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Abstract

After a review of exotic statistics for point particles in 3d BF theory,
and especially 3d quantum gravity, we show that string-like defects in
4d BF theory obey exotic statistics governed by the “loop braid group”.
This group has a set of generators that switch two strings just as one
would normally switch point particles, but also a set of generators that
switch two strings by passing one through the other. The first set gen-
erates a copy of the symmetric group, while the second generates a copy
of the braid group. Thanks to recent work of Xiao-Song Lin, we can
give a presentation of the whole loop braid group, which turns out to
be isomorphic to the “braid permutation group” of Fenn, Rimányi, and
Rourke. In the context of 4d BF theory, this group naturally acts on
the moduli space of flat G-bundles on the complement of a collection of
unlinked unknotted circles in R

3. When G is unimodular, this gives a
unitary representation of the loop braid group. We also discuss “quandle
field theory”, in which the gauge group G is replaced by a quandle.
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1 Introduction

Physically speaking, the goal of this paper is to study the exotic statistics
of loop-like defects in a 4d topological field theory called BF theory. We call
these entities “closed strings” for short, though they behave differently from
the closed strings familiar in string theory: the relevant Lagrangian is differ-
ent. In fact, we postpone the study of their dynamics to another paper [3].
The considerations of this paper are purely topological, and accessible — we
hope — to mathematicians with only a passing interest in physics.

Mathematically speaking, the point of this paper is to study some
representations of a higher-dimensional analogue of the braid group: the
“loop braid group”. Just as the braid group describes the topology of points
moving in the plane, the loop braid group describes the topology of circles
moving in R

3. In the body of this paper, we describe this group and certain
representations of it coming from the moduli space of flat bundles on R

3

with these circles removed. But since everything we do has a more familiar
analogue one dimension down, let us start by recalling that.

1.1 Exotic statistics in 3d BF theory

The behavior of a collection of identical particles when they are exchanged
goes by the name of “statistics”. Traditionally, statistics was described using
representations of the symmetric group. However, it is well known that in 3d
spacetime, “exotic” statistics are possible, in which the process of exchanging
identical particles is described by a representation of the braid group. For
example, exchanging two “abelian anyons” multiplies their wavefunction by
a phase, which need not be 1 as it is for bosons, nor −1 as for fermions. This
possibility has been investigated in experiments on the fractional quantum
Hall effect [7]. Now researchers have begun the search for “non-abelian
anyons”, whose statistics are described by more complicated representations
of the braid group [5]. Plans are already afoot to use these in quantum
computers [12, 21].

Exotic statistics also arise naturally in the context of 3d quantum gravity.
As we “turn on gravity”, letting Newton’s gravitational constant κ become
non-zero, ordinary quantum field theory on 3d Minkowski spacetime deforms
into a theory where the Poincaré group goes over to a quantum group called
the κ-Poincaré group. Moreover, if we begin with a field theory of bosons,
their statistics become exotic as we turn on gravity. For a thorough treat-
ment of these fascinating phenomena, see the papers by Freidel and collab-
orators [13, 14], the paper by Krasnov [23], and many references therein.
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In fact, the reason for exotic statistics in 3d quantum gravity is very
simple. In 3d spacetime, Einstein’s equations say that spacetime is flat
except in regions where matter is present. A point particle at rest bends
the nearby space into a cone. This cone is flat everywhere except at its
tip, where there is a deficit angle proportional to the particle’s mass. If we
parallel transport a vector around the particle, it gets rotated by this angle θ.

More generally, if we have n particles, space will be flat except for conical
singularities at n points. If we exchange these particles by moving them
around the plane, they trace out a loop in the space of n-point subsets of
the plane. Their energy-momenta will change in a way that depends on this
loop — but only on the homotopy class of this loop, because they are being
parallel transported with respect to a flat connection. A homotopy class of
such loops is just an n-strand braid.

So, the group Bn of n-strand braids acts on the Hilbert space of states for
n identical particles. In fact, this result holds classically as well: we get an
action of Bn on the configuration space for n identical particles.

The above argument uses the fact that 3d gravity (with vanishing
cosmological constant) can be described by BF theory with the Lorentz
group SO(2, 1) as gauge group. To understand this paper, the reader only
needs to know one thing about BF theory: it involves a flat connection on
space. For completeness, however, we recall that BF theory in n-dimensional
spacetime with gauge group G involves two fields: a connection A and a
g-valued (n − 2)-form E. In the absence of matter, the Lagrangian is simply

L =
1
κ

tr (E ∧ F )
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Here κ plays the role of Newton’s constant in the case of 3d gravity, and
F = dA + A ∧ A is the curvature of A. The resulting equations of motion:

F = 0, dE + [A, E] = 0,

imply that the connection A is flat.

In 3d BF theory, point particles can be included by considering spacetimes
with curves removed: we think of these as the particles’ worldlines. Away
from these worldlines, the above equations still hold, while along the world-
lines A becomes singular. The holonomy around a loop circling a worldline
gives an element of the group G. A collection of n-particles in the plane thus
gives rise to an n-tuple of elements of G. For simplicity, consider the case
n = 2. As we exchange two particles by rotating them around each other
counterclockwise, they trace out this braid.

As we recall in Section 3, this operation acts as the following map on G2:

(g1, g2) �−→ (g1g2g
−1
1 , g1). (1.1)

Applying this map twice does not give the identity, so we do not obtain an
action of the symmetric group on G2, but only an action of the braid group.
In other words, the particles have exotic statistics!

In the case of 3d gravity, the singularity of the connection along a particle’s
worldline reflects the fact that the particle’s mass creates a conical singu-
larity in the metric. The holonomy around the worldline, an element of
G = SO(2, 1), describes the particle’s energy-momentum. This may seem
odd, since we are used to thinking of energy-momentum as a vector in
Minkowski spacetime. However, in 3 dimensions, Minkowski spacetime is
naturally isomorphic to the Lie algebra so(2, 1), and we can reinterpret Lie
algebra elements as group elements via the map:

so(2, 1) −→ SO(2, 1)

p �−→ exp(κp).

So, we can encode the energy-momentum p of a particle in the holonomy g =
exp(κp) resulting from parallel transport around this particle’s worldline.

Thanks to the factor of κ here, the group SO(2, 1) effectively “flattens
out” to so(2, 1) in the κ → 0 limit. For example, multiplication in the group
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reduces to addition in the Lie algebra plus small corrections:

exp(κp1) exp(κp2) = exp
(

κ(p1 + p2) +
κ2

2
[p1, p2] + · · ·

)
(1.2)

This implies that in terms of so(2, 1)-valued energy-momenta, the braiding
in equation (1.1) is given by

(p1, p2) �−→ (p2 + κ[p1, p2] + · · · , p1)

So, the exotic statistics reduce to ordinary bosonic statistics in the limit
where Newton’s constant goes to zero. They also reduce to bosonic statistics
in the limit where the particles are at rest relative to each other, since then
p1 and p2 become proportional and their commutator vanishes.

The corrections to the usual law for addition of energy-momenta implicit
in equation (1.2) are interesting in themselves. Like the exotic statistics,
these corrections become negligible in the limit κ → 0. Under the name
of “doubly special relativity”, modified laws for adding energy-momentum
have already been studied by many authors. The paper by Freidel, Kowalski-
Glikman, and Smolin [14] gives a good account of doubly special relativity
in the context of 3d quantum gravity; their paper also explains more of the
history of this subject.

1.2 Quandle field theory

Besides exotic statistics and corrections to the usual rule for adding energy-
momenta, there is yet another surprising consequence of the switch from
vector-valued to group-valued energy-momentum as we turn on gravity in
3d physics. The classification of elementary particles changes!

In ordinary quantum field theory on Minkowski spacetime, the Lorentz
group acts on the space of possible energy-momenta, and the orbits of this
action correspond to different types of spin-zero particles. When spacetime
is 3d, the space of energy-momenta is so(2, 1), and the orbits look like this:
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If we write the energy-momentum as p = (E, px, py) and let p · p = E2 −
p2

x − p2
y, we have six families of orbits, corresponding to six types of spin-

zero particles:

1. positive-energy tardyons of mass m > 0: {p · p = m2, E > 0},
2. negative-energy tardyons of mass m > 0: {p · p = m2, E < 0},
3. positive-energy luxons: {p · p = 0, E > 0},
4. negative-energy luxons: {p · p = 0, E < 0},
5. tachyons of mass im for m > 0: {p · p = −m2},
6. particles of vanishing energy-momentum: {p = 0}.

Given any orbit Q ⊆ so(2, 1), the Hilbert space for a single particle of type
Q is just L2(Q).

