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Abstract

We prove that the leaves of an inverse mean curvature flow provide a
foliation of a future end of a cosmological spacetime N under the neces-
sary and sufficient assumptions that N satisfies a future mean curvature
barrier condition and a strong volume decay condition. Moreover, the
flow parameter t can be used to define a new physically important time
function.

1 Introduction

The inverse mean curvature flow has already been considered in Euclidean
space [3] or in asymptotically flat Riemannian spaces [12]. In the latter case
Huisken and Ilmanen used it to prove the Penrose inequality. One major
difficulty in their proof was that jumps might occur during the flow, i.e.,
the mean curvature of the flow hypersurfaces might vanish even though the
initial hypersurface has positive mean curvature.
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The Lorentzian geometry is much more favourable for curvature flows,
cf. [1, 5, 6, 8], so that no jumps should occur in the case of the inverse mean
curvature flow. We shall show that this is indeed the case, if the ambient
space is a globally hyperbolic (n + 1)-dimensional Lorentzian manifold N
with a compact Cauchy hypersurface satisfying the time-like convergence
condition

R̄αβνανβ ≥ 0 ∀〈ν, ν〉 = −1. (1.1)

Such spaces are called cosmological spacetimes, a terminology due to
Bartnik.

Let M0 ⊂ N be a space-like hypersurface, the mean curvature of which
is either strictly positive or negative. Then we consider the inverse mean
curvature flow (IMCF)

ẋ = −H−1ν (1.2)

with initial hypersurface M0. Here, ν is the past-directed normal of the flow
hypersurfaces M(t), and H = H |M(t)

the corresponding mean curvature, i.e.,
the trace of the second fundamental form.

If H |M0
is positive respectively negative, then the flow moves to the future

respectively past of M0. Furthermore, H |M(t)
will uniformly tend to ∞

respectively −∞, if the flow exists for all time.

In former papers we referred to this latter phenomenon by saying that
there were crushing singularities in the future respectively past, erroneously
assuming that only big crunch or big bang type singularities could produce
space-like hypersurfaces, the mean curvatures of which become unbounded
if the hypersurfaces approached the singularities.

But a behaviour like that could also be caused by a null hypersurface H,
e.g., by the event horizon of a black hole, if the spacetime can be viewed as
having a past or future boundary component H that can be identified with a
compact null hypersurface representing a non-crushing singularity, i.e., the
Riemannian curvature tensors remain uniformly bounded near H

R̄αβγδR̄
αβγδ ≤ const. (1.3)

An example of such a spacetime is given in Section 1.

We therefore define

Definition 1.1. Let N be a globally hyperbolic spacetime with compact
Cauchy hypersurface S0, so that N can be written as a topological product
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N = R × S0, and its metric expressed as

ds̄2 = e2ψ(−(dx0)2 + σij(x0, x)dxidxj). (1.4)

Here, x0 is a globally defined future-directed time function and (xi) are local
coordinates for S0. N is said to have a future mean curvature barrier respec-
tively past mean curvature barrier, if there are sequences M+

k respectively
M−

k of closed space-like hypersurfaces such that

lim
k→∞

H |
M+

k

= ∞ respectively lim
k→∞

H |
M−

k

= −∞ (1.5)

and

lim sup inf
M+

k

x0 > x0(p) ∀p ∈ N (1.6)

respectively

lim inf sup
M−

k

x0 < x0(p) ∀p ∈ N. (1.7)

Remark 1.2. Let N be a cosmological spacetime with future and past mean
curvature barriers; then it can be foliated by closed hypersurfaces of constant
mean curvature; cf. [2]. Moreover, the mean curvature function τ is con-
tinuous in N and smooth in {τ �= 0} with non-vanishing gradient, hence it
can be used as a time function; cf. [9]. These results are also valid in future
respectively past ends.

We shall assume in the following that N has a future mean curvature
barrier. By reversing the time direction this configuration also comprises
the case that N has a past mean curvature barrier.

Under this assumption we shall prove that, for a given compact space-
like hypersurface M0 with H |M0

> 0, the future of M0 can be foliated by
the leaves of an IMCF starting at M0, provided a so-called future strong
volume decay condition is satisfied; cf. Definition 2.2. A strong volume decay
condition is both necessary and sufficient in order that the IMCF exists for
all time.

The main result of this paper can be summarized in the following theorem.

Theorem 1.3. Let N be a cosmological spacetime with compact Cauchy
hypersurface S0 and with a future mean curvature barrier. Let M0 be a
closed space-like hypersurface with positive mean curvature, and assume fur-
thermore that N satisfies a future volume decay condition. Then the IMCF
(1.2) with initial hypersurface M0 exists for all time and provides a foliation
of the future D+(M0) of M0.
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The evolution parameter t can be chosen as a new time function. The
flow hypersurfaces M(t) are the slices {t = const} and their volume satisfies

|M(t)| = |M0|e−t. (1.8)

Defining an almost proper time function τ by choosing

τ = 1 − e−(1/n)t (1.9)

we obtain 0 ≤ τ < 1,
|M(τ)| = |M0|(1 − τ)n, (1.10)

and the future singularity corresponds to τ = 1.

