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Abstract

It has recently been conjectured that the closed topological string wave
function computes a grand canonical partition function of Bogomol’nyi–
Prasad–Sommerfield (BPS) black hole states in four dimensions: ZBH =
|ψtop|2. We conjecture that the open topological string wave function
also computes a grand canonical partition function, which sums over
black holes bound to BPS excitations on D-branes wrapping cycles of
the internal Calabi–Yau: Zopen

BPS = |ψopen
top |2. This conjecture is verified

in the case of Type IIA on a local Calabi–Yau three-fold involving a
Riemann surface, where the degeneracies of BPS states can be computed
in q-deformed two-dimensional Yang–Mills theory.
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1 Introduction

The connection between topological strings and four-dimensional BPS black
holes has been studied in recent years [1–3], leading to a conjecture [4]
that identifies the mixed grand canonical partition function of BPS black
hole states with the squared norm of the topological string wave function:
ZBH = |ψtop|2. This conjecture has been checked for certain Calabi–Yau
three-folds [5–7]; see also the recent related work [8–10]. It is natural to ask
how the conjecture generalizes to the case of open topological strings. Our
primary aim in this paper is to advance a conjecture about what the open
topological string counts, and to check it in the case of certain non-compact
Calabi–Yau spaces.

We will mainly concentrate on the Type IIA superstring (and correspond-
ingly the topological A model) on a non-compact Calabi–Yau three-fold. In
the closed string context, one defines the mixed black hole ensemble by
fixing the number of D4 and D6-branes (magnetic charges) whereas sum-
ming over all possible numbers of D2 and D0-branes bound to them (electric
charges), weighed by chemical potentials; this was the setup investigated in
refs. [5,6]. In our case, the Type IIA background will additionally include a
finite number of “background” D4-branes, which wrap Lagrangian 3-cycles
of the Calabi–Yau and fill a 1+1 dimensional subspace of Minkowski space-
time. In the presence of these background D4-branes one gets a gauge theory
in 1+1 dimensions, containing new BPS states. The role of the electric
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charges is played by open D2-branes, wrapped on holomorphic discs end-
ing on the Lagrangian 3-cycles, whereas the magnetic charges are domain
walls in the 1+1 dimensional theory. We conjecture that the full topologi-
cal string amplitude, including contributions from open strings, is counting
degeneracies of these BPS states, bound to D6, D4, D2 and D0-branes:

Zopen
BPS = |ψopen

top |2. (1.1)

Here, Zopen
BPS is the partition function of a mixed grand canonical ensemble;

in this ensemble the D6 and D4-brane charges, as well as the domain wall
charge, are fixed (and related to the real part of the topological string mod-
uli), whereas chemical potentials are turned on for the D2 and D0-branes
(giving the imaginary parts of the moduli), including the open D2-branes.

Our proposal is necessarily more tentative than the one given in ref. [4],
because one of the major planks supporting the conjecture there is miss-
ing here: the large-charge macroscopic/gravitational description of the BPS
states we are counting has not been studied, nor has the analog of the attrac-
tor mechanism for these states, so we do not even have a classical derivation
of the entropy. Further investigations in this direction would be extremely
useful to check our conjecture.

Although we do not understand the macroscopic description of these BPS
states, we can still compare |ψopen

top |2 to a partition function computed from
their microscopic description, in cases where such a description is available.
In this article, we use such a description to check our proposal on a particu-
lar non-compact Calabi–Yau space supporting a compact Riemann surface.
This case was previously discussed in refs. [5, 6] where the closed string
conjecture was verified. We find that our conjecture also holds in this case.

The organization of this article is as follows. In Section 2, we review the
conjecture in the closed string case and review its confirmation in the con-
text of local Riemann surfaces inside a Calabi–Yau. In Section 3, we explain
the unexpected appearance of open topological string amplitudes in ref. [6],
reinterpreting them in terms of purely closed topological strings along the
lines of the original conjecture [4]. In Section 4, we discuss the wave function
nature of the open topological string. In Section 5, we introduce additional
branes in our physical string background and state our main conjecture.
In Section 6, we check the conjecture in the context of a local Calabi–Yau
geometry near a Riemann surface with Lagrangian D-branes included. Most
of the computations are relegated to the appendices: In Appendix A, we fix
some group theory conventions and review some basic group theory facts.
In Appendix B, we review the q-deformed Yang–Mills theory in two dimen-
sions and the computation of its amplitudes by gluing, including insertion of
some eigenvalue freezing operators important for this article. In Appendix C,
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we express the wave function of q-deformed 2d Yang–Mills on the disc in
terms of theta functions. Finally, Appendix D discusses many issues related
to the large N limit of our computations, and the factorization of the BPS
partition function at large N in terms of topological and anti-topological
contributions. In particular, we give a physical explanation of the factoriza-
tion of the q-deformed Yang–Mills amplitudes in the large N limit.

2 The closed string case

In ref. [4], a duality was conjectured which relates counting of microstates
of supersymmetric black holes, which arise in compactification of Type II
string theory on a Calabi–Yau three-fold X and closed topological string
theory on X. In this section, we review this conjecture and one case in
which it has been explicitly checked.

Consider Type IIA on X × R
3,1. One can obtain charged BPS black holes

in R
3,1 by wrapping D6, D4, D2 and D0-branes over holomorphic cycles in X.

The charges of the black hole are determined by the choice of holomorphic
cycles; the intersection pairing in X gives rise to the electric–magnetic pair-
ing in R

3,1, and we refer to D6 and D4-brane charges as “magnetic” whereas
D2 and D0-brane charges are “electric.” Then one can define a mixed ensem-
ble of BPS black hole states by fixing the D6 and D4-brane charges Q6, Q4,
and summing over D2 and D0-brane charges with fixed chemical potentials
ϕ2, ϕ0. One can write a partition function for this ensemble,

ZBH(Q6, Q4, ϕ2, ϕ0) =
∑

Q2,Q0

ΩQ6,Q4,Q2,Q0 e−Q2ϕ2−Q0ϕ0 . (2.1)

Here ΩQ6,Q4,Q2,Q0 is the contribution from BPS bound states with fixed
D-brane charge.

The conjecture of ref. [4] is that

ZBH(Q6, Q4, ϕ2, ϕ0) = |ψtop(gtop, t)|2, (2.2)

where ψtop(gtop, t) denotes the A model topological string partition function,
evaluated at the topological string coupling1

gtop =
4πi

iϕ0
π + Q6

(2.3)

and Kähler parameter

t =
1
2
gtop

(
i
ϕ2

π
+ Q4

)
. (2.4)

1Q4 is naturally a class in H4(X, Z), which we are relating to t ∈ H2(X, C), and Q6 is
naturally a class in H6(X, Z), which we are relating to H0(X, C) = C.
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The real parts of the parameters (2.3) and (2.4) are dictated by the “attractor
mechanism” of N = 2, d = 4 supergravity [11, 12], which relates the moduli
of X near a black hole horizon to the black hole charges.

One can (at least formally) invert the relation (2.2) to recover the micro-
canonical degeneracies Ω from |ψtop|2, via the integral formula

ΩQ6,Q4,Q2,Q0 =
∫

dϕ2 dϕ0 eQ0ϕ0+Q2ϕ2 |ψtop|2. (2.5)

This formula has a natural interpretation from the point of view of the wave
function interpretation of ψtop developed in [13, 14] as an interpretation
of the holomorphic anomaly [15, 16]. Namely, equation (2.5) expresses Ω
as the “Wigner function” (phase-space density) associated to ψtop. The
background-independent generalization of this transform and its relation to
the counting of black hole states has been further elucidated in ref. [17].

The formula (2.5) also illustrates a crucial point about the conjecture: in
order to use it to compute Ω, one would need to know the full |ψtop|2, not
only its asymptotic expansion for gtop � 1. Put another way, knowing the
BPS degeneracies Ω is in some sense equivalent to having a non-perturbative
completion of |ψtop|2.

2.1 A solvable example

In this section, we review the work of refs. [5,6] which argued that the con-
jecture (2.2) holds in the case where X is a particular non-compact Calabi–
Yau three-fold, namely the total space of a holomorphic vector bundle over
a compact Riemann surface Σ of genus g,

X = L−p ⊕ Lp+2g−2 → Σ, (2.6)

for some p > 0.2

The idea is that for this X one can use two-dimensional Yang–Mills the-
ory to compute ZBH, as follows. Suppose we wrap N D4-branes on the
holomorphic 4-cycle

D = L−p → Σ. (2.7)
Then the theory on the D4-branes (in the Calabi–Yau directions) is the
N = 4 supersymmetric Yang–Mills theory, or more precisely a topologically
twisted version of that theory, as explained in ref. [18]. The path integral
in this theory includes configurations in which D0-branes, and D2-branes
wrapping Σ, are bound to the D4-branes. Hence the partition function of

2By Lk we mean a holomorphic line bundle of degree k over Σ.
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the four-dimensional twisted supersymmetric gauge theory computes a sum
over the mixed ensemble of BPS states which we considered above. The D4
and D6-brane charges are:

Q4 = N [D], (2.8)

Q6 = 0. (2.9)

The chemical potentials for the brane charges are roughly given by the
masses of the branes (for the D2-branes we turn on a Ramond–Ramond
field θ):

ϕ0 = 4π2/gs, (2.10)

ϕ2 = 2πpθ/gs. (2.11)

Since the gauge theory sums over all brane charges we can now write3

ZYM = ZBH. (2.12)

It was argued in ref. [5] that, for the purpose of computing ZYM, we can
restrict to field configurations in the N = 4 theory which are invariant under
the U(1) action on the fibers of L−p. One then obtains ZYM as the partition
function of a q-deformed Yang–Mills theory on Σ (see Appendix B), where
Σ has area p and the parameters are fixed by

θYM = θ, g2
YM = gs, q = e−gs . (2.13)

The q-deformed Yang–Mills theory is a relative of the ordinary Yang–Mills
theory in two dimensions, and shares with that theory the property of being
exactly solvable; the topological string on X is also exactly solvable to all
orders in perturbation theory (using recent results of ref. [19] in the case
g > 1). Hence we can use X as a testing ground for (2.2). More precisely,
since we do not have a good understanding of the non-perturbative topo-
logical string, what we can do is look at the asymptotic expansion of |ψtop|2
in the limit gs � 1, with t fixed. On the physical side this corresponds to
taking ϕ0, ϕ2, and N to infinity with fixed ratios (this is a ’t Hooft limit in
the Yang–Mills theory).

