and (3.31),

<h<-——o (A.2)
k
<J< — (A.3)

A physical operator should also be BRST invariant and survive the GSO
projection. We will consider first the holomorphic spectrum, and afterwards
we will discuss its tensoring with the antiholomorphic sector.

A.1 Neveu—Schwarz sector

In this sector, commutation with the BRST charge implies two conditions.
Firstly, the vertex operator must be a Virasoro primary satisfying the mass
shell condition. In the —1 picture this is

hh—1) §G+1) hh+1) jG+1 1
A=— (k )+‘7(‘7; ) 4 (:)JFJ(JI )+AT‘|—N=2, (A.4)

where Ar > 0 corresponds to a primary of 7% or K3 that may appear in
the vertex operator, and NN is the level of possible excited states. Secondly,
there should be no double poles in the OPE between the vertex operator
and the supercurrent Tr. Let us consider the four different fz,j =0, 1 cases:

1. h=7=0
In this case H = h = j = J, and the mass shell condition is
2h 1
A= ?+AT+N_§ (A.5)

Since there are no fermions from SL(2, R) or SU(2), in order to survive
the GSO projection a fermion from the M* factor should be excited,
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with Ap = 1/2. This implies h = 0, which is forbidden by the bound
(A.2) on h. Thus there are no physical chiral operators in this sector.

h=1,7=0

In this case we have J = j, and the tensor product of h =1 with h
gives the representations H = h —1,h,h + 1. Let us consider each
one of the cases.

(a)

H=h+1=j5=J
In this case the mass shell condition is

A

4h+2 1 1
A +2+ T+ 5 (A.6)

and would require h < —1/2, which violates the bound (A.2) on h,
so there are no physical chiral operators from this sector.
H=h=j=J
The mass shell condition is

2h 1 1

A=—+4+-4+A N=—- A.

3 + 5 + A + 5 (A7)
and would require h < 0, which violates the bound (A.2) on h, so
there are no physical chiral operators from this sector either.
H=h-1=45=J
The mass shell condition is

1 1
A:0+§+AT+N:5 (A.8)

so it is satisfied by Ar = N = 0. In Section A.3 we work out the
details of the h — 1 representation coming from the tensor product
of the SL(2, R) bosonic representation of spin h and the fermionic
representation of spin 1. The result in the x-basis is just

®p(z)Y(2), (A.9)

where () is the fermionic SL(2, R) primary with h = —1 defined
in (3.27). The product of ¢(z) with ®,(x) has no singularities,
since ®j(x) is a primary of the purely bosonic currents j4. Let us
define the operator

On(7,y) = @n(2)Vh-1(y), (A.10)

and note that
A(On(a,)) = 0. (A.11)
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Then the chiral physical vertex operator is
Of) = e Oy (z,y)¥ (). (A.12)

By requiring the bounds (A.2) and (A.3) to be satisfied, we find
that there are k — 1 operators Oy, with h = 1, %, e % Finally, we
verify that in the OPE

Tr(2)On(z, y; w)(z;w) ~ (z —w)~* (DF — 22D} + 2°D;) Op(z, y; w)
‘o (Z_lw)
~o(4)

all the double poles cancel. Note that in flat space, this last con-
dition imposes on a vertex like & -1 e*X the polarization con-
straint £ -k = 0. Here the polarization is already fixed in (A.9)
by the SL(2, R) symmetry, in a way which is automatically BRST
invariant.

For the computation of the three-point functions we will need the
representation of this vertex operator in the 0 picture. Acting on
(’)2 with the picture-changing operator e?Tr we get

S

(A.13)

0% = (J0) + FuaDE + Fehal} ) Orlos) (A0
— (@= i)+ i)+ 2o} ) Onto). (A15)

where all the terms are normal ordered and in the second line we
have used equation (3.29) and the identity

Y(@)paD =~ hi(z). (A.16)

3. h=07=1
In this case we have H = h and J =j —1,j,j + 1. The analysis for
the three cases is similar to the h = 1,7 = 0 cases. The only physical
chiral operators correspond to H = h = j+ 1= J. Using the results
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of Section A.3 on the tensor product of spin j and spin 1 SU(2) repre-
sentations, the physical chiral vertex is given by

OF = e 2O (z,y)x(v), (A.17)

where x(y) is the fermionic SU(2) primary with j = 1 defined in (3.44).
The absence of double poles in the OPE of T with Op(z,y)x(y) is
verified similarly to (A.13), and the number of O? operators is again
k — 1, as the number of Oy (x,y) operators.