Moreover, the length L(γ) of any future-directed curve γ starting from
M(τ) is bounded from above by

L(γ) ≤ c(1 − τ), (1.11)

where c = c(n, M0). Thus, the expression 1 − τ can be looked at as the radius
of the slices {τ = const} as well as a measure of the remaining life span of
the universe.

Without any further structural assumptions it seems impossible to derive
any convergence results for an appropriately rescaled IMCF. In [10] we look
at the IMCF in asymptotically Robertson Walker spaces and prove that a
properly rescaled flow converges indeed.

2 Notations and definitions

The main objective of this section is to state the equations of Gauss, Codazzi,
and Weingarten for space-like hypersurfaces M in an (n + 1)-dimensional
Lorentzian manifold N . Geometric quantities in N will be denoted by (ḡαβ),
(R̄αβγδ), etc., and those in M by (gij), (Rijkl), etc. Greek indices range
from 0 to n and Latin from 1 to n; the summation convention is always
used. Generic coordinate systems in N respectively M will be denoted by
(xα) respectively (ξi). Covariant differentiation will simply be indicated
by indices; only in case of possible ambiguity they will be preceded by a
semicolon, i.e., for a function u in N , (uα) will be the gradient and (uαβ)
the Hessian but, e.g., the covariant derivative of the curvature tensor will
be abbreviated by R̄αβγδ;ε. We also point out that

R̄αβγδ;i = R̄αβγδ;εx
ε
i (2.1)

with obvious generalizations to other quantities.

Let M be a space-like hypersurface, i.e., the induced metric is Riemannian,
with a differentiable normal ν which is time-like.



INVERSE MEAN CURVATURE FLOW 1187

In local coordinates, (xα) and (ξi), the geometric quantities of the
space-like hypersurface M are connected through the following equations:

xα
ij = hijν

α, (2.2)

the so-called Gauss formula. Here, and also in the sequel, a covariant deriv-
ative is always a full tensor, i.e.

xα
ij = xα

,ij − Γ k
ijx

α
k + Γ̄α

βγxβ
i xγ

j . (2.3)

The comma indicates ordinary partial derivatives.

In this implicit definition the second fundamental form (hij) is taken with
respect to ν.

The second equation is the Weingarten equation

να
i = hk

i x
α
k , (2.4)

where we remember that να
i is a full tensor.

Finally, we have the Codazzi equation

hij;k − hik;j = R̄αβγδν
αxβ

i xγ
j xδ

k (2.5)

and the Gauss equation

Rijkl = −{hikhjl − hilhjk} + R̄αβγδx
α
i xβ

j xγ
kxδ

l . (2.6)

Now, let us assume that N is a globally hyperbolic Lorentzian manifold
with a compact Cauchy surface. N is then a topological product I × S0,
where I is an open interval, S0 is a compact Riemannian manifold, and
there exists a Gaussian coordinate system (xα), such that the metric in N
has the form

ds̄2
N = e2ψ{−dx02 + σij(x0, x)dxidxj}, (2.7)

where σij is a Riemannian metric, ψ a function on N , and x an abbreviation
for the space-like components (xi). We also assume that the coordinate
system is future-oriented, i.e., the time coordinate x0 increases on future-
directed curves. Hence, the contravariant time-like vector (ξα)= (1, 0, . . . , 0)
is future-directed as is its covariant version (ξα) = e2ψ(−1, 0, . . . , 0).
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Let M = graphu|S0
be a space-like hypersurface,

M = { (x0, x) : x0 = u(x), x ∈ S0 }, (2.8)

then the induced metric has the form

gij = e2ψ{−uiuj + σij}, (2.9)

where σij is evaluated at (u, x), and its inverse (gij) = (gij)−1 can be
expressed as

gij = e−2ψ

{
σij +

ui

v

uj

v

}
, (2.10)

where (σij) = (σij)−1 and

ui = σijuj ,

v2 = 1 − σijuiuj ≡ 1 − |Du|2.
(2.11)

Hence, graphu is space-like if and only if |Du| < 1.

The covariant form of a normal vector of a graph looks like

(να) = ±v−1eψ(1,−ui). (2.12)

and the contravariant version is

(να) = ∓v−1e−ψ(1, ui). (2.13)

Thus we have

Remark 2.1. Let M be space-like graph in a future-oriented coordinate
system. Then the contravariant future-directed normal vector has the form

(να) = v−1e−ψ(1, ui), (2.14)

and the past-directed
(να) = −v−1e−ψ(1, ui). (2.15)

In the Gauss formula (2.2) we are free to choose the future- or past-
directed normal, but we stipulate that we always use the past-directed
normal for reasons that we have explained in [5, Section 2].

Look at the component α = 0 in (2.2) and obtain in view of (2.15)

e−ψv−1hij = −uij − Γ̄ 0
00uiuj − Γ̄ 0

0jui − Γ̄ 0
0iuj − Γ̄ 0

ij . (2.16)

Here, the covariant derivatives are taken with respect to the induced metric
of M , and

−Γ̄ 0
ij = e−ψh̄ij , (2.17)

where (h̄ij) is the second fundamental form of the hypersurfaces
{x0 = const.}.
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An easy calculation shows

h̄ije
−ψ = −1

2 σ̇ij − ψ̇σij , (2.18)

where the dot indicates differentiation with respect to x0.