The same philosophy applies when we turn on gravity, but now the space
of energy-momenta is not the Lie algebra so(2, 1) but the Lorentz group
itself. This acts on itself by conjugation, and the orbits are conjugacy
classes. Types of spin-zero particles now correspond to conjugacy classes
in the Lorentz group. Near the identity these conjugacy classes look just
like orbits in the Lie algebra, so the classification of particles reduces to
the above one in the limit of small energy-momenta. However, there are
important differences, which show up for large energy-momenta.

Most notably, under the map

p �−→ exp(κp),

the Lie algebra element p = (E, 0, 0) is mapped to a rotation by the angle
κE in the xy-plane. So, the holonomy around a stationary particle of energy
E is a rotation by the angle κE. This rotation does not change when we
add 2π/κ to the particle’s energy. Up to factors of order unity, this quantity
2π/κ is just the Planck energy. If we call it the Planck energy, then masses
in 3d quantum gravity are defined only modulo the Planck mass.

This “periodicity of mass” affects the classification of tardyons — that is,
the most familiar sort of particles, those with timelike energy-momentum.
Instead of positive-energy tardyons of arbitrary mass m > 0 and negative-
energy tardyons of arbitrary mass m > 0, we just have tardyons of arbitrary
mass m ∈ R/(2π/κ)Z.

More generally, for any Lie group G, the various allowed types of spin-
zero particles in 3d BF theory with gauge group G correspond to conjugacy
classes Q ⊆ G. Any conjugacy class is closed under the operations

g � h = ghg−1, h � g = g−1hg,
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and these operations satisfy equations making Q into an algebraic structure
called a “quandle” [19], whose definition we recall in Section 5. The Hilbert
space for a single particle of type Q is just L2(Q), defined using a measure
on Q that is invariant under these operations. In an easy generalization of
3d BF theory, we can study the exotic statistics of “particles of type Q” for
any quandle Q equipped with an invariant measure. This takes advantage
of the well-known relation between quandles and the braid group [11].

1.3 Exotic statistics in 4d BF theory

It would be wonderful to generalize all the above results to 4d gravity, but
for now all we can handle is a simpler theory: 4d BF theory. This may
eventually be relevant to gravity, since one can describe general relativity
in 4d either as the result of constraining 4d BF theory with a certain gauge
group, or perturbing around 4d BF theory with some other gauge group.
The first approach goes back to Plebanski [34], and it underlies a great deal
of work on spin foam models of quantum gravity [2, 30, 32], especially the
Barrett–Crane model. The second approach goes back to MacDowell and
Mansouri [25], and has recently been explored by Freidel and Starodubtsev
[15]. However, we do not dwell on these possible applications here. They
only focus our attention towards certain choices of gauge group:

Plebanski gravity: G = SO(3, 1)

MacDowell–Mansouri gravity:

{
G = SO(4, 1) Λ > 0
G = SO(3, 2) Λ < 0

Our idea is simply to increase the dimension of everything in the previous
section by 1. Thus, we consider BF theory on a 4d spacetime with the
worldsheets of several “closed strings” removed. We focus on the case where
the manifold representing space is R

3 − Σ, where Σ is an “n-component
unlink”: a collection of n unknotted unlinked circles. A flat connection on
R

3 − Σ gives us a group element for each circle, namely the holonomy of
some standard loop going around this circle.

So, just as before, we obtain n-tuples of elements of G. Moreover, any way
to exchange the circles in Σ gives a map from Gn to itself.

It is often said that exotic statistics are only possible when space has
dimension 2 or less. However, this folklore only applies to point particles.
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As pointed out by Balanchandran and others [1, 4, 29, 37, 38], exotic statis-
tics are possible for closed strings in 3d space, since there are topologically
non-trivial ways to exchange unknotted unlinked circles in R

3. The statis-
tics of such theories are governed not by the braid group Bn, but by a larger
group: the “loop braid group” LBn.

Using recent work of Lin [24], we show that this group is isomorphic to
the “braid permutation group” of Fenn, Rimányi, and Rourke [10]. This
is an apt name, because LBn has a presentation with generators si that
describe two strings trading places without passing through each other, just
as if they were point particles:

but also generators σi that describe one string passing through another.

So, this group is a kind of “hybrid” of the symmetric group and the braid
group. Indeed, the elements si generate a copy of the symmetric group Sn

in LBn, while the elements σi generate a copy of the braid group Bn.

In a 1d unitary representation of the loop braid group, the permutation
generators si all act as ±1, while the braid generators σi all act as an arbi-
trary phase q ∈ U(1). We could call particles that transform in this way
“abelian bose-anyons” and “abelian fermi-anyons”, respectively. They act
like bosons or fermions when we switch them using the generators si, but
like abelian anyons when we switch them using the generators σi.

BF theory gives us more interesting unitary representations of the loop
braid group: whenever the group G is unimodular, we obtain a unitary rep-
resentation of LBn on L2(Gn). All the groups listed above are unimodular,
so we get an interesting variety of exotic statistics for closed strings in 4d
BF theory.

We can also restrict attention to a specific conjugacy class Q ⊆ G and get
a unitary representation of the loop braid group on L2(Qn), as long as Q
is equipped with a measure invariant under conjugation. As already men-
tioned, in the case of 3d gravity a choice of conjugacy class in G = SO(2, 1)
essentially amounts to choosing a specific mass for our point particles, which
is a very natural thing to do. In the case of 4d BF theory with G = SO(3, 1),
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choosing a conjugacy class essentially amounts to choosing a specific mass
density for our closed strings.

2 The loop braid group

The loop braid group LBn consists of all ways a collection of oriented,
unknotted, unlinked circles can move around in R

3 and come back to their
original positions, perhaps trading places. More precisely, it consists of
“isotopy classes” of such motions. This group thus plays the same role in
describing the interchange of closed strings in R

3 that the symmetric group
Sn plays for point particles in R

3, and the braid group plays for point par-
ticles in R

2. In this section, we use the work of Lin [24] to obtain two
presentations of the loop braid group. First, however, we explain the sense
in which the loop braid group, the symmetric group and the braid group are
all examples of “motion groups”.

The general idea of a “motion group” goes back at least to Dahm’s
1962 thesis [9], which unfortunately was never published. In the 1970s and
80s, some papers by Wattenberg [40] and Goldsmith [17, 18] clarified and
expanded on Dahm’s work. More recently, McCool [26] and Rubinsztein
[35] have studied the motion group for unknotted and unlinked circles in
R

3. Surya has also given a description of the loop braid group as an iter-
ated semidirect product [37]. Much of this work considers the motion of
unoriented circles. Since we use oriented circles, we obtain a smaller motion
group, which lacks the “circle-flipping” operations that reverse orientations.

Quite generally, suppose that S is a smooth oriented manifold and Σ ⊆ S
is a smooth oriented submanifold. Let Diff(S) be the group of orientation-
preserving diffeomorphisms of S. Let Diff(S, Σ) be the subgroup of Diff(S)
maps that restrict to give orientation-preserving diffeomorphisms of Σ.

We define a “motion” of Σ in S to be a smooth map f : [0, 1] × S → S,
which we write as ft : S → S (t ∈ [0, 1]), with the following properties:

• for all t, ft lies in Diff(S);
• for all t sufficiently close to 0, ft is the identity;
• for all t sufficiently close to 1, ft is independent of t and lies in

Diff(S, Σ).

Intuitively, a motion is a way of moving Σ through S so that it comes back
to itself — not pointwise, but as a set — at t = 1. This suggests that one
can “multiply” motions by doing one after the other, and indeed this is true.
Given motions f and g, one can define a motion f · g called their “product”
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as follows:

(f · g)t =

⎧⎪⎨
⎪⎩

f2t for 0 ≤ t ≤ 1
2
,

g2t−1 ◦ f1 for
1
2

≤ t ≤ 1.

Given a motion f we can also define a motion called its “reverse”, denoted
f̄ , by:

f̄t = f1−t ◦ f−1
1 .

We say two motions f and g are “equivalent” if f̄ · g is smoothly homo-
topic, as a path in Diff(S) with fixed endpoints, to a path that lies entirely
in Diff(S, Σ). One can check that this is, indeed, an equivalence relation
and that the operations of product and reverse make equivalence classes of
motions into a group. This is called the “motion group” Mo(S, Σ).

Next we turn to examples:

• When Σ ⊂ R
d is a collection of n points and d > 2, Mo(Rd, Σ) is the

symmetric group Sn.
• When Σ ⊂ R

2 is a collection of n points, Mo(R2, Σ) is the braid group
Bn.