In this limit one finds that ZYM factorizes into a sum of “conformal
blocks,” each given by the topological string on X, with some D-branes

3There are some subtleties because of the non-compactness of X, as noted in ref. [6]:
ZYM turns out to give a sum over finitely many sectors, each with a gs-dependent prefactor.
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inserted as we will explain below:

ZYM(ϕ0, ϕ2, N) =
∑

R′
1,...,R′

|2g−2|

∑

l∈Z

ψ
R′

1,...,R′
|2g−2|

top (gtop, t + lpgtop)

× ψ
R′

1,...,R′
|2g−2|

top (gtop, t − lpgtop) + O(e−N ). (2.14)

Here t and gtop are as dictated by (2.3) and (2.4), namely,

gtop = 4π2/ϕ0 = gs, (2.15)

t =
1
2
gtop (#(Σ ∩ D)N + iϕ2/π) =

1
2
N(p + 2g − 2)gs + ipθ. (2.16)

The index l was interpreted in ref. [5] as measuring the Ramond–Ramond
flux through Σ. The labels R′

i are subtler; they appear only when g �= 1,
in which case they were interpreted in ref. [6] as running over boundary
conditions on |2g − 2| infinite stacks of D-branes (which we christen “ghost”
D-branes) in the topological string. Each stack lies on a Lagrangian sub-
manifold of X, intersecting D in an S1 in the fiber of Lp+2g−2 over a point.
The boundary conditions on each stack are specified by a choice of a Young
diagram R′.4

The form of (2.14) looks different from that of (2.2). Nevertheless, as
we will explain in the following section, the sum over Young diagrams R′

i is
indeed consistent with (2.2), when we take into account extra closed string
moduli at infinity.

3 Revisiting the closed string theory

In this section, we revisit the relation between 2-d Yang–Mills theory and
the closed topological string, with the aim of giving a better interpretation
to the sum over chiral blocks and the appearance of “ghost” D-branes.

As we reviewed in Section 2, the partition function of the twisted U(N)
Yang–Mills theory on D = L−p → Σ factorizes at large N as a sum of blocks,
each of which can be interpreted as the square of a topological string ampli-
tude involving 2g − 2 infinite stacks of ghost branes. Introducing a U(∞)-
valued holonomy U ′

i = eu′
i on each stack of ghost branes, we can rewrite

4All primed quantities which appear in this article are associated to these ghost
D-branes.
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(2.14) as

ZYM =
∑

l∈Z

∫
dHu′

1 · · · dHu′
2g−2 ψg

top(gtop, u
′, t + lpgtop)

× ψg
top(gtop, u′, t − lpgtop), (3.1)

where

ψg
top(gtop, u

′, t) =
∑

R′
1,...R′

2g−2

ψ
R′

1,...,R′
2g−2

top (gtop, t)e
− 1

2Ngs

2g−2∑

i=1
|R′

i|
2g−2∏

i=1

sR′
i
(eu′

i).

(3.2)
For g = 0 the formula is similar, except that the role of ghost branes and
ghost antibranes are reversed in the antitopological amplitude:

ZYM =
∑

l∈Z

∫
dHu′

1 dHu′
2 ψg

top(gtop, u
′, t + lpgtop)ψa

top(gtop, u′, t − lpgtop),

(3.3)
where

ψg
top(gtop, u

′, t) =
∑

R′
1,R′

2

ψ
R′

1,R′
2

top (gtop, t)e− 1
2Ngs(|R′

1|+|R′
2|)sR′

1
(eu′

1)sR′
2
(eu′

2),

(3.4)

ψa
top(gtop, u

′, t) =
∑

R′
1,R′

2

(−)|R′
1|+|R′

2|ψ
R′

1,R′
2

top (gtop, t)e− 1
2Ngs(|R′

1|+|R′
2|)sR′t

1

× (eu′
1)sR′t

2
(eu′

2). (3.5)

The change from branes to antibranes is reflected in the signs (−)|R′| and
the switch R′ → R′t between ψg and ψa, as in ref. [20].

Now note that (3.1) and (3.3) look like the integral (2.5), which computes
the microcanonical degeneracies by integrating over the imaginary part of
each Kähler modulus whereas the real part is fixed by the corresponding
magnetic charge. Indeed, the factor e− 1

2Ngs
∑2g−2

i=1 |R′
i| could be absorbed in

U ′, at the expense of making it non-unitary: this just amounts to giving
u′ a real part. This is reminiscent of the “attractor” formula (2.4), which
says the real part of the Kähler modulus is related to the charge. So indeed,
equation (3.1) could be consistent with the conjecture (2.2), if we somehow
regard u′ as an extra closed string modulus; then there would be electric
and magnetic charges corresponding to it, and (3.1) says that ZYM is the
partition function of an ensemble in which we have fixed these charges. As
we will now explain, this interpretation of u′ is indeed plausible.
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3.1 Open vs. closed

We explained above that the non-perturbative completion of the closed
topological string appears to involve Lagrangian D-branes on the Calabi–
Yau manifold. The appearance of open string amplitudes in this context is
surprising, since in the physical string this would have half as much super-
symmetry as we have available. As we will now argue, the correct interpre-
tation involves not open but closed strings.

Namely, as was shown in ref. [21], in the topological string, inserting
non-compact D-branes is equivalent to turning on certain non-normalizable
deformations of the Calabi–Yau. This is an open-closed duality of the topo-
logical string, generalizing the well-known duality for D-branes on compact
cycles. This means that, at the level of the topological string, we can inter-
pret the modulus U ′ in (3.1) as either corresponding to an open string con-
figuration or to a boundary condition at infinity of the closed topological
string. In the physical string theory, however, we do not have this freedom;
since there are no Ramond–Ramond fluxes turned on, the only interpreta-
tion available is the closed string one.

The torus symmetries of the Calabi–Yau manifold can be used to con-
strain the types of deformation that we consider. Namely, the Lagrangian
D-branes to which (3.2) corresponds respect the torus symmetries, and the
gravitational backreaction they create does so as well. Such torus invari-
ant deformations, normalizable and not, were studied in ref. [21], so we can
borrow the results of that paper. The topological string theory in ref. [21]
was described as the theory of a chiral boson on a Riemann surface, and the
Lagrangian D-branes were coherent states of this chiral boson. (Note here
that we are using the mirror B-model language. The global action of mirror
symmetry on X is not relevant for us; this is merely a convenient language
in which to describe the behavior near an asymptotic infinity). The non-
normalizable deformations of the Calabi–Yau near an asymptotic infinity5

can be parameterized by the coherent states of the chiral boson:

|τ〉 = exp

(
∑

n>0

τnα−n

)
|0〉, (3.6)

where αn are the chiral boson creation and annihilation operators.

5In the cases studied in ref. [21] there is a clear notion of what “an asymptotic infinity”
means: it means a toric 2-cycle which extends to infinity. In the cases, we are considering
here the situation is not as rigorously understood, but we will make some comments below.
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The parameters τ are related to the D-brane holonomies by

τn = gs Tr U ′n, (3.7)

where Tr denotes the trace in the fundamental representation. The factor
of gs is needed to convert an open string amplitude in terms of U to a
closed string amplitude in terms of t; it appears because a trace of U in the
fundamental representation couples to a hole in the string worldsheet, and
the hole is in turn weighted by gs in the string perturbation expansion. In
this sense, the open string modulus U can be traded for the infinite collection
of closed string moduli τn.

Actually, it is more convenient to reparameterize slightly by taking a log-
arithm, writing τn = e−tn . The point is that the A model partition function
turns out to be an expansion in e−tn , so the moduli tn appear on the same
footing as the Kähler volumes t of compact cycles. Indeed, we can think
of them as representing Kähler volumes of classes in H2(X, Z) (with some
appropriate notion of what H2(X, Z) means for this non-compact X). What
can we say about these classes? In the cases considered in ref. [21], for each
asymptotic infinity there is a holomorphic disc C which “ends” on it, and tn
represents a class which contains n[C] as well as some extra contributions
at infinity. In the open string language, the disc C can be thought of as
ending on the Lagrangian branes which represent the deformations at this
asymptotic infinity.

3.2 The attractor mechanism and ghost D-branes

Now we come to the interpretation of the shift U ′ → U ′e− 1
2Ngs , or equiva-

lently

Re tn =
1
2
nNgs. (3.8)

Such shifts have frequently appeared in the topological string in the pres-
ence of D-branes. Here, we can understand the shift as a reflection of the
attractor mechanism on the closed string moduli. Namely, in the case we
are considering here, C is a disc in the fiber of Lp+2g−2, which intersects
D at one point, as shown in figure 1. Then 1

2nNgs is exactly the expected
attractor value for the Kähler modulus tn, as follows from (2.4), the fact that
the D4-brane charge is Q4 = N [D], and #(C ∩ D) = 1. (Whatever the extra
contributions at infinity to the class represented by tn are, they have zero
intersection number with D, so they do not affect the attractor modulus).
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Figure 1: The disc C in the fiber of Lp+2g−2 over a point P on the Rie-
mann surface Σ; C meets D only at P , and the boundary of C lies on the
Lagrangian submanifold representing this asymptotic infinity.

3.3 Why 2g – 2 asymptotic infinities

The discussion of the last few sections raises a natural question: why are
there precisely |2g − 2| asymptotic infinities on X where we can have defor-
mations?

In general, we should have expected that in a non-compact Calabi–Yau we
should include some closed string moduli coming from infinity. However, in
problems with symmetries, it is natural to conjecture that the only relevant
extra moduli from infinity are invariant under the corresponding symmetries.
We will assume this here and look for symmetries in our problem which
simplify the task of specifying the closed string moduli coming from infinity.

A priori, one might have expected boundary moduli associated to the
C

2 fiber over each point of the Riemann surface. Here we have in addition
D4-branes wrapping a line bundle over the Riemann surface. We claim that
this implies that effectively we should view that direction as “compact,”
or more precisely, we should view it as a degenerate limit of a compact
4-cycle. After this reduction, we would expect to find boundary moduli
corresponding to a C fiber over each point on the Riemann surface.

However, there are symmetries of the problem coming from meromorphic
vector fields on the Riemann surface. Hence the variation of the data at
infinity can be localized at poles or zeroes of such a vector field (deleting
these points would give a well-defined free action). A generic holomorphic
vector field on a Riemann surface of genus g > 1 is non-vanishing and well
defined away from 2g − 2 poles, which we identify with places where the
asymptotic boundary condition at infinity can be localized. The local picture
is as shown in figure 2.
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Figure 2: A rough toric representation of the behavior of X in a neighbor-
hood of a singularity of the vector field v described in the text. Two of
the three U(1) actions making up the toric fiber are the rotations of the line
bundles L−p ⊕ Lp+2g−2 and the third is the action of v. The toric base of the
divisor D on which the D4-branes are wrapped is indicated, as is the base of
the Lagrangian submanifold representing the asymptotic infinity. The disc
C ends on this Lagrangian submanifold, meeting D at the single point P .