Next we shall define the strong volume decay condition.

Definition 2.2. Suppose there exists a time function x0 such that the future
end of N is determined by {τ0 ≤ x0 < b} and the coordinate slices Mτ =
{x0 = τ} have positive mean curvature with respect to the past-directed nor-
mal for τ0 ≤ τ < b. In addition, the volume |Mτ | should satisfy

lim
τ→b

|Mτ | = 0. (2.19)

A decay like that is normally associated with a future singularity, and
we simply call it volume decay. If (gij) is the induced metric of Mτ and
g = det(gij), then we have

log g(τ0, x) − log g(τ, x) =
∫ τ

τ0

eψH̄(s, x) ∀x ∈ S0, (2.20)

where H̄(τ, x) is the mean curvature of Mτ in (τ, x). For a proof we refer
to [7].

In view of (2.19) the left-hand side of this equation tends to infinity if τ
approaches b for a.e. x ∈ S0, i.e.,

lim
τ→b

∫ τ

τ0

eψH̄(s, x) = ∞ for a.e. x ∈ S0. (2.21)

Assume now there exists a continuous, positive function ϕ = ϕ(τ) such
that

eψH̄(τ, x) ≥ ϕ(τ) ∀ (τ, x) ∈ (τ0, b) × S0, (2.22)

where ∫ b

τ0

ϕ(τ) = ∞. (2.23)

Then we say that the future of N satisfies a strong volume decay condition.

Remark 2.3. (i) By approximation we may — and shall — assume that
the function ϕ above is smooth.

(ii) A similar definition holds for the past of N by simply reversing the time
direction. Notice that in this case the mean curvature of the coordinate
slices has to be negative.
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Lemma 2.4. Suppose that the future of N satisfies a strong volume decay
condition; then there exist a time function x̃0 = x̃0(x0), where x0 is the time
function in the strong volume decay condition, such that the mean curvature
H̄ of the slices x̃0 = const satisfies the estimate

eψ̃H̄ ≥ 1. (2.24)

The factor eψ̃ is now the conformal factor in the representation

ds̄2 = e2ψ̃(−(dx̃0)2 + σijdxidxj). (2.25)

The range of x̃0 is equal to the interval [0,∞), i.e., the singularity corre-
sponds to x̃0 = ∞.

Proof. Define x̃0 by

x̃0 =
∫ x0

τ0

ϕ(τ), (2.26)

where ϕ is the function in (2.22) now assumed to be smooth.

The conformal factor in (2.25) is then equal to

e2ψ̃ = e2ψ ∂x0

∂x̃0
∂x0

∂x̃0 = e2ψϕ−2, (2.27)

and hence

eψ̃H̄ = eψH̄ϕ−1 ≥ 1, (2.28)

in view of (2.22). �

As we mentioned in the introduction there are spacetimes which sat-
isfy a mean curvature barrier condition but the resulting singularity is not
crushing.

To construct an example let us start with an S-AdS(n+2) spacetime with
metric

dŝ2 = −fdt2 + f−1dr2 + r2σijdxidxj , (2.29)

where

f = κ − 2
n(n + 1)

Λr2 − mr−(n−1) (2.30)

with constants Λ and m > 0; (σij) is the metric of a compact n-dimensional
spaceform of curvature κ = 0, 1,−1.
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This spacetime satisfies the Einstein equations

Gαβ + Λḡαβ = 0. (2.31)

Let us suppose for simplicity that κ = 1 and Λ < 0, though this is not
important in our considerations. In {r = 0} is a black hole singularity and
the event horizon H = f−1(0) is characterized by r = r0.

The region {f < 0} is the black hole region. In this region r is the time
function and t is a spatial variable. Let us pick the black hole region.

Normally the variable t describes the real axis but, since it is a spatial
variable, we are free to compactify it, and we shall suppose that t is a vari-
able for S1. By this compactification we have defined a globally hyperbolic
spacetime N with compact Cauchy hypersurface S0 = S1 × Sn which satis-
fies the time-like convergence condition since

R̄αβ =
2
n

Λḡαβ (2.32)

and Λ is supposed to be negative.

N has a crushing singularity in r = 0 and, as we shall show in a moment,
also a mean curvature barrier singularity in r = r0, which is however not
crushing, since the metric quantities were not changed by the compactifca-
tion but only the topology.

Define
f̃ = −f and ψ = −1

2 log f̃ , (2.33)
then the metric can be expressed as

ds̄2 = e2ψ(−dr2 + f̃2dt2 + f̃ r2σijdxidxj)

≡ e2ψ(−dr2 + σ̃abdxadxb).
(2.34)

The second fundamental form of the hypersurfaces {r = const} with
respect to the past-directed normal is given by

e−ψh̄ab = 1
2
˙̃σab − 1

2 f̃−1 ˙̃
fσ̃ab, (2.35)

where the dot indicates differentiation with respect to r, and where we note
that the time function r is past-directed in contrast to the usual convention.
Hence the mean curvature H̄ is equal to

H̄ = f̃−1/2(1
2

˙̃
f + nf̃r−1), (2.36)

and we deduce that H̄ tends to −∞, if the hypersurfaces approach the
horizon H, and to ∞, if the hypersurfaces approach the black hole
singularity r = 0.