In the 0 picture, the operator is

Oj = (K(y) + %X(y)xaPy“ + 2x(y)wAD;“> On(z,y) (A.18)
_ (hz%<y> k) + ,ix(y)wADf) On(z.). (A.19)

where in the second line we have used (3.46) and the identity

X)Xl = 1ok () (4.20)

with j = h — 1.

4. h=j=1
For this case we have H =h —1,h,h+1 and J=5—1,5,7+ 1, so
there are nine sectors. One can check that in all the cases, the mass
shell condition

—1 (7 +1 1

A= MmN JUED Ly a2t (A.21)
k k 2

cannot be satisfied without violating the bound (A.2) on h or the

condition Ap > 0. So there are no chiral physical operators in these

sectors.

A.2 Ramond sector

The mass shell condition is now, in the —1/2 picture,

5 h(h—1) jG+1) 5
A_8 ’ + ? +AT+N_8, (A.22)

and in the Ramond sector j=h =1/2, so we have H =h+1/2 and J =
j£1/2. One can check that the mass shell condition is satisfied without
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violating the bound (A.2) on h, only by H=h—-1/2=j+1/2=J. As
shown in Section A.3, in the (x,y) basis, the tensor product corresponding
to this case is given simply by

P (2)Vi-1(y)S(2,y), (A.23)

where S(z,y) is the field defined in (3.76), and which can be realized in our
background in the two forms S*(x,) defined in (3.77) and (3.78). Includ-
ing the spin field for the T* factor, our candidates for the Ramond vertex
operators are

On(w, ) S*(, y)e /D cstlitestls). (A.24)

We should now check the BRST invariance of these operators, which in the
—1/2 picture implies the absence of (z — w)~3/2 singularities in their OPE
with Tr. Using the expressions (3.63) to (3.65) for T, it is easy to check
that the combination Op(z,y)S™ (z,y) is BRST invariant, due to a precise
cancelation between the coefficients of (z — w)~3/2 in its OPEs with T & and
Tg. On the other hand, Oy (z,y)S™(z,y) is not BRST invariant, since its
OPE with T}é has no (z — w)~%/2 singularities to cancel those arising in its
OPE with T&.12

The GSO projection (3.61) imposes the further constraint e;e; = —1, so
the physical chiral operators in the R sector are finally

Of = ¢ 2P0y (2, y)s" (v,y), a=1,2, (A.25)

where
sk(z,y) = St (x, y)et (/2D HiH) (A.26)
2 (2, y) = SE(x,y)e (/D Ha—15), (A.27)

In order to compute the two-point functions of O%, we will need their expres-
sions in the —3/2 picture, which are

Vk

NS

3020w, y) s (2, ). (A.28)
This expression can be checked to be correct by acting on it with the picture
raising operator e?Tp, which yields O¢ (only the term T in (3.63) has a
non-trivial action).

120ne can check that the coefficient of the (z — w)~3/2 singularity in the OPE between
Tg and Op(x,y)S™ (x,y) is zero only at h = 1/2. This lies at the boundary in the allowed
range (A.2) for h, where a discrete representation becomes a continuous one, but violates
the range (A.3) for j, since j =h—1=—-1/2.
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In summary, all the chiral operators are obtained, in the canonical —1/2,
—1 pictures, by multiplying the basic field Oy (x,y) defined in (A.10) by any
of the operators e=%4(z), e ?x(y) or e~%/2s% (x,y). The antiholomorphic
part of the operators is fixed by multiplying also by an antiholomorphic field
e~ %(z), e~ ?x(7) or e~ ?/25% (z,7).

A.3 Tensoring bosonic and fermionic representations of SL(2,R)
and SU(2)

In this section we will work out the tensor products between the bosonic and
fermionic representations of SL(2, R) and SU(2) that appear in the chiral
operators.