• When Σ ⊂ R
3 is a collection of n unknotted and unlinked oriented

circles, we call Mo(R3, Σ) the “loop braid group” LBn.

We shall use the work of Lin [24] to give two presentations of LBn. First,
note that there is a homomorphism

p : LBn → Sn

which simply forgets the details of the braiding, remembering only how the
circles get permuted in the process. The image of p is all of Sn. We call the
kernel of p the “pure loop braid group” PLBn.

Suppose, just to be specific, that Σ = �1 ∪ · · · ∪ �n where �1, . . . , �n are
disjoint unit circles in the xy-plane, lined up from left to right with their
centers on the x-axis. Lin proves that PLBn has a presentation with genera-
tors σij for i, j ∈ {1, . . . , n} with i �= j. The generator σij describes a motion
in which the ith circle floats up and over the jth circle, shrinks slightly and
passes down through the jth circle, expands to its original size, and then
moves straight back to its starting position. We draw this as follows:
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where for purely artistic reasons we let the jth circle move a bit to the left
in the process.

Here we are using a drawing style adapted from Carter and Saito’s work
on surfaces in 4d [8]. Crossings in a braid or knot are usually drawn with
an artificial “break” in one of the strands to indicate that it lies under the
other:

Similarly, Carter and Saito draw 3d projections of knotted surfaces in 4d,
indicating by a broken surface which one passes “under” the other in the
suppressed fourth dimension. In our context, we take this suppressed dimen-
sion to be one of the spatial dimensions, in order to make room for time,
which we decree to flow downward in all our diagrams. The broken sur-
faces in σij indicate whether one circle is above or below the other in the
suppressed spatial dimension, so that the following diagram and “movie”
illustrate the same process:

The inverse of σij is of course obtained by running the movie backwards,
which in diagrammatic notation becomes:

One advantage of this drawing style is that it immediately suggests
Reidemeister-like moves for loop braids, such as this:
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We shall study the loop braid group algebraically, relying on such diagrams
for our intuition.

Given Lin’s presentation of PLBn, we can obtain a presentation of LBn

using the short exact sequence

1 −→ PLBn
i−→ LBn

p−→Sn −→ 1.

First, note that there is a homomorphism

j : Sn −→ LBn

which takes a given permutation to what Lin calls a “permutation path”
in the motion group: a loop braid in which circles trade places without
any circle passing through another in a topologically non-trivial way. For
example, we can have them trade places while remaining on the xy-plane.
This map j is well defined since all such permutation paths are homotopic.
Moreover, the composite p ◦ j : Sn → Sn is the identity homomorphism on
Sn, so j is a splitting of the short exact sequence above.

Since j is one-to-one, we may identify elements of Sn with their images
in LBn. Since PLBn is a normal subgroup, elements of Sn act on PLBn via
conjugation. This allows us to define the semidirect product Sn � PLBn,
and thanks to our split exact sequence, we get an isomorphism

f : LBn −→ Sn � PLBn

g �−→ (p(g), j(p(g))−1g)

with inverse

f−1 : Sn � PLBn −→ LBn

(s, σ) �−→ sσ.

Writing the loop braid group as a semidirect product in this way, we easily
obtain a presentation for it.

Theorem 2.1. The loop braid group LBn has a presentation with generators
si for 1 ≤ i ≤ n − 1 and σij for 1 ≤ i, j ≤ n with i �= j, together with the
following relations.

(a) The relations for the standard generators si of Sn:

sisj = sjsi for |i − j| > 1, (2.1)

sisi+1si = si+1sisi+1 for 1 ≤ i ≤ n − 2, (2.2)

s2
i = 1 for 1 ≤ i ≤ n − 1. (2.3)
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(b) Lin’s relations for the generators σij of PLBn:

σijσk� = σk�σij for i, j, k, � distinct, (2.4)

σikσjk = σjkσik for i, j, k distinct, (2.5)

σijσkjσik = σikσkjσij for i, j, k distinct. (2.6)

(c) Relations expressing the action of Sn on PLBn:

siσi(i+1) = σ(i+1)isi for 1 ≤ i ≤ n − 1, (2.7)

skσij = σijsk for i, j, k, k + 1 distinct, (2.8)

sjσij = σi(j+1)sj for i, j, j + 1 distinct, (2.9)

siσij = σ(i+1)jsi for i, i + 1, j distinct. (2.10)

Proof. Since the presentation (a) of Sn is well-known, and Lin [24] proved
that PLBn has the presentation (b), to present their semidirect product LBn

it suffices to add relations that express the result of conjugating any of Lin’s
generators σij by the symmetric group generators sk. For 1 ≤ i ≤ n − 1
we have:

For i, j, k and k + 1 all distinct, we have:
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For i, j and j + 1 distinct, we have:

and using a similar picture we see that for i, i + 1 and j distinct, siσijsi
−1 =

σ(i+1)j . The reader may notice that we have not included all possible con-
jugations of generators of PLBn by generators of Sn — we would naively
expect two additional such classes, yielding two more relations:

sj−1σij = σi(j−1)sj−1 for i, j − 1, j distinct (2.11)

si−1σij = σ(i−1)jsi−1 for i − 1, i, j distinct (2.12)

but these follow, respectively, from (2.9) and (2.10) combined with (2.3).
So, we have precisely the relations in part (c), as desired. �

From this presentation of the loop braid group we now derive a
presentation with fewer generators. We keep all the generators si, but
replace the σij with new generators defined as follows:

σi = siσi(i+1)

for 1 ≤ i ≤ n − 1. We can draw these as follows:

where we twist the picture a bit in the second step. To see that the generators
si and σi indeed give a new presentation, note that we can express the
old generators σij in terms of these new ones as follows. First, repeatedly
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applying (2.9) we obtain:

σij = sj−1sj−2 · · · si+1σi(i+1)si+1si+2 · · · sj−2sj−1 for i < j.

If instead of (2.9) we use its equivalent form (2.11), we obtain:

σij = sjsj+1 · · · si−2σi(i−1)si−2 · · · sj+1sj for i > j.

Rewriting these in terms of the new generators σi, and in the second case
using relation (2.7), we obtain a way to write σij in terms of the new
generators:

σij =

{
sj−1sj−2 · · · siσisi+1si+2 · · · sj−2sj−1 for i < j

sjsj+1 · · · si−2σi−1si−1si−2 · · · sj+1sj for i > j
(2.13)

Sometimes it is more convenient to use an alternate formula, obtained by
applying (2.10), its equivalent form (2.12), and (2.7) again:

σij =

{
sisi+1 · · · sj−1σj−1sj−2 · · · si+1si for i < j

si−1si−2 · · · sj+1σjsjsj+1 · · · si−2si−1 for i > j.
(2.14)

What these formulas say is that when j �= i + 1 we can construct the loop
braid σij by permuting either the ith circle or the jth until they are adjacent,
braiding one through the other, and then permuting the circles back to where
they started.

The nice thing about using si and σi as generators of the loop braid group
is that si describes how two neighboring circles can trade places by going
around each other:

while σi describes how two neighboring circles can trade places with the
right one passing over and then down through the left one:

As a result, the generators si generate a subgroup of LBn isomorphic to the
symmetric group Sn, while the σi generate a subgroup isomorphic to the
braid group Bn. There are also “mixed relations” involving generators of
both kinds.
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Theorem 2.2. The loop braid group LBn has a presentation with generators
si and σi for 1 ≤ i ≤ n − 1 together with the following relations.

(a) Relations for the standard generators si of Sn:

sisj = sjsi for |i − j| > 1 (2.15)

sisi+1si = si+1sisi+1 for 1 ≤ i ≤ n − 2 (2.16)

s2
i = 1 for 1 ≤ i ≤ n − 1 (2.17)

(b′) Relations for the standard generators σi of Bn:

σiσj = σjσi for |i − j| > 1 (2.18)

σiσi+1σi = σi+1σiσi+1 for 1 ≤ i ≤ n − 2 (2.19)

(c′) The following mixed relations:

siσj = σjsi for |i − j| > 1 (2.20)

sisi+1σi = σi+1sisi+1 for 1 ≤ i ≤ n − 2 (2.21)

σiσi+1si = si+1σiσi+1 for 1 ≤ i ≤ n − 2 (2.22)

Proof. The proof is somewhat lengthy, so we defer it to the Appendix. It
is, however, simple to convince oneself using pictures that the given rela-
tions express topologically allowed moves for loop braids. Perhaps, the least
obvious of these is (2.22), for which we supply a visual proof below.