1192 CLAUS GERHARDT

Sometimes, we need a Riemannian reference metric, e.g., if we want to
estimate tensors. Since the Lorentzian metric can be expressed as

ḡαβdxαdxβ = e2ψ{−dx02 + σijdxidxj}, (2.37)

we define a Riemannian reference metric (g̃αβ) by

g̃αβdxαdxβ = e2ψ{dx02 + σijdxidxj}, (2.38)

and we abbreviate the corresponding norm of a vectorfield η by

|||η||| = (g̃αβηαηβ)1/2, (2.39)

with similar notations for higher-order tensors.

3 The evolution problem

The evolution problem (1.2) is a parabolic problem, hence a solution exists
on a maximal time interval [0, T ∗), 0 < T ∗ ≤ ∞ (cf. [4, Section 2]), where
we apologize for the ambiguity of also calling the evolution parameter time.

Next, we want to show how the metric, the second fundamental form, and
the normal vector of the hypersurfaces M(t) evolve. All time derivatives
are total derivatives. We refer to [5] for more general results, and to [4,
Section 3], where proofs are given in a Riemannian setting, but these proofs
are also valid in a Lorentzian environment.

Lemma 3.1. The metric, the normal vector, and the second fundamental
form of M(t) satisfy the evolution equations

ġij = −2H−1hij , (3.1)

ν̇ = ∇M (−H−1) = gij(−H−1)ixj , (3.2)

and

ḣj
i = (−H−1)j

i + H−1hk
i h

j
k + H−1R̄αβγδν

αxβ
i νγxδ

kg
kj , (3.3)

ḣij = (−H−1)ij − H−1hk
i hkj + H−1R̄αβγδν

αxβ
i νγxδ

j . (3.4)

Lemma 3.2 (Evolution of H−1). The term H−1 evolves according to the
equation

(H−1)′ − H−2ΔH−1 = −H−2(‖A‖2 + R̄αβνανβ)H−1, (3.5)

where

(H−1)′ =
d

dt
H−1 (3.6)

and
‖A‖2 = hijh

ij . (3.7)
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From (2.3) we deduce with the help of the Ricci identities and the Codazzi
equations a parabolic equation for the second fundamental form.

Lemma 3.3. The mixed tensor hj
i satisfies the parabolic equation

ḣj
i − H−2Δhj

i = −H−2‖A‖2hj
i + 2H−1hk

i h
j
k − 2H−3HiH

j

+ 2H−2R̄αβγδx
α
mxβ

i xγ
kxδ

rh
kmgrj

− H−2gklR̄αβγδx
α
mxβ

kxγ
rxδ

l h
m
i grj

− H−2gklR̄αβγδx
α
mxβ

kxγ
i xδ

l h
mj

− H−2R̄αβνανβhj
i + 2H−1R̄αβγδν

αxβ
i νγxδ

mgmj

+ H−2gklR̄αβγδ;ε{ναxβ
kxγ

l xδ
i x

ε
mgmj + ναxβ

i xγ
kxδ

mxε
lg

mj}.
(3.8)

Since the time-like convergence condition is assumed to be valid we imme-
diately deduce from (2.2)

Lemma 3.4. There exists a positive constant c0 = c0(M0), such that the
estimate

H ≥ c0 e(1/n)t (3.9)

is valid during the evolution.

Proof. Let ϕ = H−1e(1/n)t. Then ϕ satisfies the inequality

ϕ̇ − H−2Δϕ ≤ −H−2|A|2ϕ +
1
n

ϕ ≤ 0, (3.10)

hence we conclude
ϕ ≤ sup

M0

ϕ = sup
M0

H. (3.11)

�

4 Lower order estimates

The evolution problem (1.2) exists on a maximal time interval I = [0, T ∗).
We want to prove that T ∗ = ∞, and that the flow hypersurfaces M(t) run
into the future singularity, if t tends to infinity.

The latter property is a characteristicum of the inverse mean curvature
flow under very weak assumptions: if the flow exists for all time, then it
cannot stay in a compact region of N or, more precisely,
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Lemma 4.1. Let N be a cosmological spacetime with a future mean curva-
ture barrier, and let M0 be a compact space-like hypersurface with positive
mean curvature. Suppose that N = R × S0 and that the metric is given as in
(0.4). Assume that the inverse mean curvature flow with initial hypersurface
M0 exists for all time, and let the flow hypersurfaces M(t) be expressed as
graphs of a function u over S0 :

M(t) = { (x0, x) : x0 = u(t, x), x ∈ S0 }. (4.1)

Then there holds
lim
t→∞

inf
S0

u(t, ·) = ∞. (4.2)

Proof. (i) Because of the barrier condition a future end of N , N+, can be
foliated by hypersurfaces of positive constant mean curvature and we can
choose the mean curvature τ of that CMC foliation as a new time function
x0 = τ in N+:

N+ = { (τ, x) : k ≤ τ < ∞, x ∈ S0 }, (4.3)
cf. Remark (1.2), where k is a positive constant and where we used the same
symbol S0 for the compact Cauchy hypersurface — indeed, we could use the
original Cauchy hypersurface S0, since it need not be a level hypersurface.