Let us first obtain the h — 1 representation appearing in the tensor prod-
uct of a bosonic representation of SL(2, R) with quantum number A, and
the spin 1 representation provided by the free fermions 4. We work in a
normalization for the modes @, ,,, such that

J3®p = M@, (A.29)
Jg ®pm = (mF (h— 1))@p 1. (A.30)

The operators also depend on an antiholomorphic index m which we omit.
We wish to determine the Clebsch—Gordon coefficients in the expansion

(wq))h—l,m = amwB(I)h,m + bmer(Dh,m—l + cmwi(bh,m—l-l- (Agl)
Acting on this operator with both sides of J, = j, + j,, we get

(m+h—2) (am—1¢3‘1’h,m71 + b1 Pp g + G Ppn) =
= (am(m+h —1) + 2b)03Ppm—1 + bn(m + h — 2)T ®p o (A.32)
+ (am + cm(m + h))p™ Pp .

A second equation is obtained by acting on (¢)®)p_1 ,m—1 with both sides of
Jo =Jo +Jo
(m —h+ 1) (amd}gq)h,m + bmq/)—‘_q)h,m—l + Cm¢_q)h,m+1) =
= (am—l(m - h) - Qcm)dji’)q)h,m + (bm—l(m -1- h) - am—l)w+¢h,m—1

+ (cm—1(m —h+ 1)) Pp 1.
(A.33)
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Equating the coefficients of both sides of (A.32) and (A.33), we get six
homogeneous equations for the six coefficients am,, by, Cmy Gm—1, bm—1, Cm—1-
Inserting the resulting values in (A.31), gives, up to an overall rescaling

(V) p1.m = 20° Py — DT ®p 1 — O Bpnpa (A.34)

This expression can be recast in the x basis as

(YP@)p-1(z) = Z(Tﬁq’)h—Lm%*hH*m (A.35)

m

= (¢ + 23 — $2¢_) X Z D m g—hm (A.36)

= ¢(2)®n(x). (A.37)

One can check that this result holds both for discrete representations, where
the sum runs over a semi-infinite range (m = h,h +1,... or m = —h,—h —
1,...), and for continuous representations, where the sum runs over an infi-
nite range (m = a +Z, a € [0, 1)).

The spin j + 1 SU(2) representation in the tensor product between a
bosonic representation of spin j and the spin 1 representation provided by
the fermions is x* is similarly obtained. By exploiting the action of KOi =

kT + l;:g, and using the normalization (3.38) and (3.39), we get
(Xv)j—l—Lm = _X+V},m—1 + 2X3‘/},m + Xi‘/j,m—&—l- (A38)

In the isospin y basis, this becomes

Jj+1
XV)j+1(y) = Z OXV)jrmy ™, (A.39)
m=—j—1
j .
= (—xT + 2y + 2 7) x Z Vimy ", (A.40)
m=—j
= x®)V;(y). (A.41)

Finally, the representation with SL(2, R) and SU(2) spins (h — 1/2,5 + 1/2)
in the tensor product of representations with spins (h,j) and (%,3) is
obtained by acting with both JSE = jgc —i—joi and KSE = k:(jf + l%at, and is
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given by

(SPV)h-1/2mt1/2) = | + ) CrmVim + |+ =) PhmVins1 + ] — +)
(5+1/2,n+1/2)

X @1 Vin + = =) Phms1 Vit (A.42)

In the (z,y) basis this becomes

j
(SOV)h—1/2,j41/2(,y) :Z Z (S(I)V)(h—1/2,m+1/2)$_m_hy_n+3

m n=—j—1 (j+1/2,n+1/2)
(A.43)
=(++) +yl+-)+z|—+) +ayl——)) X
(A.44)
j .
03 By S Wy
m n=—j
— S(z,)®n(@)V;(y). (A.45)

B Interactions in generalized SU(2) WZW models

In order to better understand the cancelation between the factors in the
three-point functions Cs and Cy of the SU(2) and H WZW models at
levels k — 2 and k + 2, respectively, we will see in this appendix that these
two quantities are solutions of functional equations that are related by a
sort of “Wick rotation”.