�

If we omit relations (2.22) we obtain the “virtual braid group” VBn

of Vershinin [39]. This plays a role in virtual knot theory analogous to
that of the usual braid group in ordinary knot theory. If we include these
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relations, which say:

then we obtain precisely the “braid permutation group” BPn of Fenn,
Rimányi and Rourke [10]. So, the loop braid group is isomorphic to the
braid permutation group.

The isomorphism LBn
∼= BPn yields a simplified diagrammatic way of

working with loop braids, which is in fact the method used by Fenn, Rimányi
and Rourke in their original paper on BPn. In the theory of “welded braids”,
the generators σi in BPn correspond to the kind of crossings found in ordi-
nary braids: , while the si describe “welded crossings”, drawn like this:
•. These crossings are called “welded” because one imagines that the two
strands have been “welded down” at the crossing. The point is that elements
of the abstract group presented in Theorem 2.2 can be represented either as
loop braid diagrams or as welded braid diagrams, as follows:

For the pure loop braid group PLBn, the above correspondence implies the
following welded braid pictures of the generators σi(i+1) and their inverses.
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The other generators σij can be obtained from these by conjugation, using
(2.13) or (2.14). For example:

Diagrammatic calcuations with welded braids — and hence with loop
braids — can be carried out by using the usual Reidemeister moves for real
crossings, along with “welded Reidemeister moves”:

which are of course simply graphical restatements of the relations in (a) and
(c′). The non-existence of the following move:

is the rationale for the term “welded braid” — we are not allowed to pass a
strand under the weld.

It is easy from the presentation in Theorem 2.2 to work out the
1-dimensional unitary representations of the loop braid group. If ρ : LBn →
U(1) is such a representation, we must have

ρ(si) = ±1

and
ρ(σi) = q

for all 1 ≤ i < n, where q ∈ U(1) is a fixed phase. We call the representa-
tions with ρ(si) = 1 “bose-anyons”, and the representations with ρ(si) = −1
“fermi-anyons”. These have been studied in physics at least since the work
of Balachandran [4], and recently Niemi has shown how they arise in the
dynamics of vortices in a quantum fluid [29].
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In Section 5, we describe more interesting unitary representations of the
loop braid group, using some technology which we now develop. In related
work, Szabo [38] has obtained a different class of representations using BF
theory with abelian gauge group. Surya [37] has also studied representations
of the loop braid group.

3 Motion groups and flat bundles

In this section, we recall Dahm’s [9] action of the motion group Mo(S, Σ)
on the fundamental group of S − Σ and describe how this gives a unitary
representation of the motion group on a certain Hilbert space of states for
BF theory on S − Σ.

We consider BF theory in n-dimensional spacetime. So, we take “space”
to be of the form X = S − Σ, where S is an oriented manifold of dimension
n − 1, and Σ ⊂ S is an oriented submanifold. We let G be a Lie group
and let P → X be a principal G-bundle. The “naive configuration space”
of BF theory is A0/G, where A0 is the space of flat connections on P and
G is the group of gauge transformations. By “naive” we mean that we are
ignoring boundary conditions; there are no boundary conditions to worry
about when X is compact, but we shall mainly be interested in two examples
where it is not:

1. X is R
2 with a finite set of points removed (describing point particles):

X = S − Σ, S = R
2, Σ = {z1, . . . , zn}.

2. X is R
3 with a finite set of unlinked unknotted circles removed (describ-

ing what one might call closed strings):

X = S − Σ, S = R
3, Σ = �1 ∪ · · · ∪ �n.

A rigorous study of BF theory may require that we impose boundary
conditions at Σ. We ignore this issue now, leaving it for future research.

The space A0/G is a bit difficult to handle. It is often more convenient
to start by fixing a basepoint ∗ ∈ X and working with A0/G0, where

G0 = {g ∈ G : g(∗) = 1}.

The group G/G0 ∼= G acts on A0/G0 in a natural way. This lets us form
A0/G as the quotient of the bigger space A0/G0 by this action of G.
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The advantage of the space A0/G0 is that any point [A] in this space gives
a homomorphism

hol([A]) : π1(X) → G

which sends any homotopy class of loops [γ] to the holonomy of A around
γ. This gives a map

hol : A0/G0 → hom(π1(X), G)

which is known to be one-to-one. Note that G acts on hom(π1(X), G) by
conjugation:

(gf)(γ) = gf(γ)g−1

where f : π1(X) → G is any homomorphism. Moreover, the map hol is
compatible with this group action:

hol([gA]) = g hol([A]).

So far we have fixed a principal G-bundle P . But, in gauge theory it is
often better to treat this bundle as variable — part of the physical field
along with the connection A. For example, path integrals in quantum
chromodynamics involve a sum over bundles, which represent instantons.
The mathematical advantage of treating P as variable is that all points of
hom(π1(X), G) are in the image of hol if we allow ourselves to vary P [22].
A point in this space represents a “G-bundle with flat connection over X,
mod gauge transformations that equal the identity at the basepoint”. Mod-
ding out by the rest of the gauge transformations we get a space known
as the “moduli space of flat bundles”, hom(π1(X), G)/G. This is the naive
configuration space for BF theory where we treat the bundle P as variable.

Applying Schrödinger quantization to this configuration space, we obtain
the (naive) Hilbert space for BF theory:

L2(hom(π1(X), G)/G)

Of course, defining this L2 space requires that we choose a measure on the
moduli space of flat bundles. Alternatively, we can try to form a Hilbert
space

L2(hom(π1(X), G))
on which G acts as follows:

(gψ)(f) = ψ(g−1f).

Again, this requires choosing a measure on hom(π1(X), G). Moreover, G will
only have a unitary representation on L2(hom(π1(X), G) if this measure is
G-invariant.

In Sections 4 and 6, we will show that for the two examples above, there
is a “natural” choice of G-invariant measure on hom(π1(X), G). In both
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these examples, the motion group Mo(S, Σ) acts on π1(X) and thus on
hom(π1(X), G). By saying a measure on hom(π1(X), G) is “natural”, we
simply mean that it is preserved by this action.

Using such a natural measure to define the Hilbert space L2(hom(π1(X),
G)), we obtain a unitary representation of the motion group on this Hilbert
space. This representation describes the statistics of point particles or closed
strings in BF theory. As we have seen, in the first example the motion group
is the braid group Bn, while in the 4d case it is the loop braid group LBn. So,
we obtain “exotic statistics” in both cases. This fact is somewhat familiar
in 3d, but less so in 4d. So, in the following sections we first review the 3d
case, and then move on to the 4d case after a brief digression on “quandle
field theory”.

Before doing this, however, let us see how the motion group acts on π1(X).
The idea goes back to Dahm’s original work on the motion group [9], and it
has been nicely explained by Goldsmith [17]. The idea is simple: elements
of the motion group Mo(S, Σ) give equivalence classes of diffeomorphisms
of X = S − Σ, and these act on homotopy classes of loops in X. The only
problem is that the fundamental group is defined using based loops, and
the diffeomorphisms used in the definition of the motion group need not
preserve the basepoint in X. Luckily, Wattenberg [40] has shown that we
can use compactly supported diffeomorphisms in the definition of the motion
group without changing this group. In the examples above, we can assume
without loss of generality that these diffeomorphisms are supported in a
fixed large ball containing Σ. So, if we choose a basepoint ∗ ∈ S that is
sufficiently far from Σ, we can assume this basepoint is preserved by all the
diffeomorphisms in the definition of the motion group. This makes it easy
to check that Mo(S, Σ) acts as automorphisms of π1(X).

4 Point particles in 3d BF theory

Now let us apply the general ideas of the previous section to the case of a
plane with n punctures:

X = S − Σ, S = R
2, Σ = {z1, . . . , zn}

If we interpret these punctures as “particles”, we shall see that a state of
3d BF theory on this space describes a collection of identical point particles
with exotic statistics governed by the braid group.

The fundamental group of X is the free group on n generators, so we have

hom(π1(X), G) = Gn
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The n group elements here are nothing but the holonomies of a flat
connection around based loops going clockwise around the particles:

Having described particles as punctures in this theory, let us now consider
what sort of statistics such particles obey. The previous section shows
that the interchange of identical particles is described by an action of the
n-strand braid group Bn on Gn, but we would like to work it out explicitly.
For simplicity, consider the case n = 2 and consider what happens when the
two particles switch places. As remarked earlier, there are infinitely many
topologically distinct ways for the particles to move around each other, but
they are all powers of the braid group generator σ1:

If the holonomies around the two particles are g1 and g2:

switching them via σ1 induces a diffeomorphism of the plane which deforms
the loops around which the holonomies are taken:
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To see how the system changes in this process, compare the final frame
in this “movie” to the first frame. Given that (g1, g2) ∈ G2 describes the
holonomies initially, a slight deformation of the loops in the final frame:

makes it clear that the corresponding holonomies around these loops in the
final configuration:

are (g′
1, g

′
2) = (g1g2g1

−1, g1). Thus the effect of switching the two particles
via σ1 is to send (g1, g2) to (g1g2g1

−1, g1).