So the closed string moduli at these 2g − 2 asymptotic infinities may be
identified with the “ghost D-brane” contributions, as discussed above. In
the case of genus 1 there are no fixed points, which is consistent with the
fact that no ghost D-branes were needed in this case. For genus 0 we have
a holomorphic vector field with 2 zeroes, which again suggests that we can
localize the contribution from infinity at 2 points.

This is a heuristic argument, but we feel that it captures the correct
physics.

4 The quantum mechanics of open strings

In Section 2, we reviewed the conjecture of ref. [4] and its relation to the wave
function nature of the closed topological string. In this section, we recall the
parallel statement for the open topological string. The fact that the open
topological string partition function including non-compact branes is a wave
function was first noticed in ref. [21], and was crucial in that paper for the
solution of the B model. In this section, we will give two ways of understand-
ing this wave function property: a direct route via canonical quantization
of Chern–Simons theory; a more indirect one via the holomorphic anomaly
(background dependence) for open strings.

4.1 Canonical quantization in Chern–Simons

Recall that the topological A model string theory on M D-branes wrapped
on a Lagrangian cycle L is the U(M) Chern–Simons theory deformed by
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worldsheet instanton corrections:

S = SCS + Sinst, (4.1)

where

SCS =
4πi

k

∫

L
Tr

(
A ∧ dA +

2
3
A ∧ A ∧ A

)
, (4.2)

and Sinst is the contribution from worldsheet instantons with boundaries on
L. If L is non-compact, then we should consider it as having a boundary ∂L
at infinity; the path integral on L then gives a wave function in the Hilbert
space of Chern–Simons on the boundary. The case of interest for the rest of
this article is L � R

2 × S1, which has ∂L = T 2; from now on we specialize
to that case, although the discussion could be made more general.

To find which state the topological open string theory picks, we need to
recall some facts about canonical quantization of the U(M) Chern–Simons
theory on T 2 × R, viewing R as the “time” direction. We will be brief here;
see e.g. [22] for more details. Integrating over the time component of the
gauge field localizes the path integral to flat connections on T 2:

∫
DA′ δ(F ′) exp

(
2πi

k

∫

T 2×R
Tr A′ ∂t A′ dt

)
. (4.3)

Above A′ is a connection on T 2, which we can write (up to conjugation) as

A′ = u dθu + v dθv, (4.4)

where u and v are the components of A′ along two linearly independent
cycles of T 2, with intersection number 1. From the action (4.3) we see that
u and v are conjugate variables: upon quantization we thus expect

[u, v] = igtop, (4.5)

where gtop = 2π
k+M . The familiar shift of k by M can be seen by carefully

integrating over massive modes [22].

Since u and v are conjugate variables, in computing the Chern–Simons
path integral on a manifold with T 2 boundary, we should fix either u or v
on the boundary, but not both, and the wave function will depend on the
variable we have chosen to fix. More generally, we could consider a mixed
boundary condition where we fix v + τu where τ is some parameter (the
motivation for this notation will become clear later).

Note that in the present context L � R
2 × S1 is a solid torus, so there is

a unique 1-cycle η ∈ H1(T 2, Z) which collapses in the interior of L. There is
thus a canonical choice of polarization for the wave function; namely, one can
express it in terms of the holonomy around η, which we call v. In the fol-
lowing section, we will relate this choice to the background dependence
(“holomorphic anomaly”) of the open topological string. We could have
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tried to choose the “cycle that survives” in the interior of L (corresponding
to the holonomy u), but this is ambiguous up to the shift u 
→ u + nv. This
ambiguity will be related to the framing ambiguity of the open topological
string.

It can be shown [22,23] that the Chern–Simons path integral on the solid
torus, without any insertions and with u fixed on the boundary, is given
simply by

ψopen
top (u) = 〈L|u〉 = 1. (4.6)

In the present context, the Chern–Simons action is deformed by worldsheet
instantons wrapping holomorphic curves with boundaries on L [24]. Their
contribution to S is given by the free energy of the gas of topological open
strings:

Sinst(u) = iF open
top (u). (4.7)

We now want to compute the path integral on L with the operator insertion

exp Sinst(u). (4.8)

Since we are working in the basis of eigenstates of u, the insertion just acts
by multiplication:

ψopen
top (u) = 〈L|eSinst(u)|u〉 = eiF open

top (u)〈L|u〉 = eiF open
top (u). (4.9)

So we have identified the topological string partition function eiF open
top (u) with

a wave function.

Although v is the canonical choice, we will sometimes find it natural to
write the wave function in terms of one of the holonomies u + nv instead.
The relation between different choices of variable in which to write the wave
function is given by a Fourier transform: for example, to transform from u
to v, one has

ψopen
top (v) =

∫
dHu e

i
gtop

Tr uv
ψopen

top (u), (4.10)

where dHu is the measure induced from the Haar measure on U(M).

The freedom to choose a variable is crucial because there are some cases
in which the Lagrangian cycle L can make a “flop transition.” From the per-
spective of the boundary ∂L = T 2 nothing special happens at the transition,
but in the interior of L the topology changes and in particular the cycle that
collapses in the interior is different after the transition. An example of this
phenomenon can be seen when X is a toric Calabi–Yau manifold. Moreover,
in that case one can use the mirror B model to see that worldsheet instanton
corrections eliminate the sharp transition: the different phases are smoothly
connected. Thus, in the B model language there is a continuous change of
variables which takes us from one choice of holonomy to another. This is
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related to the background dependence of open topological string amplitudes,
to which we now turn.

4.2 Background dependence for the open topological string

In this section, we take a brief detour to explain the background depen-
dence of the open string topological string.6 It was conjectured in ref. [21]
that the open topological string partition function depends on a choice of
“background” moduli, or equivalently, depends on the antiholomorphic coor-
dinates of the moduli as well as the holomorphic ones. This conjecture
was advanced in order to explain the fact that the open topological string
behaves like a wave function, by analogy to what is known for the closed
string case [13]. In the case considered in ref. [21], the geometry of the
Calabi–Yau is given (in the mirror B model) by a hypersurface in C

4,

F (u, v) − xy = 0, (4.11)

and the mirror of the Lagrangian brane is a brane on a holomorphic curve,
specified by the condition x = 0 together with fixed choices of u, v satisfy-
ing F (u, v) = 0. As noted in refs. [21, 23] the geometry with this D-brane
included can be viewed as a special (degenerate) limit of a closed string
geometry, with the D-brane serving as a source for the holomorphic 3-form;
this source changes the usual equation dΩ = 0 to

dΩ = gtopδ(D), (4.12)

where δ(D) denotes a delta function at the locus of the D-brane. We have
already used this correspondence in Section 3, where we discussed how the
“ghost branes” can be viewed as closed string moduli. Similarly, we can
use it to interpret the holomorphic anomaly of closed strings as inducing
a holomorphic anomaly (or equivalently a background dependence) for the
open string partition function. Here we view the modulus of the open string,
given by the choice of (u, v) on the surface F (u, v) = 0, as a closed string
modulus. In fact, borrowing the closed string technology for background
dependence developed in refs. [13, 14], we immediately deduce that for a
given background (u0, v0) the natural variable for the open string wave
function is

v + τu, (4.13)

6This was the original motivation for the present article!
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where

τ = −∂v

∂u

∣∣∣
(u0,v0)

. (4.14)

Here, we are considering v as a function of u through the implicit relation
F (u, v) = 0, so τ is the slope of the tangent plane to the Riemann surface
at (u0, v0). Note that τ = ∂2F/∂u2.

The form (4.13) of the natural variable can be connected to our earlier dis-
cussion of the wave function nature of the Chern–Simons theory embedded in
the open string; there too we claimed that there is a natural variable for the
wave function, namely the holonomy around the cycle of T 2 which shrinks
in the interior of the solid torus. In that classical picture (which neglects the
effect of worldsheet instantons), the holonomy around the vanishing cycle is
simply v; and choosing the background point near an asymptotic infinity of
the quantum moduli space, where the classical picture becomes exact, one
indeed gets τ → 0, so v + τu → v. More invariantly, the value of τ near an
asymptotic infinity of the B model Riemann surface approaches the slope of
the corresponding line in the A model toric diagram, and this slope indeed
determines the collapsing cycle of the toric fiber.

Note that in order to go off the real locus τ = τ we need to recall that
the Chern–Simons holonomies are complexified in the context of topological
strings (to include the moduli which move the brane); in the geometric
motivation we gave before we had essentially turned those off. It would be
interesting to understand this relation off the real locus.

5 The open string conjecture

As we reviewed in Section 2, the closed topological string wave function on a
Calabi–Yau space X is believed to compute the large-charge asymptotics of
an index which counts BPS states in four dimensions, and this index has an
interpretation as the Wigner function of ψtop. On the other hand, we just
saw in Section 4 that the open topological string partition function ψopen

top
with non-compact D-branes is also naturally considered as a wave function.
So we could construct a Wigner function from this wave function, and then a
natural question is whether this Wigner function also has an interpretation
as counting BPS states. We will argue that it does.

We embed the open topological string in the superstring in a familiar way
[25]. Namely, consider D4-branes wrapping a special Lagrangian cycle L ⊂
X. Then there are open D2-branes ending on these D4-branes. These give
rise to BPS particles in the two-dimensional supersymmetric gauge theory on
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the non-compact directions of the D4-branes; we will interpret the charge
Qe as counting these BPS particles. The gauge theory in question also
supports BPS domain walls; we will interpret Qm as measuring the domain
wall charge.

Altogether then, we will conjecture below that the open topological string,
on a Calabi–Yau space X with Lagrangian branes included, computes the
large-charge asymptotics of an index which counts open D2-branes, and their
domain wall counterparts, bound to any number of closed D0, D2, D4 and
D6-branes. Furthermore, we will describe one context in which some aspects
of this proposal can be checked.

5.1 Calabi–Yau spaces with branes and BPS particles

Consider a Calabi–Yau manifold X containing a special Lagrangian 3-cycle
L. We consider the Type IIA superstring on X × R

3,1, with M D4-branes
on L × R

1,1, which we will call the “background branes.” For simplicity, we
assume L has the topology

L � R
2 × S1. (5.1)

The dimensionally reduced theory on the R
1,1 part of the background

branes is a (2, 2) supersymmetric gauge theory. Its field content can be
understood as follows [25]. Since b1(L) = 1 it follows [26] that L has one real
modulus r; this modulus pairs up with the Wilson line of the worldvolume
gauge field

∮
A to give a complex field

u = r + i

∮
A. (5.2)

One also gets a gauge field in R
1,1 by integrating the world-volume two-form

B (which is the magnetic dual to the gauge field A on the D4-brane, defined
by d∗A = dB) over the S1 of L. Since there are M D4-branes, the theory has
(at least) a magnetic U(1)M gauge symmetry. The field u should be viewed
as the lowest component of a twisted chiral multiplet, whose top component
is the field strength of the magnetic gauge field in two dimensions.