For convenience let us define (b= 1/vk)

o; = bh;, a=bh=a1+ as+ as, (B.1)
a; =bj;, a=bj=a1+as+as, (B.2)

and

cu(aq, ag, a3) = Cu(ha, ha, h3),

—~
0
.

S~—

cs(at, az,a3) = Cs(J1, 72, J3)-
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The three-point function cp(aq, a2, ag) is determined by requiring it to be
a solution of the functional equations

cu(ar +b/2, aq, a3) cg(aq)
cua(ar — b/2, s, a3) ¢ (1)

_ Y2(b(2a; — b))y(b(aw — 2ty — b/2))y(1 — ba + 3b%/2) (B.5)

Y(b(a = 203 — b/2))v(b(r — 2a2 — b/2)) ’ '
cu(ar + 0712, g, a3) e (ay)
cu(ar —b71/2, aq, a3) &y (o)
v 201 — b7 )y (20 ey — 1)y (b — 20, —b71/2))

V(o (o —=2a5 = b7 /2))y (b~ (@ — 202 = b1 /2))y (b~ (v = b1 /2 _(Bb)%;

where y(z) =T'(z)/T'(1 —x). These equations where obtained in [26] by
imposing crossing symmetry on a four-point function, with one of the fields
corresponding to the degenerate primaries h = —1/2 or h = —k/2 of the
SL(2, R) current algebra (see also [55]). The functions cif(aq),éf(ay) are
special structure constants that appear in the fusion of these degenerate
fields with a generic primary

—~
0
J

~—

Dy ) = i (@) [@p_1 /0] + (@) [Phi1/2],
Dy /o®h = G () [Pp_p 2] + () [@pikso] + () [P@1_piksa],  (BB)
where [®},] denotes the primary field and all its current algebra descendants.

The special structure constants can be obtained by a perturbative calcula-
tion [55,87,88], and are given by!'3

cip(an) = &) =1, (B.9)

cylon) = UW (B.10)
19 —

R (B.11)

13To obtain the special structure constants self-consistently without any perturbative
computation, one should apply to Hg’ the method used for Liouville theory in [89]. A
functional equation that constrains the special structure constants was obtained in [26].
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Plunging these values into (B.5) and (B.6) yields

cu(on + b, g, a3)
cu(oq, az, as)

_ (1)1 (2bar )y(b(20 + b))y (b(ex — 201 — b))

y(b(a — 2a3))y(b(a — 20) )y (b(ax — b)) (B.12)
cu(ar +071 ag, as)
cu(ar, ag, ag)
_ )@ (b Qo + 5O 0 =2 b))y

(b~ = 2a3))v(b~Ha — 2a2))y(b~Ha — b))

The solution of these functional equations is, up to a multiplicative constant,

culaq, ag, a3) = {be%z] o T(al— ) H T T(20:) : (B.14)

=1
with 7 = ¥"b=4. After rescaling the operators as

78

SR @h 1)) (B.15)

(I’h—>

we get the three-point function given in (4.11), up to a multiplicative con-
stant. Note that ¢y is not an analytic function of b, since T has a branch
cut for positive imaginary values of b [24].

The conformal bootstrap method used for the H;r WZW model can also
be applied in the SU(2) case.!* Indeed, the steps in [26] that lead to the
level k + 2 H:J{ functional equations, have level k —2 SU(2) counterparts
which are simply obtained by the replacements

h — —j, (B.16)
b — —ib, (B.17)
bt —abh (B.18)

The technique used in [49] to compute the SU(2) WZW three-point functions (4.5)
was different, and consisted in exploiting the relation between generic SU(2) four-point
function and a five-point function of the minimal models.
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Applying this to (B.5) and (B.6) we get the functional equations

Cs(al — b/2, an, a3) Cg (al)
cs(ar +b/2,a9,a3) cg(al)
_ (0201 + ) (bla — 201 +/2)

v(b(a —2a3 + b/2))y(b(a — 2as + b/2))y(b(a + 3b/2))’
cs(ar +b71/2,az,a3) Cq (a1)
cs(a —b=1/2 as, a3) éér(al)

07 (=201 + b )(-26an — 50~ (~a + 201 +71/2)