We can work out the action of σ−1
1 in the same way, or simply derive it

algebraically from the fact that it must undo the effect of σ1. The easiest
way to remember the results is with this picture:

More generally, we have a right action of the braid group Bn on Gn given
as follows:

(g1, . . . , gi, gi+1, . . . , gn)σi = (g1, . . . , gigi+1g
−1
i , gi, . . . , gn).

As mentioned in the previous section, we also have a left action of G on Gn

via gauge transformations at the basepoint ∗. This works as follows:

g(g1, . . . , gn) = (gg1g
−1, . . . , ggng−1).

We would like a measure on Gn that is invariant under both these group
actions, so that the braid group and gauge transformations act as unitary
operators on L2(Gn). Such a measure exists whenever G is “unimodular”,
meaning that its left-invariant Haar measure is also right-invariant. A Lie
group is automatically unimodular if it is compact, or abelian, or semisimple.
In particular, the groups SO(p, q) are all unimodular. Since these groups act
on Minkowski spacetime in a way that preserves its Lebesgue measure, the
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Poincaré groups ISO(p, q) are also unimodular. Also, the identity component
of a unimodular group is unimodular, as is any covering space of a unimod-
ular group.

From this, we see that the 3d Lorentz group SO(2, 1) is unimodular,
as are its identity component SO0(2, 1) and the double cover of its identity
component, namely SL(2, R). All these are reasonable choices of gauge group
when treating 3d — or more properly, (2 + 1)d — Lorentzian gravity as a
BF theory.

Given a unimodular Lie group, Haar measure is typically not the only
measure invariant under conjugation: we can multiply Haar measure by any
function that only depends on the conjugacy class. As an extreme example,
we can even try to multiply Haar measure by a “delta function” supported on
one conjugacy class. More precisely, we can look for a conjugation-invariant
measure supported on a single conjugacy class of G. In this case, we might as
well be working not with G, but with just the conjugacy class. It turns out
that in the case of 3d quantum gravity, this amounts to studying identical
particles of a specified mass. This leads us to our next subject: quandle field
theory.

5 Quandle field theory

In the previous section, we considered BF theory in 3d, and were led to
a natural action of the braid group Bn on the space Gn for any group
G. Notice that we did not actually need the multiplication in G to define
this action; we only needed the operation of conjugation. This suggests
that we can work more generally, replacing the group G by some algebraic
structure that captures the properties of conjugation. Such a thing is called
a “quandle”.

More precisely, a “quandle” is a set Q equipped with two binary opera-
tions � : Q × Q → Q and � : Q × Q → Q called “left” and “right conjuga-
tion,” which satisfy:

(i) left idempotence: x � x = x,
(i′) right idempotence: x � x = x,
(ii) left inverse law: x � (y � x) = y,
(ii′) right inverse law: (x � y) � x = y,
(iii) left distributive law: x � (y � z) = (x � y) � (x � z),
(iii′) right distributive law: (x � y) � z = (x � z) � (y � z),

for all x, y, z ∈ Q. In general, the operations of left and right conjugation in
a quandle are neither associative nor commutative.



EXOTIC STATISTICS FOR STRINGS IN 4D BF THEORY 731

Quandles were first introduced as a source of knot invariants by David
Joyce [19] in 1982. Many examples of quandles can be found in the work
of Fenn and Rourke [11] and other authors [6, 19, 20]. For us, the most
important examples come from taking a group G, letting Q be any union of
conjugacy classes of G, and making Q into a quandle with

g � h = ghg−1, h � g = g−1hg.

We are especially interested in the cases, where Q is either the whole group
G or a single conjugacy class.

We can do some of the same things with quandles as with groups. For
example, we can define a “topological quandle” to be a topological space
that is also a quandle in such a way that the quandle operations � and �

are continuous [36]. If G is a Lie group and Q ⊆ G is a conjugacy class, Q
becomes a topological quandle with the induced topology.

Given a topological quandle Q, we define an “invariant measure” on Q to
be a Borel measure that is invariant under left conjugation by any element
of Q — or equivalently, invariant under right conjugation by any element of
Q. This implies that

∫
f(x) dμ(x) =

∫
f(q � x) dμ(x)

=
∫

f(x � q) dμ(x)

for any q ∈ Q and any integrable function f on Q. As noted earlier, invariant
measures on quandles are far from unique in general. In particular, we may
multiply an invariant measure on a Lie group by any class function and
obtain a new invariant measure.

In the previous section, we saw that the n-strand braid group Bn acts on
Gn for any group G. But, since our argument relied only on properties of
conjugation, it works just as well for a quandle. The idea is that we can
braid two elements of a quandle past each other using left conjugation:
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The inverse braiding uses right conjugation:

It is well known that with these rules, the braid group relations follow from
the quandle axioms. So, generalizing our result from the previous section,
we easily obtain:

Theorem 5.1. Suppose Q is a topological quandle equipped with an
invariant measure. Then there is a unitary representation ρ of the braid
group Bn on L2(Qn) given by

(ρ(σ)ψ)(q1, . . . , qn) = ψ((q1, . . . , qn)σ)

for all σ ∈ Bn, where Bn has a right action on Qn given by:

(q1, . . . , qi, qi+1, . . . , qn)σi = (q1, . . . , qi � qi+1, qi, . . . , qn).

There is also a unitary operator U(q) on L2(Qn) for each element q ∈ Q,
given by

(U(q)ψ)(q1, . . . , qn) = ψ(q � q1, . . . , q � qn).

The operators U(q) represent gauge transformations when Q is a group, so
we can think of them as representing some sort of “gauge transformation”
even when Q is a quandle. Of course, if Q is a conjugacy class in a group
G, there will be gauge transformations even for elements of G that do not
lie in Q.

It is instructive to work out the details in the case of (2 + 1)-dimensional
quantum gravity. This theory can be viewed as a BF theory with G being
the connected Lorentz group SO0(2, 1), or perhaps better, its double cover
SL(2, R). In either case, we shall see that different conjugacy classes Q
describe different types of spinless particles. The Hilbert space for n particles
of this type is L2(Qn), and Theorem 3 describes the exotic statistics and
gauge invariance of this n-particle system.
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In quantum field theory without gravity on 3d Minkowski spacetime, we
can describe the energy-momentum of a particle by an element p ∈ sl(2, R):

p =
(

px py + E
py − E −px

)

Note that

det p = E2 − p2
x − p2

y.

The adjoint action of SL(2, R) on its Lie algebra:

SL(2, R) × sl(2, R) → sl(2, R)

(g, p) �→ gpg−1

preserves the determinant of p. So, the adjoint action gives an action of
SL(2, R) as Lorentz transformations on the space of energy-momenta. As
explained in the Introduction, an orbit of this action is just a type of spin-
zero particle.

When we turn on gravity, we must describe energy-momenta not by
elements of the Lie algebra sl(2, R) but by elements of the group SL(2, R).
Particle types are then described not by adjoint orbits but by conjugacy
classes Q ⊆ SL(2, R). However, this new description is compatible with the
old one, at least for energy-momenta that are small compared to the Planck
energy 2π/κ. The reason is that we can identify group elements near the
identity with Lie algebra elements via the map

sl(2, R) −→ SL(2, R)

p �−→ exp(κp)

This maps any adjoint orbit of sl(2, R) into a conjugacy class of SL(2, R).
Indeed, it gives a one-to-one correspondence between the set of adjoint orbits
close to 0 ∈ sl(2, R) and the set of conjugacy classes close to 1 ∈ SL(2, R).
But, as mentioned in the Introduction, important differences show up for
large energy-momenta.

To understand the conjugacy classes in SL(2, R), it is handy to use the
representation

SL(2, R) =
{(

a + b c + d
c − d a − b

)
: a, b, c, d ∈ R, a2 − b2 − c2 + d2 = 1

}

which says SL(2, R) is geometrically a “unit hyperboloid” in a space of
signature (+−−+). Since conjugate matrices have the same eigenvalues,
the trace and thus the number a is an invariant of conjugacy classes. It is
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not a complete invariant, but it is except for matrices with tr g = ±2. Every
matrix in SL(2, R) is conjugate to one of these five kinds:

conjugate to. . . trace

rotations
(

cos α − sin α
sin α cos α

)
−2 ≤ tr g ≤ 2

boosts
(

eα 0
0 e−α

)
tr g ≥ 2

antiboosts
(

−eα 0
0 −e−α

)
tr g ≤ −2

shears
(

1 α
0 1

)
tr g = 2

antishears
(

−1 α
0 −1

)
tr g = −2.