There is an obvious way of getting BPS particles in this theory. Suppose
for a moment that M = 1 (a single Lagrangian brane). Let γ ∈ H1(L, Z)
denote the homology class of the S1 in L. Since the Calabi–Yau has no
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non-contractible 1-cycles, this γ is a boundary in X; so there exists some D
with

[∂D] = γ. (5.3)
Open D2-branes wrapped on D give rise to particles charged under the U(1)
gauge field of the two-dimensional theory; if D is a holomorphic disc, then
these particles are BPS.

5.2 The conjecture

Now, to motivate our conjecture, recall from Section 2 that in the closed
string case (without the background branes) we have the relation

ZBH(Q6, Q4, ϕ2, ϕ0) =
∑

Q0,Q2

ΩQ6,Q4,Q2,Q0 e−Q2ϕ2−Q0ϕ0 = |ψtop(gtop, t)|2,

(5.4)
where ϕ2 = Im 2πt/gtop and ϕ0 = Im 4π2/gtop as given in (2.3) and (2.4).
We wish to generalize this conjecture to the open topological string. What
is the appropriate ensemble to consider? Since the closed D2-branes are
“light electric states” in the closed string ensemble, which we sum over with
chemical potentials, it is natural to try treating the open D2-branes in the
same way. Thus, in formulating our conjecture we consider these BPS states
as “electric charges,” and sum over them with a chemical potential ϕopen

e .
We also expect to have a “magnetic charge,” which we fix to the some value
Qopen

m ; we will discuss these charges further below.7 The partition function
of the ensemble thus obtained is a simple generalization of (5.4),

Zopen
BPS (Q6, Q4,Qopen

m , ϕ2, ϕ0, ϕ
open
e ) =

∑

Q0,Q2,Qopen
e

ΩQ6,Q4,Q2,Q0,Qopen
e ,Qopen

m

× e−Q2ϕ2−Q0ϕ0−Qopen
e ϕopen

e . (5.5)

We conjecture that the relation of Zopen
BPS to the topological string is a direct

generalization of (5.4),

Zopen
BPS (Q6, Q4,Qopen

m , ϕ2, ϕ0, ϕ
open
e ) = |ψopen

top (gtop, t, u)|2, (5.6)

where ψopen
top is the topological A model partition function on X, including

open strings ending on M D-branes on L as well as closed strings.

In this conjecture, the closed string moduli gtop, t are determined by the
attractor mechanism as before. What about the open string modulus u?
The formula ϕ2 = Im 2πt/gtop for the closed D2-brane chemical potential

7The terminology “electric” and “magnetic” here is chosen by analogy to the closed
string case. The charges we are discussing here are both associated to point particles,
which are not electric–magnetic duals in the theory on R

1,1.
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suggests that the open D2-brane chemical potential should be related to
u by

ϕopen
e = Im 2πu/gtop. (5.7)

We will verify this identification of Im u in an explicit example below. The
real part of u should be fixed by the charge Qopen

m , as we now discuss.

5.3 Adding magnetic charges

What is the spacetime meaning of the “magnetic” charge Qopen
m , and its

relation to the real part of the modulus u? We can make a plausible guess
by exploiting the symmetry between u and its conjugate v. Namely, as
noted in Section 4, it is possible for L to undergo a flop transition to a new
phase parameterized by a different parameter v (representing the holonomy
of the gauge field around a new S1 which was contractible in the old phase).
The two phases are smoothly connected in the quantum topological string
theory and also in the physical one, but they correspond to different classical
descriptions of the physics. The most economical assumption would then
be that the excitations which we are calling “electric” in one description are
the same as the ones which we are calling “magnetic” in the other. In this
section we explore the consequences of this assumption (without being too
careful about the factors of i which appear). We discuss only the open string
sector, suppressing the closed strings, and drop the label “open” from our
notation for simplicity.

First, we can write down the precise form of u, using the fact that ψtop(v)
is related to ψtop(u) by the Fourier transform (4.10), or equivalently

[u, v] = igtop. (5.8)

The dictionary between our statistical ensemble and the quantum-
mechanical picture requires the relations

[Qe, ϕe] = 1 = [Qm, ϕm], (5.9)

since we cannot fix the charges and the chemical potentials at the same time.
On the other hand, we can fix the charges simultaneously, so

[Qe,Qm] = 0 = [ϕe, ϕm]. (5.10)

The consistency of (5.8)–(5.10) with Im u = gtopϕe/2π then requires

Re u = πQm, Re v = πQe. (5.11)

Equation (5.11) completes our conjecture (5.6), except that we have not
been precise about how to fix the zero of Re u or Re v. We do not have a
general proposal for how this should be done, although we will see how it
works in an example below.
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Note that the expectation value of v in the state corresponding to the
open string wave function ψtop(u) = exp(iFtop(u)) is given by

v = gs∂uFtop(u) (5.12)

(the semi-classical version of this equation was discovered in ref. [27]). This
is precisely analogous to the special geometry relations of the closed string.
In this sense, equation (5.11) seems to describe an open string analog of the
attractor mechanism that fixes the moduli to values determined by charges
of BPS states. It would be interesting to study this attractor mechanism
directly in the physical theory.

Our identification of the parameters leads to two formulas for the Wigner
function, i.e. the degeneracies of BPS states,

ΩQe,Qm =
∫

dϕe e−Qeϕe ψ

(
u =

igtop

2π
ϕe + πQm

)
ψ

(
u =

igtop

2π
ϕe + πQm

)
,

(5.13)

=
∫

dϕm e−Qmϕm ψ

(
v =

igtop

2π
ϕm + πQe

)
ψ

(
v =

igtop

2π
ϕm + πQm

)
.

(5.14)

(The arguments we gave above about commutation relations are equivalent
to the statement that these two formulas are indeed related by Fourier trans-
forming ψ(u) ↔ ψ(v)). Put another way, ψ(u) and ψ(v) sum over conjugate
ensembles:

∣∣∣∣ψ
(

u =
igtop

2π
ϕe + πQm

)∣∣∣∣
2

=
∑

Qe

ΩQe,Qme−Qeϕe , (5.15)

∣∣∣∣ψ
(

v =
igtop

2π
ϕm + πQe

)∣∣∣∣
2

=
∑

Qm

ΩQe,Qme−Qmϕm . (5.16)

In the above we implicitly chose some framing for the open string wave
function ψ(u), and one could ask what is the meaning of changing the fram-
ing. As discussed in ref. [21], the effect of shifting the framing by k units
is ψ(k)(u) = e−ikgtop∂2

uψ(u). From this and (5.15), it follows that ψ(k) sums
over an ensemble in which we have a chemical potential for dyons of charge
(1, k):

∣∣∣∣ψ
(k)

(
u =

igtop

2π
ϕe + πQm

)∣∣∣∣
2

=
∑

Qe

ΩQe,Qm+kQee
−Qeϕe . (5.17)

So far we have discussed the magnetic charge Qm abstractly in terms of its
relation to the real part of the topological string modulus, but our assump-
tion also leads to a natural description of the meaning of the magnetic
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Figure 3: The 1-cycle γ and its dual cycle D inside L.

charges in the physical theory. To understand this, note first that turning
on electric charge Qe, arising from open D2-branes ending on γ ⊂ L, can
be equivalently described as turning on magnetic flux on the background
D4-brane. This is because the D2-brane ending on L looks like a monopole
string from the point of view of the gauge theory on the D4-brane. So,
letting D denote any 2-cycle in L dual to γ (see figure 3), we have

∫

R×D
dF = 2πQe, (5.18)

where R denotes the spatial x-direction in R
1,1. In particular, we could

choose D to be the disc obtained by filling in the 1-cycle S1 corresponding
to v, which opens up after the flop transition. Then (5.18) is equivalent to

∫

R×∂D
Fxθv dx dθv = 2πQe. (5.19)

Alternatively, as Fxθv = ∂xAθv and
∮

∂D
Aθv dθv = Im v, (5.20)

we see that as we cross the D2-branes in the x-direction v jumps by 2πiQe.
Since exchanging electric and magnetic charges corresponds to exchanging
u and v, it follows that turning on Qm units of magnetic charge corresponds
to having a domain wall where u jumps by 2πiQm in going from x = −∞
to x = +∞. Hence these domain walls are the magnetic charges we were
seeking.

5.4 Multiple Lagrangian branes

In the above discussion, we have been assuming that we have a single back-
ground D4-brane. Let us now return to more general case M ≥ 1. In this
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case Qopen
e,m label representations of U(M).8 By a straightforward general-

ization of the arguments given above, we see that the attractor values of the
eigenvalues of u and v are (generalizing (5.11))

Re ui = π(Q̂open
m )i, Re vj = π(Q̂open

e )j . (5.21)

Here Q̂open
m,e denote the highest weight vectors of the corresponding repre-

sentations, shifted by the Weyl vector ρ (see Appendix A). The rest of the
discussion generalizes similarly.

6 A solvable example

After these general considerations we now return to the example we described
in Section 2, where X is a rank 2 holomorphic vector bundle over Σ, and add
background D4-branes on L × R

1,1 to the Type IIA theory. In this section,
we want to argue that one can use two-dimensional Yang–Mills theory to
compute Zopen

BPS , generalizing the discussion of Section 2. Our arguments will
be heuristic, but they lead to a definite prescription which is natural and
fits in well with our conjectures.

How is the discussion of Section 2 modified by the introduction of the
background branes? The L we will consider meet D along a circle, which
we call γ. Hence in the gauge theory on D there will be extra massless
string states localized along γ, in the bifundamental of U(M) × U(N). By
condensing these string states (going out along a Higgs branch), i.e. turning
on a vacuum expectation value of the form

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

1
. . .

1
0 · · · 0
...

...
0 · · · 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

(6.1)

one can break the gauge symmetry along γ to U(M) × U(N − M), where
the surviving U(M) is the diagonal in [U(M) × U(M)] × U(N − M).9 We
conjecture that from the point of view of the gauge theory on D, the only
effect of the interaction with the background branes comes from the fact that

8The gauge theory has at least a U(1)M symmetry, and since the degeneracies are
symmetric under the symmetric group SM , we can organize them into characters of rep-
resentations Qopen

e of U(M) (possibly with negative multiplicities).
9We are considering only the case M < N ; ultimately we will be interested in taking

N large whereas M stays finite.
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the U(M) part of the gauge field along γ is identified with the U(M) gauge
field on the background branes, via this Higgsing to the diagonal. We can
account for this by inserting a δ-function in the theory on D, which freezes
M of the eigenvalues of the holonomy ei

∮
γ A, identifying them with the

holonomy on the background branes, which we call eiφ. The Weyl invariant
way to write this delta function is

δM

(
ei

∮
γ A, eiφ

)
= D

(∮

γ
A
)−1 ∑

σ∈SN

(−)σ
M∏

j=1

δ

((
ei

∮
γ A

)

σ(j)
, eiφj

)
, (6.2)

where D denotes the Vandermonde determinant (A.4).