Let t0 be such that
c0e

(1/n)t0 > 2k, (4.4)
where c0 is the constant in inequality (2.9). Then we claim that

M(t) ⊂ N+ ∀t ≥ t0. (4.5)

To prove this claim we shall apply the Synge’s lemma. Denote the coor-
dinate slices x0 = τ by Mτ , i.e., Mτ has constant mean curvature H̄ = τ .

It suffices to show that all M(t) with t ≥ t0 lie in the future of Mk.
Suppose this were not the case for some M(t); then the Lorentzian distance
between M(t) and Mk would be positive:

d = d(M(t), Mk) > 0, (4.6)

and hence there would exist a maximal future-directed geodesic γ from M(t)
to Mk. Synge’s lemma would then yield

H |Mk
(γ(d)) ≥ H |M(t)

(γ(0)) +
∫ d

0
R̄αβ γ̇αγ̇β, (4.7)

a contradiction in view of (4.4) and the time-like convergence condition.

(ii) Thus, the flow hypersurfaces M(t) are covered by the new coordinate
system for t ≥ t0. The metric of N has again the form as in (0.4).
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Now, the mean curvature H̄ of the coordinate slices satisfies the evolution
equation

˙̄H = −Δeψ + (|Ā|2 + R̄αβνανβ)eψ, (4.8)

where the dot indicates differentiation with respect to x0, the Laplace oper-
ator is the Laplace Beltrami operator of the slice, |Ā|2 the square of the
second fundamental form and ν the past-directed normal and eψ the con-
formal factor of the metric.

This relation is valid for the slices of any time function x0 for which the
metric has the form as in (1.4), since the slices are solutions of the evolution
equation

ẋ = −eψν, (4.9)

from which the relation (4.8) can be easily deduced: apply the general for-
mula (4.8) in [5] with Φ = −eψ.

For the special time function x0 = τ we therefore obtain

1 = ˙̄H ≥ −Δeψ +
1
n

τ2eψ. (4.10)

Moreover, let x0 ∈ S0 be a point where, for fixed τ ,

sup
S0

eψ(τ,·) = eψ(τ,x0). (4.11)

Then the maximum principle implies

1 ≥ 1
n

τ2eψ(τ,x0) ≥ 1
n

τ2eψ(τ,x) ∀x ∈ S0 (4.12)

and hence
H̄eψ ≤ nH̄−1 (4.13)

for all slices Mτ .

This inequality will be the key ingredient to prove the limit relation (4.2).

(iii) Define the function ϕ on t ≥ t0 by

ϕ(t) = inf
S0

u(t, ·). (4.14)

Then ϕ is Lipschitz continuous and for a.e. t there holds

ϕ̇(t) = u̇(t, xt), (4.15)

where xt is such that the infimum is attained in xt. This result is well
known; we shall give a short proof in Lemma (3.2) below for the sake of
completeness.
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Now, from (1.2), looking at the component α = 0, we deduce that u
satisfies the evolution equation

u̇ =
ṽ

Heψ
, (4.16)

where ṽ = v−1 and where the time derivative is the total derivative, i.e.,

u̇ =
∂u

∂t
+ uiẋ

i, (4.17)

and hence
∂u

∂t
=

v

Heψ
. (4.18)

From (2.16) we infer

e−ψṽH = −Δu − Γ̄ 0
00‖Du‖2 − 2Γ̄ 0

0iu
i + e−ψH̄, (4.19)

and conclude further, with the help of the maximum principle, that in xt

H ≤ H̄, (4.20)

and thus
∂u

∂t
≥ 1

H̄eψ
(4.21)

in xt.

Therefore, ϕ satisfies

ϕ̇ ≥ 1
H̄eψ

for a.e. t ≥ t0; (4.22)

hence

ϕ̇ ≥ 1
n

H̄ =
1
n

ϕ (4.23)

in view of (4.13) and the fact that the slices Mτ have mean curvature τ .

From this inequality we deduce immediately

ϕ(t) ≥ ϕ(t0)e(1/n)(t−t0) ∀t ≥ t0, (4.24)

proving the lemma. �

Lemma 4.2. Let S0 be compact and f ∈ C1(J × S0), where J is any open
interval. Then

ϕ(t) = inf
S0

f(t, ·) (4.25)

is Lipschitz continuous and there holds a.e.

ϕ̇ =
∂f

∂t
(t, xt), (4.26)

where xt is a point in which the infimum is attained.
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A corresponding result is also valid if ϕ is defined by taking the supremum
instead of the infimum.

Proof. ϕ is obviously Lipschitz continuous and thus a.e. differentiable by
Rademacher’s theorem.

For arbitrary t1, t2 ∈ J we have

ϕ(t1) − ϕ(t2) = f(t1, xt1) − f(t2, xt2) ≥ f(t1, xt1) − f(t2, xt1). (4.27)

Now, let ϕ be differentiable in t1; then, by choosing t2 > t1, and looking
at the difference quotients of both sides, we conclude

ϕ̇(t1) ≤ ∂f

∂t
(t1, xt1). (4.28)

Choosing t2 < t1 we obtain the opposite inequality, completing the proof
of the lemma. �

We have proved that the flow hypersurfaces run straight in the singularity,
if the flow exists for all time. However, it might happen that the flow runs
into the future singularity in finite time.

To exclude this possibility we have imposed the strong volume decay
condition.