Some explanation of this table is in order. Every “rotation” maps to
a rotation in the connected Lorentz group SO0(2, 1): in other words, a
transformation that preserves a timelike vector in 3d Minkowski spacetime.
Similarly, every “boost” maps to a transformation that preserves a spacelike
vector, and every “shear” maps to a transformation that preserves a light-
like vector. Since the two-to-one map from SL(2, R) to SO0(2, 1) maps the
matrix −1 to the identity, “antiboosts” get mapped to the same elements as
boosts, and “antishears” get mapped to the same elements as shears. (An
“antirotation” would be just another rotation.)

The above chart counts certain conjugacy classes more than once. First
of all, there is an overlap at tr g = 2, since the identity rotation is also the
identity shear and identity boost. Similarly, there is an overlap at tr g = −2,
since a rotation by π is also an antishear and an antiboost. Finally, all shears
(resp. antishears) with α > 0 are conjugate to each other, and all shears
(resp. antishears) with α < 0 are conjugate to each other. These are all the
redundancies.

Knowing this, we can list all the conjugacy classes in SL(2, R) without
any redundancies. However, it is less tiresome to list the conjugacy classes
in SO0(2, 1), since the elements ±g ∈ SL(2, R) get identified in SO0(2, 1), so
we do not need to worry about “antiboosts” and “antishears”.

Here are all the conjugacy classes in SO0(2, 1), and the corresponding five
types of spin-zero particles.
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1. For any 0 < m < 2π/κ there is a conjugacy class containing the
image of (

cos κm/2 − sin κm/2
sin κm/2 cos κm/2

)
∈ SL(2, R).

This corresponds to a tardyon of mass m.
2. For any 0 < m < ∞ there is a conjugacy class containing the image of

(
eκm/2 0

0 e−κm/2

)
∈ SL(2, R).

This corresponds to a tachyon of mass im.
3. There is a conjugacy class containing the image of(

1 1
0 1

)
∈ SL(2, R).

This corresponds to a positive-energy luxon.
4. There is a conjugacy class containing the image of(

1 −1
0 1

)
∈ SL(2, R).

This corresponds to a negative-energy luxon.
5. There is a conjugacy class containing the image of(

1 0
0 1

)
∈ SL(2, R).

This corresponds to a particle of vanishing energy-momentum.

The factors of 1/2 here arise from the double cover SL(2, R) → SO0(2, 1).
As explained in the Introduction, masses of tardyons really take values in
the circle R/(2π/κ)Z.

Each conjugacy class Q ⊆ SO0(2, 1) admits an invariant measure which is
unique up to an overall scale. So, Theorem 5.1 applies: we can form a Hilbert
space L2(Q) for particles of type Q, and more generally an n-particle Hilbert
space L2(Qn), on which the braid group and SO0(2, 1) gauge transformations
act as unitary transformations.

6 Strings in 4d BF theory

All the work in the previous two sections generalizes nicely from 3 to 4
dimensions, using the loop braid group as a substitute for the braid group.



736 JOHN C. BAEZ, DEREK K. WISE AND ALISSA S. CRANS

Let space be R
3 with n unknotted and unlinked circles removed:

X = S − Σ, S = R
3, Σ = �1 ∪ · · · ∪ �n.

The fundamental group of X is the free group on n generators, so for any
Lie group G we have

hom(π1(X), G) = Gn.

As explained in Section 3, a point in this space represents a G-bundle with
flat connection over X, mod gauge transformations that equal the identity
at a chosen basepoint. The n elements of G describing this point are just
the holonomies around the circles �1, . . . , �n. Physically, we think of these
circles as string-like “topological defects” where the flat connection on space
becomes singular.

We explained quite generally in Section 3 how the motion group Mo(S, Σ)
acts on hom(π1(X), G). In the present case, the motion group is just the
loop braid group LBn, and its generators act on hom(π1(X), G) = Gn as
follows:

(g1, . . . , gi, gi+1, . . . , gn)si = (g1, . . . , gi+1, gi, . . . , gn),

(g1, . . . , gi, gi+1, . . . , gn)σi = (g1, . . . , gigi+1g
−1
i , gi, . . . , gn).

This is easy to see using pictures. For example, the generator σ1 has the
following effect:

By an argument like the one we made in Section 3 for the ordinary braid
group action in 3d BF theory, it follows that σ1 acts on the holonomies g1, g2
by switching them while left conjugating g2 by g1:
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Similarly, the inverse of σ1 acts to switch the group elements while right
conjugating g1 by g2:

The generator s1 simply switches the holonomies g1 and g2:

It is easy to see that if G is unimodular, this action of the loop braid group on
Gn gives rise to a unitary representation of the loop braid group on L2(Gn).
And, just as in 3d, we can generalize this result to the case of a quandle:

Theorem 6.1. Suppose Q is a topological quandle equipped with an invariant
measure. Then there is a unitary representation ρ of the loop braid group
LBn on L2(Qn) given by

(ρ(σ)ψ)(q1, . . . , qn) = ψ((q1, . . . , qn)σ)

for all σ ∈ LBn, where LBn has a right action on Qn given by:

(q1, . . . , qi, qi+1, . . . , qn)si = (q1, . . . , qi+1, qi, . . . , qn)

(q1, . . . , qi, qi+1, . . . , qn)σi = (q1, . . . , qi � qi+1, qi, . . . , qn)

There is also a unitary operator U(q) on L2(Qn) for each element q ∈ Q,
given by

(U(q)ψ)(q1, . . . , qn) = ψ(q � q1, . . . , q � qn)

Proof. While the proof is straightforward, it is worth comparing Theorem
5.1 of Fenn, Rimányi and Rourke [10]. This says that the braid permutation
group BPn is the group of automorphisms of the free quandle on n genera-
tors. Since BPn is isomorphic to the loop braid group LBn, it follows that
LBn acts on Qn for any quandle Q. The action is precisely as above. �

Let us illustrate these ideas in the case where the gauge group is the
connected Lorentz group SO0(3, 1) or its double cover SL(2, C). With either
of these gauge groups, BF theory in 4d is sometimes called “topological
gravity”.
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In Section 5, we recalled the classification of conjugacy classes in SO0(2, 1)
and its double cover SL(2, R). The classification for SO0(3, 1) and its double
cover SL(2, C) is very similar, but simpler, because every complex number
has a square root. It is also more familiar, since any element of

SL(2, C) =
{(

a b
c d

)
: a, b, c, d ∈ C, ad − bc = 1

}

gives a fractional linear transformation

z �−→ az + b

cz + d
.

Such transformations are precisely the conformal transformations of the
Riemann sphere. Note that both 1 and −1 in SL(2, C) map to the iden-
tity fractional linear transformation, so the conformal group of the Riemann
sphere is

SL(2, C)/{±1} ∼= SO0(3, 1).

Indeed, Lorentz transformations can be thought of as conformal transfor-
mations of the “celestial sphere”: the set of light rays through an observer
at the origin [31]. A list of conjugacy classes in SO0(3, 1) can thus be read
off from the well-known classification of conformal transformations of the
Riemann sphere [28]. But in fact, it is easy enough to construct this list
from first principles.

Every element of SO0(3, 1) is either conjugate to the image of the shear(
1 1
0 1

)
∈ SL(2, C)

or conjugate to the image of(
λ 0
0 λ−1

)
∈ SL(2, C)

for some λ �= 0. The conjugacy class of the latter element is unchanged if we
make the replacement λ �→ 1/λ, and its image in SO0(3, 1) is unchanged if we
make the replacement λ �→ −λ. These replacements (and their composite)
are the only ways we can change λ without changing the conjugacy class of
the corresponding element of SO0(3, 1). Using this, we can see there are five
types of conjugacy classes in SO0(3, 1).

1. For any real m with 0 < m ≤ π/κ there is a conjugacy class containing
the image of (

eiκm/2 0
0 e−iκm/2

)
∈ SL(2, C).

An element conjugate to one of this form is called “elliptic”.
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2. For any purely imaginary m with 0 < Im(m) < ∞ there is a conjugacy
class containing the image of(

eiκm/2 0
0 e−iκm/2

)
∈ SL(2, C).

An element conjugate to one of this form is called “hyperbolic”.
3. For any m ∈ C with 0 < Re(m) < 2π/κ and 0 < Im(m) < ∞ there is

a conjugacy class containing the image of(
eiκm/2 0

0 e−iκm/2

)
∈ SL(2, C).