Let us write Zopen
YM (ϕ0, ϕ2, φ) for the partition function with this operator

inserted (here “open” refers to the fact that it is related to the open topo-
logical string). This partition function sums over the open D2-branes which
end on the Lagrangian branes, as well as over the D0 and D2-brane charges
which one had without the Lagrangian branes; so altogether we should have

Zopen
YM = Zopen

BPS . (6.3)

In this ensemble, the chemical potential ϕopen
e for the open D2-branes should

roughly be their mass. This mass is given by the area of the disc on which
they are wrapped, which is related by supersymmetry to the Wilson line on
the background branes; with this as motivation we write

ϕopen
e = 2πφ/gs. (6.4)

To compute Zopen
YM it is convenient to reduce from the twisted N = 4 theory

on D to a q-deformed Yang–Mills theory on Σ, as was done in [5, 6]. How
does the operator insertion δM

(
ei

∮
γ A, eiφ

)
translate to the reduced theory?

There are two cases to consider:

1. γ lies in the fiber of L−p over a point P ∈ Σ.
2. γ lies on the Riemann surface Σ.

In either case, these Lagrangian branes can be locally modelled by the ones
studied in refs. [27,28]. In case 1, where γ is in the fiber over P , the situation
is basically straightforward: as explained in ref. [5], the flux

∮
γ A shows up

in the q-deformed Yang–Mills theory on Σ as a field Φ. The operator we
have to insert in the q-deformed theory is therefore

δM (eiΦ(P ), eiφ). (6.5)

The path integral gets localized on configurations where Φ is locally con-
stant, so when there are no other operator insertions we can drop the P and
write δM (eiΦ, eiφ).
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In case 2 the situation is a bit trickier, because of a subtlety which also
appeared in ref. [5]: namely, in performing the reduction one has to choose
p points Pi on Σ, and at each such point one gets an operator corresponding
to one unit of area in the Yang–Mills theory. The operator δM

(
ei

∮
γ A, eiφ

)

reduces to

δM

(
ei

∮
γ A, eiφ

)
(6.6)

in two dimensions, but we have to specify how many of the p points go on
each side of γ. Therefore, there is a Z-valued ambiguity in defining which
operator we insert in the physical theory, parameterized by a choice of p1
and p2 with p1 + p2 = p. See figure 4. This ambiguity should be understood
as related to infrared regularization arising from the non-compactness of the
situation; in the connection to the open topological string below, we will see
that it is identified with the framing ambiguity.

6.1 Specializing to genus zero

Next we will investigate in detail the case when Σ has genus zero. So we
specialize to Type IIA on X × R

3,1, where

X = O(−p) ⊕ O(p − 2) → CP
1 (6.7)

with background D4-branes added on L × R
1,1. As we just explained, we

can compute a mixed ensemble partition function Zopen
BPS for this system by

inserting an appropriate operator into the q-deformed Yang–Mills theory on
an S2 of area p. The parameters of the Yang–Mills theory are as in the

Figure 4: The operator δM

(
ei

∮
γ A, eiφ

)
cuts Σ into two pieces.
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closed case,

θYM = θ, g2
YM = gs, q = e−gs . (6.8)

We will show that for all p1, p2 we indeed have Zopen
YM = |ψopen

top |2 + O(e−N ).
We will also show that the identification of Zopen

YM with Zopen
BPS is consistent;

namely, Zopen
BPS should have an expansion where φ appears only in the form

e−2πφ/gs , and we will verify that Zopen
YM indeed has such an expansion at least

in the special case p1 = p2 = 1. These two results together give evidence for
our conjecture (5.6).

6.2 Large N factorization on O(−p) ⊕ O(p − 2) → CP
1

We want to establish that

Zopen
YM = |ψopen

top |2 + O(e−N ). (6.9)

We compute Zopen
YM using the gluing procedure described in Appendix B:

namely, we construct the sphere by gluing two discs together with the opera-
tor δM (ei

∮
A, eiφ) in the middle. We use the fact that the Hilbert space of the

two-dimensional Yang–Mills theory is factorized at large N , H � H+ ⊗ H−,
and furthermore each component of the gluing procedure can be written in
a factorized form. This factorization is described in detail in Appendix D;
the computation of Zopen

YM we give below basically consists of fetching various
results from that appendix and putting them together. We then compare
this with the known form of the topological string amplitude and find the
desired factorization; the final result is given in (6.21).

6.2.1 Branes in the base

Let us first discuss case 2, where to compute Zopen
YM we have to insert a

Wilson line freezing operator δM (ei
∮

A, eiφ). This operator cuts the sphere
into two pieces, with discrete areas p1, p2 such that p1 + p2 = p. The glu-
ing computation of Zopen

YM involves a zero area disc, an annulus of area
p1, the operator δM (ei

∮
A, eiφ), an annulus of area p2, and another zero

area disc:

Zopen
YM (N, gs, θ, φ) = 〈Ψ0|Ap1δM (ei

∮
A, eiφ)Ap2 |Ψ0〉. (6.10)

Each of these pieces has been written in the factorized basis for H in Appen-
dix D: the disc is given in (D.29), the annulus in (D.27), and the Wilson
line freezing operator in (D.28). Plugging in these factorizations and doing
a little rearranging, we obtain the factorized form of Zopen

YM , schematically
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Zopen
YM = Z+Z−, or more precisely (writing q = e−gs)

Zopen
YM (N, gs, θ, φ)

= Z0
YM(N, gs, θ, φ)M(q)2η(q)2N ×

∑

l∈Z,R′
1,R′

2

(−)|R′
1|+|R′

2|

× q
1
2 (p1+p2)l2eiNlpθZ

R′
1,R′

2,l
+ Z

R′
1,R′

2,l
− + O(e−N ), (6.11)

where

Z
R′

1,R′
2,l

+ (N, gs, θ, φ)

= q
1
2N(|R′

1|+|R′
2|) ×

∑

R1+,R2+,A+

q
1
2p1κR1+ +

1
2
p2κR2+ +

(
1
2
N(p1 − 1) + lp1

)

× |R1+| +
(

1
2
N(p2 − 1) + lp2

)
|R2+| × C0R′

1R1+CR′t
2 R2+0sR1+/A+(e−iφ)

× sR2+/A+(eiφ)eiθ(p1|R1+|+p2|R2+|) (6.12)

and similarly

Z
R′

1,R′
2,l

− (N, gs, θ, φ)

= q
1
2N(|R′

1|+|R′
2|)

∑

R1−,R2−,A−

× q
1
2p1κR1−+ 1

2p2κR2−+( 1
2N(p1−1)−lp1)|R1−|+( 1

2N(p2−1)−lp2)|R2−|

× C0R′t
1 R1−CR′

2R2−0sR1−/A−(eiφ)sR2−/A−(e−iφ)e−iθ(p1|R1−|+p2|R2−|).

(6.13)

The normalization factor Z0
YM(N, gs, θ, φ) will be fixed below.

Now we want to interpret the chiral blocks Z
R′

1,R′
2,l

± (φ) in terms of the
topological string on X. This X can be represented torically by the picture
in figure 5, in which we also indicate the Lagrangian cycle L supporting
M branes, one supporting a stack of infinitely many ghost branes, and one
with a stack of infinitely many ghost antibranes. (See e.g. [28] for a review
of the meaning of toric pictures such as this one). The results of ref. [20] give
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Figure 5: The vertex representation of X = O(−p) ⊕ O(p − 2) → CP
1, with

a stack of M branes with complexified holonomy U = eu, a stack of infinitely
many ghost branes with complexified holonomy U ′

1 = eu′
1 , and a stack of

infinitely many ghost antibranes with complexified holonomy U ′
2 = eu′

2 .

the topological string amplitude on this geometry as10 (with q = e−gtop)

ψg
top(gtop, t, u, u′) = ψ0

top(gtop, t, u)
∑

R1,R2,A,R′
1,R′

2

(−)|R′
2|sR′

1
(eu′

1)sR′
2
(eu′

2)

× q
1
2p1κR1+ 1

2p2κR2C0R′
1R1CR′t

2 R20sR1/A(e−u)

× sR2/A(eu)(−)p1|R1|+p2|R2|e−t|R2|, (6.14)

with the choice of p1 and p2 (subject to the constraint p1 + p2 = p) related
to the choice of framing on the Lagrangian branes.11 Similarly, if one swaps
the ghost branes for ghost antibranes, one gets

ψa
top(gtop, t, u, u′) = ψ0

top(gtop, t, u)
∑

R1,R2,A,R′
1,R′

2

(−)|R′
1|sR′

1
(eu′

1)sR′
2
(eu′

2)

× q
1
2p1κR1+ 1

2p2κR2C0R′t
1 R1

CR′
2R20sR1/A(e−u)

× sR2/A(eu)(−)p1|R1|+p2|R2|e−t|R2|. (6.15)

Now to relate the chiral blocks Z± which make up ZYM to the topological
string amplitudes, we define

t =
1
2
Ngs(p − 1) − ipθ̂, (6.16)

u =
1
2
Ngs(p1 − 1) − i(p1θ̂ − φ), (6.17)

10Using the result as it appears in ref. [20] one would actually get something slightly
different from (6.14), namely, R2/A would be replaced by Rt

2/A
t, and there would be an

extra overall factor (−)|R2|+|A|. This difference is due to a typo in ref. [20].
11Strictly speaking, ref. [20] considers the case M = ∞; but one can get finitely many

branes by setting all but M components of the eu and e−u appearing in (6.14) to zero.
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u′
1 =

1
2
Ngs + iφ′

1, (6.18)

u′
2 =

1
2
Ngs + iφ′

2, (6.19)

gtop = gs. (6.20)

Here we introduced θ̂ = θ + π; this shift is meant to cancel the factor (−)p|R|

in (6.14).12

The desired factorization is then basically straightforward to check. One
begins with (6.11) which expresses ZYM in terms of the chiral blocks, then
relates the chiral blocks to ψg

top and ψa
top with the above choice of parameters,

and converts the sums over R′
1, R′

2 into integrals over φ′
1, φ′

2 as discussed in
Section 3. This essentially gives

ZYM(N, gs, θ, φ) =
∑

l∈Z

∫
dHφ′

1 dHφ′
2

(
ψg

top
(
gs, t + lpgs, u + lp1gs, u

′) )

×
(
ψa

top (gs, t − lpgs, u − lp1gs, u′)
)
. (6.21)

In order to match the l-dependent terms in (6.11), though, one has to exam-
ine carefully the normalizations for the topological string and Yang–Mills
amplitudes, as was done in [5, 6]. For the topological string we write

ψ0
top(gtop, t) = M(q)η(q)2t/(p−2)gtop exp

(
− 1

6p(p − 2)g2
top

t3 +
p − 2
24p

t

)
.