Lemma 4.3. Let N satisfy a strong volume decay condition with respect to
the future. Then, for any finite T , 0 < T ≤ T ∗, the flow stays in a precom-
pact region ΩT for 0 ≤ t < T .

Proof. According to Lemma 1.4 we may choose a time function x0 such that
the relation (2.24) is valid for the coordinate slices x0 = const.

Let M(t) = graphu be the flow hypersurfaces, and set

ϕ(t) = sup
S0

u(t, ·). (4.29)

Then, similarly as in the proof of Lemma 3.1, we deduce that for a.e. t

ϕ̇ =
1

Heψ
≤ 1

H̄eψ
≤ 1, (4.30)

in view of (2.24).

Hence we infer
ϕ ≤ ϕ(0) + t ∀0 ≤ t < T ∗, (4.31)

which proves the lemma since the singularity corresponds to x0 = ∞. �
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5 C1-Estimates

We consider a smooth solution of the evolution equation (1.2) in a maximal
time interval [0, T ∗) and shall prove a priori estimates for

ṽ = v−1 =
1√

1 − |Du|2
(5.1)

in QT = [0, T ] × S0 for any 0 < T < T ∗.

The proof is a slight modification of the proof of the corresponding result
for the mean curvature flow in [6]. We note that the time-like convergence
condition is not necessary for this estimate.

Let us first state an evolution equation for ṽ.

Lemma 5.1 (Evolution of ṽ). The quantity ṽ satisfies the evolution
equation

˙̃v − H−2Δṽ = −H−2‖A‖2ṽ − 2H−1ηαβνανβ

− 2H−2hijxα
i xβ

j ηαβ − H−2gijηαβγxβ
i xγ

j να

− H−2R̄αβναxβ
kηγxγ

l gkl,

(5.2)

where η is the covariant vector field (ηα) = eψ(−1, 0, . . . , 0).

Proof. We have ṽ = 〈η, ν〉. Let (ξi) be local coordinates for M(t). Differen-
tiating ṽ yields the result; cf. [6, Lemma 3.2] for details. �

Lemma 5.2. Consider the flow in a precompact region Ω. Then there exists
a constant c = c(Ω) such that for any positive function 0 < ε = ε(x) on S0
and any hypersurface M(t) ⊂ Ω of the flow we have

|||ν||| ≤ cṽ, (5.3)

gij ≤ cṽ2σij , (5.4)

and

|hijηαβxα
i xβ

j | ≤ ε

2
‖A‖2ṽ +

c

2ε
ṽ3, (5.5)

where (ηα) is the vector field in Lemma 4.1.

Confer [6, Lemma 3.3] for a proof.

Combining the preceding lemmata we infer
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Lemma 5.3. Consider the flow in a precompact region Ω, then there exists
a constant c = c(Ω) such that for any positive function ε = ε(x) on S0 the
term ṽ satisfies a parabolic inequality of the form

˙̃v − H−2Δṽ ≤ −(1 − ε)H−2‖A‖2ṽ + cH−2[1 + ε−1]ṽ3. (5.6)

Proof. The terms on the right-hand side of (5.2) having a factor H−2 can
obviously be estimated as claimed.

The remaining term can be estimated by

2H−1|ηαβνανβ| ≤ 2cH−1ṽ2

≤ ε

2
1
n

ṽ + 2nc2ε−1H−2ṽ3.
(5.7)

The claim then follows from the relation
1
n

H2 ≤ |A|2, (5.8)

i.e.,

−H−2|A|2ṽ ≤ − 1
n

ṽ. (5.9)

�

We further need the following two lemmata.

Lemma 5.4. Let M(t) = graphu(t) be the flow hypersurfaces; then we have

u̇ − H−2Δu = 2e−ψṽH−1 − H−2e−ψgij h̄ij

+ H−2Γ̄ 0
00‖Du‖2 + 2H−2Γ̄ 0

0iu
i,

(5.10)

where the time derivative is a total derivative.

Proof. We use the relation

u̇ = e−ψṽH−1 (5.11)

together with (2.16). �
Lemma 5.5. Let Ω ⊂ N be precompact and M ⊂ Ω be a space-like graph
over S0, M = graphu. Then

|ṽiu
i| ≤ cṽ3 + ‖A‖eψ‖Du‖2, (5.12)

where c = c(Ω).

Proof. Confer the proof of [6, Lemma 3.6]. �

We are now ready to prove the a priori estimate for ṽ.
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Lemma 5.6. Let Ω ⊂ N be precompact. Then, as long as the flow stays in
Ω, the term ṽ is a priori bounded

ṽ ≤ c = c(Ω, sup
M0

ṽ). (5.13)

In particular, we do not have to assume that the time-like convergence is
valid, and we note that c does not depend explicitly on T .

Proof. Let μ, λ be positive constants, where μ is supposed to be small and
λ large, and define

ϕ = eμe−λu
, (5.14)

where we assume without loss of generality that u ≤ −1; otherwise replace
in (5.14) u by (u − c), c large enough.

We shall show that
w = ṽϕ (5.15)

is a priori bounded as indicated in (5.13) if μ, λ are chosen appropriately.