An element conjugate to one of this form is called “loxodromic”.
4. There is a conjugacy class containing the image of(

1 1
0 1

)
∈ SL(2, C).

An element conjugate to one of this form is called “parabolic”.
5. There is a conjugacy class containing the image of(

1 0
0 1

)
∈ SL(2, C).

This class contains only the identity element.

Now let us return to BF theory with gauge group SO0(3, 1), taking space
to be R

3 with a collection of unknotted unlinked circles �1, . . . , �n removed.
For brevity, let us call these circles “closed strings”. A flat connection on
space will have some holonomy gi ∈ SO0(3, 1) around the ith string. The
above list of conjugacy classes lets us list possible “types” of strings, just as
we used conjugacy classes in SO0(2, 1) to list types of point particles in 3d
gravity:

1. If gi is elliptic, it acts on Minkowski spacetime as a spatial rotation
in some reference frame. In this reference frame, parallel transport
around the string �i is a spatial rotation by some angle 0 < θ ≤ π about
some axis. (A rotation by an angle θ > π is a rotation by θ − π about
the opposite axis.) This angle θ is proportional to the real number m
which appears in item 1 of the above list, as follows:

θ = κm.

By analogy to 3d gravity, we could call the string a “tardyon” in this
case, and call the number m its “mass density”. The number m is real
and takes values 0 < m ≤ π/κ.

2. If gi is hyperbolic, it acts on Minkowski spacetime as a boost in some
reference frame. In this reference frame, parallel transport around
the string �i is a boost with rapidity 0 < β < ∞ along some axis. The
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rapidity β is proportional to the imaginary number m which appears
in item 2 of the above list, as follows:

β = κ Im(m).

By analogy to 3d gravity, we could call the string a “tachyon” in this
case, and call the number m its “mass density”. The number m is
purely imaginary and takes values in the upper half of the imaginary
axis: 0 < Im(m) < ∞.

3. If gi is loxodromic, it acts on Minkowski spacetime as a combined
rotation and boost about the same axis in some reference frame. In this
reference frame, parallel transport around the string �i is a combination
of a rotation by an angle 0 < θ < 2π and a boost with rapidity 0 < β <
∞ about the same axis, where

θ = κ Re(m), β = κ Im(m).

This case has no analogue in 3d gravity. We can still think of m as
some sort of mass density, but it is complex, with 0 < Re(m) < 2π/κ
and 0 < Im(m) < ∞.

4. If gi is parabolic, it acts on Minkowski spacetime as a Lorentz transfor-
mation fixing a single null vector. By analogy to 3d gravity, we could
call the string a “luxon” in this case, and say m = 0.

5. If gi is the identity, we can say the string carries no energy-momentum,
and again say m = 0.

Each of these conjugacy classes Q ⊆ SO0(3, 1) is a quandle. The ques-
tion then arises which of these quandles admits an invariant measure, and
whether this measure is unique up to scale. One can work this out on a
case-by-case basis.

One important case is when Q is the conjugacy class containing all
rotations by some fixed angle 0 < θ < π. This conjugacy class corresponds
to a “tardyonic” closed string with a given mass density 0 < m ≤ π/κ. It is
easy to see that this conjugacy class Q indeed admits an invariant measure.
To see this, note that to specify a rotation by the angle θ one must first pick
a future-pointing unit timelike vector u ∈ R

4, to split Minkowski spacetime
into space and time, and then pick a unit spacelike vector v orthogonal
to u, to serve as the axis of rotation. The allowed choices of u lie in the
hyperboloid

H = {(t, x, y, z) : t2 − x2 − y2 − z2 = 1, t > 0}.

This hyperboloid H is a Riemannian submanifold of R
4. An allowed choice of

u together with v amounts to a point in SH, the unit sphere bundle of H. So,
we have Q ∼= SH. Since the unit sphere bundle of a Riemannian manifold is
itself a Riemannian manifold in a natural way, we get a well-defined Lebesgue
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measure on SH and thus Q, which is invariant under SO0(3, 1), since our
construction respected the Lorentz group symmetry.

Given an invariant measure on Q, we obtain a Hilbert space L2(Qn) for
n strings of type Q. Note that we do not try to “symmetrize” the states in
this Hilbert space. Instead, we describe the statistics using a representation
of the loop braid group, following Theorem 6.1. Of course, one should work
out the details explicitly, but we leave this for future research.

7 Conclusions

Much more needs to be done to ferret out the physical significance of the
theory we have been considering here. First, there are some nice projects
for the mathematician. One should determine for various Lie groups G
which conjugacy classes Q ⊆ G admit invariant measures, and when these
invariant measures are unique up to an overall scale. We have only done
this for G = SO0(2, 1), but for applications to 4d physics other groups are
more relevant — especially the Lorentz, Poincaré, deSitter and anti-deSitter
groups. Then, given a conjugacy class Q ⊆ G with an invariant measure, one
should work out explicitly the representation of the loop braid group LBn

on the Hilbert space L2(Qn), if possible decomposing this representation
into irreducibles, so as to understand in detail the workings of the exotic
statistics. It would also be interesting to study how, in the κ → 0 limit, the
exotic statistics approach ordinary bosonic statistics.

For the physicist, one interesting project would be to study the dynamics
and interactions of the “closed strings” discussed at the purely kinematical
level here. In a paper with Perez [3], we describe a Lagrangian whereby
these objects can couple to the fields in BF theory. We work out the equa-
tions of motion and propose a strategy for quantizing the resulting the-
ory, analogous to the known quantization of point particles coupled to 3d
gravity [33].

A more ambitious project would be to generalize all our results from
collections of unlinked unknotted circles to arbitrary embedded graphs.
Finally, a still more ambitious project would be to use these ideas as part
of a perturbative expansion of MacDowell–Mansouri gravity about 4d BF
theory, as proposed by Freidel and Starodubtsev [15].

Appendix A

Here we present a proof of Theorem 2.2 on p. 15.
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Proof. We begin by demonstrating that the relations in the statement of
Theorem 2.2 follow from those given in Theorem 2.1. It clearly suffices to
show that the relations in (b′) and (c′) follow from the relations in (a), (b)
and (c).

In what follows, we make frequent use of the correspondence between
generators σij of PLBn and generators σi of LBn as given in (2.13) and
(2.14). In fact, since these follow from different relations in the presentation
of Theorem 2.1, it suffices for our purposes to take one expression from each
of these, say

σij =

{
sisi+1 · · · sj−1σj−1sj−2 · · · si+1si for i < j,

sjsj+1 · · · si−2σi−1si−1 · · · sj+1sj for i > j.
(A.1)

These representations of σij follow directly from the definition of σi along
with the relations (2.7), (2.9), and (2.10).

• Relation (2.20): We wish to show that sjσi = σisj for |i − j| > 1. To
check this, we begin with relation (2.8) in the form:

sjσi(i+1) = σi(i+1)sj ,

where |i − j| > 1. Using (A.1) above, this becomes:

sjsiσi = siσisj .

Applying relation (2.1) of to the left-hand side and then cancelling si

from each side gives sjσi = σisj when |i − j| > 1, which is (2.20).
• Relation (2.21): We wish to show that sisi+1σi = σi+1sisi+1 for 1 ≤

i ≤ n − 2. Beginning with relation (2.9) with j = i + 1, we obtain:

si+1σi(i+1) = σi(i+2)si+1.

By (A.1) this gives:

si+1siσi = sisi+1σi+1sisi+1.

Multiplying on the right by si+1si and on the left by sisi+1, we have:

σisi+1si = sisi+1sisi+1σi+1

= sisisi+1siσi+1 by (2.2)

= si+1siσi+1 by (2.3)

This can be rewritten as sisi+1σi = σi+1sisi+1, which is (2.21).
• Relation (2.22): We wish to show that σiσi+1si = si+1σiσi+1 for 1 ≤

i ≤ n − 2. To verify this we use relation (2.5) with i, i + 1 and i + 2,
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which gives:

σi(i+2)σ(i+1)(i+2) = σ(i+1)(i+2)σi(i+2).

By (A.1) this becomes:

(sisi+1σi+1si)(si+1σi+1) = (si+1σi+1)(sisi+1σi+1si).

Applying relation (2.21) on the left hand side gives:

sisi+1sisi+1σiσi+1 = (si+1σi+1)(sisi+1σi+1si).