(6.22)
The meaning of this normalization factor was discussed in ref. [6]. For the
Yang–Mills theory, we write

Z0
YM(N, gs, θ, φ) = exp

(
gs(p − 2)2

24p
(N − N3) + N

θ̂2p

2gs

)
. (6.23)

Then the two chiral normalization factors multiply together to give the
Yang–Mills normalization, up to some crucial l-dependent corrections:

ψ0
top(gs, t + lpgs, u + lp1gs)ψ0

top(gs, t − lpgs, u − lp1gs)

= Z0
YM(N, gs, θ, φ)M(q)2η(q)2Nq

1
2pl2eiNlpθ. (6.24)

These terms match the l-dependent terms in (6.11); they are exactly what
is needed to make the factorization (6.21) work. So we have completed the

12The apparent asymmetry between p1 and p2 comes from the fact that we chose u
to represent the complexified area of the disc which ends on the Lagrangian branes from
the left; the disc which ends on them from the right has area t − u = 1

2Ngs(p2 − 1) −
i(p2θ̂ + φ).
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factorization in case 2, corresponding to D-branes which intersect the base
CP

1 in X.

6.2.2 Branes in the fiber

We can also consider case 1, corresponding to D-branes which meet the fiber
of O(−p) → CP

1. In this case, in the Yang–Mills theory we insert the dual
Wilson line freezing operator δM (eiΦ, eiφ) at a point of CP

1. Our discussion
here will be more brief since the proof of the factorization runs along the
same lines as case 2 above.

Again, we compute the Yang–Mills amplitude by gluing: we have to glue a
disc containing the operator δM (eiΦ, eiφ), an annulus of area p, and another
disc, obtaining

Zopen
YM (N, gs, θ, φ) = 〈Ψφ|Ap|Ψ0〉. (6.25)

Using the factorization results (D.27), (D.29) and (D.30) this becomes

Zopen
YM (N, gs, θ, φ)

= Z0
YM(N, gs, θ, φ)M(q)2η(q)2N

∑

l,m∈Z,R′
1,R′

2

(−)|R1|+|R2|q
1
2pl2eiNlpθ

× det(eimφ)ZR′
1,R′

2,l,m
+ Z

R′
1,R′

2,l,m
− + O(e−N ), (6.26)

with

Z
R′

1,R′
2,l,m

+ (N, gs, θ, φ)

= q
1
2N(|R′

1|+|R′
2|)

∑

R+,T+

q
1
2pκR++ 1

2κT++( 1
2N(p−2)+lp−m)|R+|+(− 1

2N−l)|T+|

× CT+R′
1R+CR′t

2 R+0sT t
+
(e−iφ)eiθp|R+|, (6.27)

and similarly

Z
R′

1,R′
2,l,m

− (N, gs, θ, φ)

= q
1
2N(|R′

1|+|R′
2|)

∑

R−,T−

q
1
2pκR−+ 1

2κT−+( 1
2N(p−2)−lp+m)|R−|+(− 1

2N+l)|T−|

× CT−R′t
1 R−CR′

2R−0sT t
−
(eiφ)e−iθp|R−|. (6.28)

As in case 2, we can now interpret these chiral blocks in terms of the topo-
logical string on X with M Lagrangian branes, now inserted on the external
leg as indicated in figure 6. Again from ref. [20], the topological partition
function in this geometry (with a particular choice of framing on the M
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Figure 6: The vertex representation of X, with a stack of M Lagrangian
branes with complexified holonomy V = ev, a stack of infinitely many ghost
branes with complexified holonomy U ′

1 = eu′
1 , and a stack of infinitely many

ghost antibranes with complexified holonomy U ′
2 = eu′

2 .

external branes) is

ψg
top(gtop, t, v, u′) = ψ0

top(gtop, t, v)
∑

R,T

CTR′
1RCR′

2R0sR′
1
(eu′

1)sR′
2
(eu′

2)

× (−)p|R|q
1
2pκR+ 1

2κT e−t|R|sT t(e−v), (6.29)

and similarly one can compute ψa
top with the ghost branes exchanged for

antibranes. Now define

t =
1
2
Ngs(p − 2) − iθp, (6.30)

u′
1 =

1
2
Ngs + iφ′

1, (6.31)

u′
2 =

1
2
Ngs + iφ′

2, (6.32)

v = −1
2
Ngs + iφ, (6.33)

gtop = gs. (6.34)

With this substitution and a suitable normalization, one can relate (6.29)
to the chiral blocks appearing in the factorization (6.26), similarly to what
was done above in case 2, obtaining

ZYM(N, gs, θ, φ)

=
∑

l,m∈Z

∫
dHφ′

1 dHφ′
2

(
ψg

top
(
gs, t + lpgs, v − lgs, u

′
1 − mgs, u

′
2
) )

×
(
ψa

top (gs, t − lpgs, v + lgs, u′
1 + mgs, u′

2)
)
. (6.35)

So finally we have found that Zopen
YM = |ψopen

top |2 + O(e−N ), both for branes
in the fiber and in the base.



634 MINA AGANAGIC ET AL.

6.3 Summing open D2-branes on O(−1) ⊕ O(−1) → CP
1

Next we want to verify that Zopen
YM can indeed be interpreted as counting

open D2-branes with the chemical potential ϕopen
e = 2πφ/gs. We consider

case 2, where we have a Wilson line freezing operator δM (ei
∮

γ A, eiφ) cutting
the sphere into two pieces, with discrete areas p1, p2 such that p1 + p2 = p,
and further specialize to the case p1 = p2 = 1.

As we did in the previous section, we compute the partition function Zopen
YM

of this Yang–Mills theory using the gluing procedure described in Appendix
B: namely, we construct the sphere by gluing two discs together with the
operator δM (ei

∮
A, eiφ) in the middle. However, unlike above where we used

the splitting H = H+ ⊗ H− to see the large N factorization of Zopen
YM , in this

section we will write the explicit formula for Zopen
YM at finite N .

The wave function of the q-deformed two-dimensional Yang–Mills theory
on the disc is a function of the eigenvalues ξ of the Wilson line around the
boundary, evaluated in Appendix C:

Ψ(ξ) = e−Ngs/24ΘN

(
1
2π

(ξ + θ),
igs

2π

)
, (6.36)

where ΘN denotes the theta function of Z
N ,

ΘN (z, τ) =
∑

γ∈ZN

eπiτ‖γ‖2
e2πi〈γ,z〉 for z ∈ R

N , Im τ > 0. (6.37)

In our case, we want to glue two such disc wave functions Ψ1(ξ), Ψ2(ξ) to
one another with δM (ei

∮
A, eiφ) sandwiched in the middle. The result of

this gluing is given in (B.8), but we need a little notation first: we divide
the lattice Z

N into Z
N−M ⊕ Z

M , and correspondingly divide ξ into ζ and
φ, with N − M and M components, respectively. Then the result of the
gluing is

Zopen
YM (N, gs, θ, φ) =

∫

[0,2π]N−M

dζ

2π
|D(ζ)|2Ψ1(−ζ,−φ)Ψ2(ζ, φ). (6.38)

Because of the simple form of the wave function, the ζ dependence and φ
dependence decouple, namely

Ψ(ζ, φ) = e−Ngs/24ΘN−M

(
1
2π

(ζ + θ),
igs

2π

)
ΘM

(
1
2π

(φ + θ),
igs

2π

)
. (6.39)
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So write

fN−M (θ, gs) =
∫

dζ

2π
|D(ζ)|2ΘN−M

(
1
2π

(ζ + θ),
igs

2π

)

× ΘN−M

(
1
2π

(−ζ + θ),
igs

2π

)
. (6.40)

Then (6.38) becomes

Zopen
YM (N, gs, θ, φ) = e−Ngs/12fN−M (θ, gs)ΘM

(
1
2π

(φ + θ),
igs

2π

)

× ΘM

(
1
2π

(−φ + θ),
igs

2π

)
. (6.41)

Now we can use the Poisson resummation property of the theta function,

ΘM (z, τ) =
(

i

τ

)M/2

e−πi‖z‖2/τΘM (z/τ, −1/τ), (6.42)

to obtain

Zopen
YM (N, gs, θ, φ) = e−Ngs/12fN−M (θ, gs)

(
2π

gs

)M

e− 1
2gs

(‖φ+θ‖2+‖φ−θ‖2)

× ΘM

(
− i

gs
(φ + θ),

2πi

gs

)
ΘM

(
− i

gs
(−φ + θ),

2πi

gs

)
.

(6.43)

Expanding out these theta functions then gives Zopen
YM (N, gs, θ, φ) as an

expansion in e−2πφ/gs , up to a prefactor e− 1
gs

‖φ‖2
. So up to this prefac-

tor, we have verified that Zopen
YM can indeed be interpreted as counting open

D2-branes with the chemical potential ϕopen
2 = 2πφ/gs.

For completeness, let us briefly consider the leftover factor fN−M (θ, gs).
Writing out using (A.4)

|D(ζ)|2 =
∑

σ,σ′∈SN−M

(−)σσ′
ei〈ζ,σ(ρ)−σ′(ρ)〉 (6.44)

(where ρ = ρN−M ) and evaluating the integral using the definitions of the
theta functions gives

fN−M (θ, gs) =
∑

σ,σ′∈SN−M

(−)σσ′
e− 1

2gs‖σ(ρ)−σ′(ρ)‖2

× ΘN−M

(
1
2π

(−2θ + igs(σ(ρ) − σ′(ρ))),
igs

π

)
. (6.45)

So this can also be resummed to give an expansion in e−4π2/gs and e−2πθ/gs ,
as one expects from the closed string sector of the conjecture.
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Appendix A Group theory

In this appendix, we summarize our group theory conventions and a few
useful formulas.

We use script letters R,P,Q, . . . to denote representations of unitary
groups such as U(N), and capital letters R, P, Q, . . . to denote Young dia-
grams. Often Young diagrams will appear as the chiral and anti-chiral parts
R± of a representation R = R+R−[l], as described in Appendix D.

The weight lattice of U(N) is Z
N , with its standard inner product 〈, 〉. A

highest weight representation R is characterized by a weight (r1, . . . , rN ) ∈
Z

N , in a particular Weyl chamber; we make the standard choice of Weyl
chamber, given by the constraint r1 ≥ · · · ≥ rN . With this choice, the entries
ri correspond to the lengths of the rows of the extended Young diagram for
the representation R. The Weyl group W of U(N) is the symmetric group,
W � SN , which permutes the entries of Z

N in the obvious way.