In view of Lemmas 4.2 and 4.4 we have

ϕ̇ − H−2Δϕ ≤ cμλe−λuH−2ṽ2ϕ − μλ2e−λu[1 + μe−λu]H−2‖Du‖2ϕ,
(5.16)

since 0 < H, from which we further deduce, taking Lemmas 4.3 and 4.5 into
account,

ẇ − H−2Δw ≤ −(1 − ε)H−2‖A‖2ṽϕ + cH−2[1 + ε−1]ṽ3ϕ

− μλ2e−λu[1 + μe−λu]H−2ṽ‖Du‖2ϕ

+ cμλe−λuH−2ṽ3ϕ + 2μλe−λuH−2‖A‖eψ‖Du‖2ϕ.

(5.17)

We estimate the last term on the right-hand side by

2μλe−λuH−2‖A‖eψ‖Du‖2ϕ ≤ (1 − ε)H−2‖A‖2ṽϕ

+
1

1 − ε
μ2λ2e−2λuH−2ṽ−1e2ψ‖Du‖4ϕ,

(5.18)

and conclude

ẇ − H−2Δw ≤ c[1 + ε−1]H−2ṽ3ϕ +
[

1
1 − ε

− 1
]

μ2λ2e−2λuH−2‖Du‖2ṽϕ

− μλ2e−λuH−2‖Du‖2ṽϕ,
(5.19)

where we have used that
e2ψ‖Du‖2 ≤ ṽ2. (5.20)
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Setting ε = eλu, we then obtain

H2(ẇ − H−2Δw) ≤ ce−λuṽ3ϕ + cμλe−λuṽ3ϕ

+
[

μ

1 − ε
− 1

]
μλ2e−λu‖Du‖2ṽϕ.

(5.21)

Now, we choose μ = 1
2 and λ0 so large that

μ

1 − eλu
≤ 3

4
∀λ ≥ λ0, (5.22)

and infer that the last term on the right-hand side of (5.21) is less than

−1
8λ2e−λu‖Du‖2ṽϕ, (5.23)

which in turn can be estimated from above by

−cλ2e−λuṽ3ϕ (5.24)

at points where ṽ ≥ 2.

Thus we conclude that for

λ ≥ max(λ0, 4) (5.25)

the parabolic maximum principle, applied to w, yields

w ≤ const(|w(0)|S0
, λ0, Ω). (5.26)

�

6 C2-Estimates

We want to prove that, as long as the flow stays in a precompact set Ω ⊂ N ,
the principal curvatures of the flow hypersurfaces are a priori bounded by
a constant depending only on Ω and the initial hypersurface M0. Again we
do not need the time-like convergence condition for this estimate.

Let us first prove an a priori estimate for H.

Lemma 6.1. Let Ω ⊂ N be precompact, and assume that the flow (1.2) stays
in Ω for 0 ≤ t ≤ T < T ∗. Then the mean curvature of the flow hypersurfaces
is bounded by

0 < H ≤ c(Ω, sup
M0

H). (6.1)

Proof. From Lemma 3.2 we immediately deduce that ϕ = log H satisfies the
evolution equation

ϕ̇ − H−2Δϕ = H−2(|A|2 + R̄αβνανβ) − H−2‖Dϕ‖2. (6.2)
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Let λ be large and set
w = ϕ + λṽ. (6.3)

Then we conclude from (5.6) that w satisfies the parabolic inequality

ẇ − H−2Δw ≤ −λ

2
H−2|A|2 + cλH−2, (6.4)

if λ is large enough, λ ≥ λ(Ω). Hence the parabolic maximum principle
yields the result in view of the relation

1
n

H2 ≤ |A|2. (6.5)

�

Lemma 6.2. Under the assumptions of Lemma 5.1 the principal curvatures
κi, 1 ≤ i ≤ n, of the flow hypersurfaces are a priori bounded in Ω

|κi| ≤ c(Ω, sup
M0

|A|). (6.6)

Proof. Since 0 ≤ H, it suffices to estimate

sup
i

κi ≤ c(Ω, sup
M0

|A|). (6.7)

Let ϕ be defined by

ϕ = sup{ hijη
iηj : ‖η‖ = 1 }. (6.8)

We claim that ϕ is a priori bounded in Ω.

Let 0 < T < T ∗, and x0 = x0(t0), with 0 < t0 ≤ T , be a point in M(t0)
such that

sup
M0

ϕ < sup{ sup
M(t)

ϕ : 0 < t ≤ T } = ϕ(x0). (6.9)

We then introduce a Riemannian normal coordinate system (ξi) at x0 ∈
M(t0) such that at x0 = x(t0, ξ0) we have

gij = δij and ϕ = hn
n. (6.10)

Let η̃ = (η̃i) be the contravariant vector field defined by

η̃ = (0, . . . , 0, 1), (6.11)

and set

ϕ̃ =
hij η̃

iη̃j

gij η̃iη̃j
. (6.12)
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ϕ̃ is well defined in the neighbourhood of (t0, ξ0), and ϕ̃ assumes its
maximum at (t0, ξ0). Moreover, at (t0, ξ0) we have

˙̃ϕ = ḣn
n, (6.13)

and the spatial derivatives do also coincide; in short, at (t0, ξ0)ϕ̃ satisfies the
same differential equation (3.8) as hn

n. For the sake of greater clarity, let us
therefore treat hn

n like a scalar and pretend that ϕ = hn
n.