(b~ (—a+2a3 +b71/2))
Y(b~ H(—a+2a2 +b71/2))y(b~H(—a +b71/2 — b))

(B.19)

(B.20)

Under (B.16) to (B.18), the degenerate primaries go to j =1/2 and j =
—k/2. The latter does not belong to the standard spectrum of the SU(2)
WZW model, but it is a degenerate vector of the SU(2) affine algebra [90].
The fusion rules are now [91]

VijoVj = e (a)[Viga o] + c5(a)[Vi1 o], (B.21)
V_iy2Vi = &g (a)[Vj_iso) + &5 (@) [Vigrpal + 85 (@) [Vor_jpnel-  (B.22)

Since in the case of the SU(2) WZW model, the primaries are normalized as

(Vi (y1) Vi (y2)) = 051 o ly12/™ (B.23)

we can identify the special structure constants with particular three-point
functions,

céc(al) =cs(a1,b/2,a1 £b/2), (B.24)
& (ar) = cs(ar, —b7'/2,a1 Fb1/2). (B.25)

This in turn allows to determine them from (B.19) and (B.20). Specializing
(B.19) to az = ay,az = b/2, and (B.20) to ag = a1, az = —b~ /2 we get

cs(a1)\* _  4*(b(2a1 +1))
<C§(a1)> ~ y(2ba1)y(2b(ar + b)) (B.26)
and
5 (0)\* _ a(=2b! b 2)y(2anpt )
<5§(a1)> B 7(—2a12_1)'y(b—1(—2a1 J:b_l b)) (B.27)
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Plunging these values back into (B.19) and (B.20) gives the functional
equations

cs(ar + b, az,a3)
cs(at,az,as)
_ v(b(a — 2ag + b))y(b(a — 2a3 + b))y(b(a + 2b)) (B.28)
v(b(2a1 + 2b))[y(b(2a1 + b))y (b(2a1 + 3b))]V/2y(b(a — 2a1))"
cs(ar + b7t ag,a3) Y(=b~t(a - 2a; — b71))
cs(ar,az,az)  y(=b7Y(a = 2a2))y(=b~ (a — 2a3))y(~b~(a + b))
1
2 2a1b )y (1 2arb- 1+ b2y (112016~ )y (24 2a1b- L+ b-2)]1/2”
(B.29)

Using (4.14), it follows that the above two functional equations are solved by

- mb%—lﬂ 3 Y(a —2a; +b)
cs(ar,az,a3) = TT(G +2b) H [T (2a; + b)Y (2a; + 2b)]1/2’

i=1
(B.30)
where we have fixed the arbitrary constant by requiring cg(ai,a;,0) = 1.
Using (4.23) one can express cs(a1, a2, a3) in terms of P(s), and it is imme-
diate to check that the resulting expression for (B.30) precisely coincides
with Cs(j1,j2,j3) in (4.5) — up to the factor Nj, j, j, which should be
added to (B.30).

The above form of the SU(2) three-point functions is defined for any
value of 2j;, not only for positive integers.'® Thus cg(a1, ag,as3) are the
three-point functions of a generalized SU(2) WZW model, similar to the
generalized minimal models studied in [24,25].16 In those works, similar
relations and cancelations between Liouville theory and the minimal models
three-point functions were observed.

Finally, note that to obtain c(aq, e, a3) = cu(ai, ag, ag)es(ar — b, an —
b,as —b) in (4.26), instead of multiplying the two expressions, we could
have combined equations (B.12), (B.13), (B.28) and (B.29). This gives the

15Indeed, we have used this freedom in (B.25), since we have evaluated cs at a value
corresponding to j» = —k/2 < 0.

16y, Petkova has pointed out to us that it should be possible to obtain the structure
constants for these generalized SU(2) from those of the generalized minimal models by
using the relation between the structure constants in both models found in [92].
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functional equations,

clog +b,a0,3) 4 M 1/2
c(ag, o, a3) =) [’Y(b(QOél _ b))} ) (B.31)
C(acl(;b;;’ 0;23’)0[3) = @) [2ardb™ = 1)?(2a0b ™t + 572 - 1)2}1/2 7
o (B.32)

whose solution, after the rescaling (B.15), is given by (4.26), up to a constant.
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