We will use the symbol R both for the representation and for its highest
weight. It is also convenient to introduce the symbol R̂ for R + ρ, where ρ
is half the sum of the positive roots of U(N), concretely

ρ =
1
2
(N − 1, N − 3, . . . , 3 − N, 1 − N). (A.1)

We also write 1 for the “unit” vector,

1 = (1, 1, . . . , 1, 1). (A.2)

With this notation we can write the Weyl character formula13

TrR(eiξ) = D(ξ)−1
∑

σ∈SN

(−)σei〈R̂,σ(ξ)〉, (A.3)

13When N is odd, D(ξ)−1 and
∑

σ∈SN
(−)σei〈R̂,σ(ξ)〉 are not quite well defined as

functions of the eigenvalues eiξ — they change sign under ξi → ξi + 2π. Nevertheless
their product is still well defined.
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where the denominator D(ξ) is

D(ξ) =
∑

σ∈SN

(−)σei〈ξ,σ(ρ)〉 =
∏

i<j

(ei(ξi−ξj)/2 − e−i(ξi−ξj)/2). (A.4)

In computing the q-deformed Yang–Mills amplitudes, we will need to use
the Hopf link invariant SPQ of the level k Chern–Simons theory with gauge
group U(N). Define gs = 2π

N+k . There is a formula expressing SPQ as a sum
over the Weyl group W � SN :

SPQ = e−gs(‖ρ‖2+N/24)
∑

σ∈SN

(−)σegs〈P̂,σ(Q̂)〉. (A.5)

(The standard formulas for SPQ include a different normalization, but in the
context where we will use SPQ we will absorb this in other normalization
factors).

For any N1, N2 with N1 + N2 = N , let Q label a representation of U(N1)
and A a representation of U(N2), whereas R is a representation of U(N);
then we define the branching coefficients BR

QA by the rule that R decomposes
under U(N1) × U(N2) as

R →
⊕

Q,A
BR

QA[Q,A]. (A.6)

We fix the normalization of the Casimir operators of U(N) as follows: in a
representation R with highest weight (r1, . . . , rN ):

C1(R) = 〈R̂,1〉 =
∑

i

ri, (A.7)

C2(R) = ‖R̂‖2 − ‖ρ‖2 =
∑

i

ri(ri + N + 1 − 2i). (A.8)

We write NR
R1R2

for the usual Littlewood–Richardson numbers, and also
use a slight generalization which we write NR

R1···Rk
. These numbers can be

defined in various equivalent ways — for example, if we think of the Young
diagrams Ri and R as representations of GL(∞), they are the tensor product
coefficients, i.e.

R1 ⊗ · · · ⊗ Rk =
⊕

R

NR
R1···Rk

R. (A.9)

In particular, NR
R1···Rk

= 0 unless
∑k

i=1|Ri| = |R|, where |R| denotes the
total number of boxes in the diagram R.

We write sR(x) for the “Schur function” associated with the Young dia-
gram R: this is a symmetric polynomial in infinitely many variables, x =
(x1, x2, . . .). It can be defined in various equivalent ways; one convenient way
to think of it is as the character of the Mat(∞, C) representation associated
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to R, evaluated on the diagonal matrix with entries (x1, x2, . . .). There is a
bilinear inner product 〈, 〉 on the ring of symmetric polynomials for which
the Schur functions form an orthonormal basis, 〈sR, sS〉 = δRS ; in terms of
this inner product NR

R1···Rk
= 〈

∏k
i=1 sRi , sR〉. Viewing the xi as eigenvalues,

the inner product can be written as a formal integral of class functions over
U(∞) (interpreted as an inverse limit of finite-dimensional groups with their
normalized Haar measures),

〈f, g〉 =
∫

dHξ f(e−iξ)g(eiξ). (A.10)

We also use the “skew Schur functions” sR/A(x), defined by

sR/A(x) =
∑

Q

NR
QAsQ(x). (A.11)

See ref. [29] for much more on Schur functions and skew Schur functions.

We also introduce an analog of the skew Schur function, a “skew trace”
involving the branching U(N) → U(N1) × U(N2) where N1 + N2 = N : this
is a rule by which a representation of U(N) and a representation of U(N2)
induce a class function on U(N1), which we define by

TrR/A(U) =
∑

Q
BR

QATrQ(U). (A.12)

Here R,Q,A denote the representations of U(N), U(N1), U(N2), respec-
tively; B denotes the branching coefficients defined in (A.6); and U ∈ U(N1).

We will frequently encounter sums
∑

R′ over the set of all Young diagrams.
A particularly useful identity for reducing such sums is

∑

R′,S′

(−)|R′|NA
R′S′A1···Aa

NB
R′tS′B1···Bb

= NA
A1···Aa

NB
B1···Bb

. (A.13)

One can prove (A.13) using the “Cauchy identities” for Schur functions,
given e.g. in ref. [29],

∑

S′

sS′(x)sS′(y) =
∞∏

i=1

∞∏

j=1

(1 − xiyj)−1, (A.14)

∑

R′

(−)|R′|sR′(x)sR′t(y) =
∞∏

i=1

∞∏

j=1

(1 − xiyj). (A.15)
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Appendix B The q-deformed 2-d Yang–Mills theory

In this section, we review some facts about two-dimensional Yang–Mills the-
ory and its q-deformed cousin. We begin with the two-dimensional Euclidean
Yang–Mills action14 for gauge group G = U(N),

SYM =
1

2g2
YM

(∫

Σ
d2xTr F ∧ ∗F + θYM

∫

Σ
Tr F

)
. (B.1)

It is often convenient to rewrite (B.1) by introducing an additional adjoint-
valued scalar field Φ, which enters the action quadratically: namely, (B.1)
is equivalent to

SYM =
1

2g2
YM

(
2
∫

Σ
Tr ΦF −

∫

Σ
μ Tr Φ2 + θYM

∫

Σ
μTr Φ

)
, (B.2)

where μ is the area element on Σ. Once we have introduced this Φ we can
define the q-deformed theory: we use the same action SYM, but we consider
the fundamental variables to be the gauge connection and eiΦ, rather than
the gauge connection and Φ. More precisely, since there is an ambiguity in
recovering Φ from eiΦ, SYM is not well defined as a function of Φ; to get a
well-defined expression inside the path integral one has to sum e−SYM over
all “images” Φ. Equivalently, we integrate over all Φ, not just a fundamental
domain, but we use the measure appropriate for an integral over eiΦ. This
construction gives the q-deformed theory with q = e−g2

YM , which is the one
that naturally occurs in this article; to get a different value of q one would
change the periodicity of Φ.

The partition function can be computed in various ways; here we will focus
on the computation by cutting and pasting. In the case of the undeformed
Yang–Mills theory, this procedure was reviewed in ref. [30]; our treatment
will be briefer, and is intended mostly to recall the new features that appear
in the q-deformed case, as described in ref. [6].

To get the cutting-and-pasting procedure started one first needs to know
the Hilbert space H of the theory on S1; as for the usual 2-d Yang–Mills
theory, it is simply the space of class functions Ψ(g), with g ∈ G interpreted
as the holonomy of the connection around S1. The path integral over a
surface with boundary S1 thus gives a state Ψ(g). Two such surfaces can

14Note that our convention for θYM is not the usual one; θusual
YM = iπ

g2
YM

θYM.
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be glued using the rule15

〈Ψ1|Ψ2〉 =
∫

G
dHg Ψ1(g−1)Ψ2(g) (B.3)

with dHg the Haar measure. When G = U(N) we can write these wave func-
tions more concretely as functions of the eigenvalues eiξi , totally symmetric
under the permutation group SN , and the gluing rule becomes

〈Ψ1|Ψ2〉 =
∫

[0,2π]N

dξ

2π
|D(ξ)|2 Ψ1(−ξ)Ψ2(ξ), (B.4)

where as in (A.4)

D(ξ) =
∏

i<j

(ei(ξi−ξj)/2 − e−i(ξi−ξj)/2). (B.5)

A convenient basis of H (which in particular diagonalizes the Hamiltonian)
is given by the characters TrR(g) as R runs over all representations of G.
In that basis the gluing rule becomes

〈R1|R2〉 = δR1R2 . (B.6)

Next we need the partition function on a few elementary surfaces, from
which any Σ of interest to us can be pasted together.

The annulus. The annulus of area a has two boundaries, so it gives an oper-
ator Aa : H → H. The gluing rule for an annulus can be obtained directly
from the action by working out the Hamiltonian; it is [6]

〈R1|Aa|R2〉 = δR1R2e
−a( 1

2g2
YMC2(R)−iθYMC1(R)). (B.7)

The Wilson line freezing operator. As discussed in Section 5, we will be par-
ticularly interested in computing amplitudes involving a particular operator,
written δM (ei

∮
A, eiφ), which has the effect of freezing M of the eigenvalues

along a Wilson loop to the values eiφ1 , . . . , eiφM . A natural guess for the
gluing rule with δM (ei

∮
A, eiφ) inserted can be obtained by splitting up the

N eigenvalues ξi into ( ζ︸︷︷︸
N−M

, φ︸︷︷︸
M

): namely, one freezes the φ eigenvalues in

15We will always use the notation 〈|〉 to stand for the (linear) gluing rule rather than
the (sesquilinear) inner product on the Hilbert space. The two are the same when act-
ing on real linear combinations of the characters TrR(g) but differ for complex linear
combinations.
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the gluing rule (B.4) and integrates only over the ζ eigenvalues, obtaining

〈Ψ1|δM (ei
∮

A, eiφ)|Ψ2〉 =
∫

[0,2π]N−M

dζ

2π
|D(ζ)|2 Ψ1(−ζ,−φ)Ψ2(ζ, φ). (B.8)

This integral has an interpretation in the representation basis. Namely, sup-
pose Ψj(ξ) = TrRj (e

iξ). Then decomposing Rj under U(N − M) × U(M)
gives

Ψj(ξ) =
∑

Aj ,Qj

BRj

AjQj
TrAj (e

iζ)TrQj (e
iφ). (B.9)

The integral over ζ then picks out the terms with A1 = A2, giving

〈R1|δM (ei
∮

A, eiφ)|R2〉 =
∑

Q1,Q2,A
BR1

AQ1
BR2

AQ2
TrQ1(e

−iφ)TrQ2(e
iφ). (B.10)

If we define the skew trace TrR/S as in (A.12), we can rewrite this as

〈R1|δM (ei
∮

A, eiφ)|R2〉 =
∑

A
TrR1/A(e−iφ)TrR2/A(eiφ). (B.11)

The disc. The disc of zero area gives a simple state Ψ0 ∈ H on its boundary,

Ψ0 =
∑

R
SR0|R〉, (B.12)

as was computed in ref. [6]. (This should be compared to the analogous
expression in the non-q-deformed Yang–Mills theory — there one would
have replaced SR0 by dimR up to overall normalization. Indeed, SR0/S00
is the quantum dimension dimq R).