At (t0, ξ0) we have ϕ̇ ≥ 0 and, in view of the maximum principle, we
deduce from Lemma 2.3

0 ≤ H−2(−‖A‖2hn
n + c|hn

n|2 + c). (6.14)

Thus ϕ is a priori bounded in Ω by a constant c depending only on Ω and
the initial hypersurface M0. �

7 Longtime existence

Let us look at the scalar version of the flow as in (4.18)

∂u

∂t
= e−ψvH−1 (7.1)

defined in the cylinder
QT ∗ = [0, T ∗) × S0 (7.2)

with initial value u(0) ∈ C∞(S0).

Suppose that T ∗ < ∞. Then, from Lemma 3.3, we conclude that the flow
stays in a compact region of N . Furthermore, in view of Lemma 4.6 and the
C2-estimates of Section 5, we obtain uniform C2-estimates for u.

Thus, the differential operator on the right-hand side of (7.1) is uniformly
elliptic in u independent of t, since there are constants c1, c2 such that

0 < c1 ≤ H ≤ c2 ∀0 ≤ t < T ∗, (7.3)

in view of Lemma 2.4.

Hence, we can apply the known regularity results (cf. e.g., [13, Chap.
5.5]) to conclude that uniform C2,α-estimates are valid, leading further to
uniform Cm,α-estimates for any m ∈ N, due to the regularity result for linear
operators. But this will contradict the maximality of T ∗.

Therefore, T ∗ = ∞, i.e., the flow exists for all time, and for any finite T
we have a priori estimates in Cm([0, T ] × S0) for any m ∈ N.
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8 A new time function

We know that the flow exists for all time and hence we conclude from
Lemmas 3.1 and 3.3 that the flow hypersurfaces provide a foliation of the
future of M0, i.e., the flow parameter t could be used as a new time function
in D+(M0), if Dt is time-like.

Lemma 8.1. The flow parameter t can be used as future-directed time func-
tion in D+(M0).

Proof. Let (xα) be a future-directed coordinate system such that the relation
(1.4) is valid. Then look at the scalar version of the flow, equation (7.1). If
we can show that (x̃α) with

x̃0 = t, x̃i = xi, (8.1)

represents a regular coordinate transformation with positive Jacobi deter-
minant, then the lemma is proved.

Now, the inverse coordinate transformation x = x(x̃), which exists, since
we already know that the flow hypersurfaces provide a foliation, has the
form

x0 = u(t, x) ≡ u(x̃), xi = x̃i, (8.2)

where we apologize for using the same symbol x to represent an (n + 1)-tuple
as well as the space coordinates (xi).

We immediately deduce
∣∣∣∣∂x

∂x̃

∣∣∣∣ =
∂u

∂t
> 0, (8.3)

hence the result in view of the inverse function theorem. �

The strong volume decay condition is not only sufficient to prove the long
time existence of the inverse mean curvature flow, but also necessary.

Proposition 8.2. Let N be a cosmological spacetime, M0 ⊂ N a compact,
space-like hypersurface with positive mean curvature, and suppose that the
inverse mean curvature flow with initial hypersurface M0 exists for all time
and provides a foliation of D+(M0). Then N satisfies a future strong volume
decay condition as well as a future mean curvature barrier condition.
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Proof. Choose x0 = t as a new time function, and let the metric of N be
expressed as

ds̄2 = e2ψ(−(dx0)2 + σij(x0, x)dxidxj). (8.4)

M0 now replaces the Cauchy hypersurface S0, and the flow hypersurfaces
M(t) are given as graphs of functions u with

u(t, x) = t. (8.5)

Thus we conclude from (7.1) that

1 =
∂u

∂t
= e−ψH−1 (8.6)

or equivalently,

Heψ = 1 ∀x ∈ M(t), (8.7)

i.e., the strong volume decay condition is satisfied.

The mean curvature of the leaves M(t) tends to ∞ in view of Lemma 2.4,
hence N satisfies a future mean curvature barrier condition. �

From now on, let us assume that x0 = t is the time function. Set

τ = 1 − e−(1/n)t, (8.8)

then the future spacetime singularity corresponds to τ = 1, and there holds

Theorem 8.3. The quantity 1 − τ can be looked at as the radius of the slices
τ = const as well as a measure of the remaining life span of the spacetime,
since we have

|M(τ)| = |M0|(1 − τ)n, (8.9)

and the length L(γ) of any future-directed curve starting from M(τ) is esti-
mated from above by

L(γ) ≤ c(1 − τ), (8.10)

where

c =
n

infM0 H
. (8.11)
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Proof. Let g = det(gij), where (gij) is the induced metric of M(t) ≡ M(τ);
then

d

dt

√
g = −√

g (8.12)

in view of (3.1), and hence

|M(t)| = |M0|e−t = |M0|(1 − τ)n. (8.13)

To prove (8.10), we first note that in view of Lemma 2.4

H ≥ inf
M0

He(1/n)t =
n

c
(1 − τ)−1, (8.14)

where c is the constant in (8.11). One of Hawking’s singularity theorems
then asserts that

L(γ) ≤ c(1 − τ), (8.15)
cf. [14, Prop. 37, p. 288]. �
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