Multiplying by sisi+1si on the left produces:

si+1σiσi+1 = sisi+1sisi+1σi+1sisi+1σi+1si

= si+1siσi+1sisi+1σi+1si by (2.16)

= σiσi+1si by (2.21)

which is (2.22).
• Relation (2.18): We wish to show that σiσj = σjσi for |i − j| > 1. To

do so, we use relation (2.4) with i, i + 1, j, j + 1, which are clearly all
distinct for |i − j| > 1. We therefore have:

σi(i+1)σj(j+1) = σj(j+1)σi(i+1),

which, by (A.1), becomes:

siσisjσj = sjσjsiσi.

Applying (2.20) to both sides of this equation, followed by relation
(2.1), we obtain:

σiσj = σjσi

with |i − j| > 1, which is (2.18).
• Relation (2.19): We wish to show that σiσi+1σi = σi+1σiσi+1 for 1 ≤

i ≤ n − 2. To check this we start with relation (2.6) with i, i + 1, and
i + 2, which are clearly all distinct. Thus, we have:

σi(i+1)σ(i+2)(i+1)σi(i+2) = σi(i+2)σ(i+2)(i+1)σi(i+1).

Using the correspondence given in (A.1) and cancelling si from both
sides, we obtain:

si+1σi+1siσi+1si+1siσi = σiσi+1si+1sisi+1σi+1si

= σiσi+1sisi+1siσi+1si by (2.2)

= σiσi+1siσisi+1 by (2.21), (2.3)

= si+1σiσi+1si+1 by (2.22).

Cancelling si+1 on the left and multiplying by si+1 on the right
produces:

σiσi+1σi = σi+1siσi+1si+1siσisi+1

= σi+1σiσi+1
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where in the last step we used (2.5) in the form siσiσi+1si+1 = σi+1si+1
siσi. This is (2.19).

The loop braid group thus has generators that satisfy all of the
relations of the braid permutation group. It remains to show that
these relations are sufficient, which we do by demonstrating that the
relations in the statement of Theorem 2.1 follow from those given in
Theorem 2.2. In this direction of the proof it is convenient to use both
of the equivalent expressions (2.13) and (2.14) as the correspondence
between generators σi and σij .

• Relation (2.7): This relation simply says siσi(i+1) = σ(i+1)isi, which is
immediate from (A.1) since both sides are equal to σi.

• Relation (2.8): We wish to show skσij = σijsk, whenever i, j, k, k + 1
are distinct. When either k + 1 < i < j or i < j < k, sk commutes
with each of the factors in the expansion

σij = sisi+1 · · · sj−1σj−1sj−2 · · · si+1si

by (2.15) and (2.20). Similarly, when k + 1 < j < i or j < i < k, sk

commutes with each factor in

σij = sjsj+1 · · · si−2σi−1si−1 · · · sj+1sj .

When i < k < k + 1 < j we also need two applications of (2.16):

skσij = sksi · · · sj−1σj−1sj−2 · · · si

= si · · · sk−2sksk−1sksk+1 · · · sj−1σj−1sj−2 · · · si by (2.15)

= si · · · sk−2sk−1sksk−1sk+1 · · · sj−1σj−1sj−2 · · · si by (2.16)

= si · · · sk−2sk−1sksk+1 · · · sk−1sj−1σj−1sj−2 · · · si by (2.15)

= si · · · sj−1σj−1sj−2 · · · sk+1sk−1sksk−1sk−2 · · · si by (2.15), (2.20)

= si · · · sj−1σj−1sj−2 · · · sk+1sksk−1sksk−2 · · · si by (2.16)

= σijsk by (2.15)

The only remaining case is j < k < k + 1 < i, which is handled
similarly.

• Relation (2.9): We wish to show that sjσij = σi(j+1)sj whenever i �=
j + 1. When i < j we have:

sjσij = sisi+1 · · · sjsj−1σj−1sj−2 · · · si+1si by (2.15)

= sisi+1 · · · sj−1sjsj−1sjσj−1sj−2 · · · si+1si by (2.16)

= sisi+1 · · · sj−1sjσjsj−1sjsj−2 · · · si+1si by (2.20)

= σi(j+1)sj by (2.15), (A.1)

and the case i > j + 1 is similar.
• Relation (2.10): The proof that siσij = σ(i+1)jsi is essentially the same

as the proof of (2.9) above.
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• Relation (2.4): We wish to show σijσk� = σk�σij , whenever i, j, k, and
� are distinct. Naively there are 4! orderings of i, j, k, � to consider, but
symmetry of the relation implies only eight are independent. All cases
are proved similarly; we demonstrate only the case i < j < k < �:

σijσk� = (si · · · sj−1σj−1sj−2 · · · si)(sk · · · s�−1σ�−1s�−2 · · · sk)

= sk · · · s�−1(si · · · sj−1σj−1sj−2 · · · si)

(σ�−1s�−2 · · · sk) by (2.15), (2.20)

= sk · · · s�−1σ�−1(si · · · sj−1σj−1sj−2 · · · si)

(s�−2 · · · sk) by (2.20), (2.18)

= (sk · · · s�−1σ�−1s�−2 · · · sk)

(si · · · sj−1σj−1sj−2 · · · si) by (2.15), (2.20)
= σk�σij .

• Relation (2.5): We wish to show that σikσjk = σjkσik when i, j, k are
distinct. We have three independent cases: i < j < k, i < k < j, and
k < i < j. In the case i < j < k, we first note that if j �= i + 1, then
by (2.8) and (2.9) we have:

σikσjk = sj−1(σikσ(j−1)k)sj−1

and σjkσik = sj−1(σ(j−1)kσik)sj−1.

By repeated application of these facts, it suffices to consider the sub-
case where j = i + 1. Similarly, if k �= j + 1, we can use (2.8) and
(2.10) to reduce to the case where k = j + 1. Thus it suffices to con-
sider only the cases where i, j, k are consecutive:

σi(i+2)σ(i+1)(i+2) = (sisi+1σi+1si)(si+1σi+1)

= sisi+1sisi+1σiσi+1 by (2.21)

= si+1siσiσi+1 by (2.16)

= si+1sisi+1σiσi+1si by (2.22)

= si+1σi+1sisi+1σi+1si by (2.21)
= σ(i+1)(i+2)σi(i+2).

This proves the case i < j < k. The remaining two cases are similar.
• Relation (2.6): We wish to show that σijσkjσik = σikσkjσij when i, j, k

are distinct. In light of (2.5) this equation is symmetric under the
interchange of i and k, and this symmetry reduces the number of
independent cases to 3: i < j < k, i < k < j, and j < i < k. In the
case i < j < k, we first note that if j �= i + 1, then by (2.8) and (2.9)
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we have

σijσkjσik = sj−1(σi(j−1)σk(j−1)σik)sj−1

and σikσkjσij = sj−1(σikσk(j−1)σi(j−1))sj−1

By repeated application of these facts, it suffices to consider the sub-
case where j = i + 1. Similarly, if k �= j + 1, we can use (2.8) and
(2.10) to reduce to the case where k = j + 1. Thus it suffices to con-
sider only the cases where i, j, k are consecutive:

σi(i+1)σ(i+2)(i+1)σi(i+2) = (siσi)(σi+1si+1)(sisi+1σi+1si)

= siσiσi+1sisi+1siσi+1si by (2.16)

= siσiσi+1siσisi+1 by (2.21)

= sisi+1σiσi+1σisi+1 by (2.22)

= sisi+1σi+1σiσi+1si+1 by (2.19)
= σi(i+2)σi(i+1)σ(i+2)(i+1)

= σi(i+2)σ(i+2)(i+1)σi(i+1) by (2.5)

This proves the case of i < j < k. The other two independent cases
are similar.

Thus, the relations of Theorem 2.2 imply those of Theorem 2.1. �

As pointed out by Blake Winter, one can also prove Theorem 2.2 as
follows. Fenn, Rimányi, and Rourke [10] show that the braid permuta-
tion group BPn is isomorphic to the subgroup of Aut(Fn) generated by all
permutations of basis elements, together with all operations of conjugat-
ing one basis element by another. Let X be R

3 with unlinked unknotted
circles �1, . . . , �n removed. As we have seen, π1(X) = Fn, the free group
on n generators, so by the work of Dahm, the loop braid group acts as
automorphisms of Fn. Let D : LBn → Aut(Fn) be the resulting homomor-
phism. Goldsmith [17] shows that the image of D is precisely the above
subgroup of Aut(Fn) and that, moreover, D is one-to-one. It follows that
LBn and BPn are isomorphic. Since Fenn, Rimányi and Rourke prove that
BPn has the presentation given in Theorem 2.2, it follows that LBn also has
this presentation.

After this paper appeared on the arXiv, Sumati Surya pointed out that
Theorem 2.2 can also be proved using results of Fuks-Rabinowitz [16] and
McCullough and Miller [27].
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