The dual Wilson line freezing operator. Also as discussed in Section 5,
we need the operator δM (eiΦ, eiφ) which freezes M of the eigenvalues of
the dual Wilson line Φ at a point of Σ. The disc of zero area with this
operator inserted gives a state Ψφ ∈ H on its boundary, for which the natural
formula is

Ψφ =
∑

R,S
SRSTrS/0(e

iφ)|R〉. (B.13)

This is a straightforward generalization of the result of ref. [6] in the case
M = N , along the lines of what we did above for the Wilson line freezing
operator. (In the special case M = N , the result of ref. [6] just replaces
TrS/0 by TrS in the above).
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The trinion (pair of pants). The trinion has three boundaries, so it gives an
element in H ⊗ H ⊗ H, namely

T =
∑

R

|R〉 ⊗ |R〉 ⊗ |R〉
S0R

. (B.14)

It was computed in ref. [6]; we include it here just for completeness since it
would be relevant for Riemann surfaces of genus g > 1.

In addition to these local ingredients, we will include an overall normal-
ization factor Z0

YM in the partition function of this q-deformed theory; we
do not give a general rule for this normalization here, but in the example
we consider in the text, it can be found in (6.23).

A q-deformation of two-dimensional Yang–Mills theory has also been con-
sidered in ref. [31] where it was formulated using a lattice regularization.
That formulation is likely to be equivalent to the one discussed here and in
ref. [6]; at least the partition function appears to be the same on an arbitrary
surface.

Appendix C The disc wave function

Consider the q-deformed 2-d Yang–Mills theory on a disc of area p, with
parameters fixed by

θYM = θ, g2
YM = gs, q = e−gs . (C.1)

The path integral on this disc gives a state Ψ(ξ) on the boundary, for which
one can give a formula using the rules of Appendix B; namely, it is a sum
over irreducible representations R of U(N),

Ψ(ξ) =
∑

R
SR0e− 1

2pgsC2(R)eiθpC1(R)TrReiξ. (C.2)

Our purpose in this section is to express this Ψ(ξ) in terms of theta func-
tions. As reviewed in Appendix A, the irreducible representations of R
can be labeled by their highest weights R = (r1, . . . , rN ) ∈ Z

N , subject to
the constraint r1 ≥ r2 ≥ · · · ≥ rN . We also write R̂ = R + ρ. Now we use
the Weyl character formula (A.3), the modular S matrix formula (A.5), and
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the Casimirs (A.7), (A.8); altogether (C.2) becomes

Ψ(ξ) =
∑

R

⎛

⎝e−gs(‖ρ‖2+N/24)
∑

σ∈SN

(−)σegs〈σ(R̂),ρ〉

⎞

⎠ e− 1
2pgs(‖R̂‖2−‖ρ‖2)+iθp〈R̂,1〉

×

⎛

⎝D(ξ)−1
∑

σ′∈SN

(−)σ′
ei〈σ′(R̂),ξ〉

⎞

⎠ . (C.3)

Writing σ̃ = σσ′−1, and using the Weyl invariance of 〈, 〉 and 1, we can
rewrite this as

Ψ(ξ) = e−gs(‖ρ‖2+N/24)D(ξ)−1e
1
2pgs‖ρ‖2

×
∑

R

∑

σ,σ̃∈SN

(−)σ̃e− 1
2pgs‖R̂‖2+i〈σ(R̂),σ̃(ξ)+θp1−igsρ〉. (C.4)

Now we want to express this as a theta function. If R runs over all weight
vectors in a given Weyl chamber, then it is easy to see that R̂ runs over
all weight vectors in the interior of that chamber.16 Since the Weyl group
acts transitively to permute the Weyl chambers, the sum over σ and R can
be combined into a single sum over γ = σ(R̂), where γ runs over the weight
lattice Z

N , or more precisely over those vectors in Z
N which are not in the

boundary of any Weyl chamber. In terms of γ the sum becomes

Ψ(ξ) = e−gs(‖ρ‖2+N/24)D(ξ)−1e
1
2pgs‖ρ‖2 ∑

γ

e− 1
2pgs‖γ‖2+i〈γ,θp1−igsρ〉

×
∑

σ̃∈SN

(−)σ̃ei〈γ,σ̃(ξ)〉. (C.5)

But now note that the sum over σ̃ vanishes if γ is fixed by some Weyl
reflection σ̃, i.e. if it lies on the boundary of a Weyl chamber. Therefore,
we can extend the sum over γ to run over the whole weight lattice Z

N . The
sum can be written (now dropping the˜on σ for notational simplicity)

Ψ(ξ) = e−gs(‖ρ‖2+N/24)D(ξ)−1e
1
2pgs‖ρ‖2

×
∑

σ∈SN

(−)σΘN

(
1
2π

(σ(ξ) + θp1 − igsρ),
ipgs

2π

)
. (C.6)

Here we have introduced the theta function of Z
N ,

ΘN (z, τ) =
∑

γ∈ZN

eπiτ‖γ‖2
e2πi〈γ,z〉 for z ∈ R

N , Im τ > 0, (C.7)

16If N is even, the weight lattice has to be shifted by 1
21. This subtlety modifies some

of our intermediate expressions but cancels out in the final result (C.9).
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which obeys the functional equation

ΘN (z + τλ, τ) = e−πiτ‖λ‖2
e−2πi〈λ,z〉ΘN (z, τ) for λ ∈ Z

N . (C.8)

One can simplify (C.6) in the case p = 1; namely, in this case, one can apply
(C.8) with λ = −ρ. After some straightforward algebra using (A.4) the sum
over σ cancels the denominator D(ξ), leaving

Ψ(ξ) = e−gsN/24ΘN

(
1
2π

(ξ + θ1),
igs

2π

)
. (C.9)

Appendix D Factorization

In this appendix, we give some mathematical results which are used in the
text to establish the factorization of the two-dimensional Yang–Mills ampli-
tude with operator insertions into chiral and anti-chiral parts.

D.1 Coupled representations

An essential technical tool in studying the factorization of 2-d Yang–Mills
into chiral and anti-chiral sectors, introduced in ref. [32], is the notion of
a coupled representation of U(N). Here we review the notion of coupled
representation.

Recall that the irreducible representations of SU(N) correspond to Young
diagrams with no more than N rows. Such a diagram can be specified by
giving the lengths of the rows, (λ1, . . . , λN ), with λ1 ≥ λ2 ≥ · · · ≥ λN , and
all λi ≥ 0. Denote the fundamental representation by V . Then the repre-
sentation of SU(N) corresponding to λ is obtained as a particular subspace
of V ⊗|λ|, roughly by symmetrizing over the rows and antisymmetrizing over
the columns. In the case of SU(N) one can obtain all representations in
this way, but for U(N) one also needs to include copies of the antifunda-
mental representation V . This corresponds to considering “extended Young
diagrams” which can include “antiboxes” as well as boxes, i.e. removing the
constraint that all λi ≥ 0, as shown in figure 7.

Now we can describe the coupled representations of U(N). The extended
Young diagram for a coupled representation R is built from two Young
diagrams R+, R−, just by putting boxes in the shape R+ at the upper left,
antiboxes in the shape of an upside-down version of R− at the lower right,
and zero-length rows in between so that the total height of the diagram is
N . An example is shown in figure 8. (Note that this procedure only makes
sense for sufficiently large N , namely, N has to be greater than the combined
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Figure 7: An extended Young diagram representing a representation of
U(N) (for N = 9) constructed by symmetrization and antisymmetrization
over both fundamental representations (white boxes) and antifundamental
representations (grey boxes).

number of rows in R+ and R−. We consider coupled representations for
which one of R± has more than 1

2N rows to be undefined). We write the
coupled representation R = R+R−. We will also need a slight generalization
of this construction: denote by R+R−[l] the representation obtained by
tensoring R+R− with l powers of the determinant representation of U(N).
This is equivalent to shifting the lengths of all rows by l.

The representations R+R−[l], where R+ and R− are Young diagrams with
≤1

2N rows, are a basis for the representation ring of U(N) (at least for N

even). Another such basis would be obtained by taking instead R+ ⊗ R−.
The two are not the same, although R+R− is the principal component of

Figure 8: A coupled representation of U(N) (for N = 9).
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R+ ⊗ R−; the relation between the two is given by

R+ ⊗ R− =
⊕

S±

[
∑

S′

N
R+
S+S′N

R−
S−S′

]
S+S− (D.1)

(so long as R± each have ≤1
2N rows; otherwise the right side would include

S+S− where one of S± has more than 1
2N rows, which we have not defined).

Here S′ and S± run over all (ordinary) Young diagrams. Note that the only
S+ that contribute are ones which are contained in R+, and similarly for
S−, so the sum in (D.1) is finite. It gives the decomposition of R+ ⊗ R−
into irreducibles.

We will also need the inverse of (D.1). To get it, we use the fact that
the sum over S′ can be undone by summing over another auxiliary Young
diagram R′, using formula (A.13), here in the form

∑

R′,S′

(−)|R′|NA+
B+R′S′N

A−
B−R′tS′ = δ

A+
B+

δ
A−
B−

. (D.2)

Applying this to (D.1) one obtains

S+S− =
⊕

R±

(
∑

R′

(−)|R′|NS+
R+R′N

S−
R−R′t

)
R+ ⊗ R−. (D.3)

Again here, R′ and R± run over all ordinary Young diagrams, but only those
R± which are contained in S± contribute, so the sum is finite.

One can also rewrite (D.1) in terms of characters as

∑

R±

TrR+⊗R−
(U)sR+(V+)sR−(V−)

=
∑

S±

(
∑

S′

sS+⊗S′(V+)sS−⊗S′(V−)

)
TrS+S−

(U) (D.4)

and (D.3) as

∑

S±

TrS+S−
(U)sS+(V+)sS−(V−)

=
∑

R±

(
∑

R′

(−)|R′|sR+⊗R′(V+)sR−⊗R′t(V−)

)
TrR+⊗R−

(U). (D.5)
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It is useful to know how to decompose the Casimir operators for R =
R+R−[l]:

C1(R+R−[l]) = |R+| − |R−| + Nl, (D.6)

C2(R+R−[l]) = κR+ + κR− + N(|R+| + |R−|) + 2l(|R+| − |R−|) + Nl2.
(D.7)

Here we introduced

κR =
∑

r2
i −

∑
c2
i , (D.8)

where ri are the lengths of the rows of the Young diagram R and ci are the
lengths of the columns. (So κR = −κRt , where Rt denotes the transpose of
the diagram).

D.2 Branching rules

To understand the behavior of Yang–Mills theory when some eigenvalues
are frozen, we need to understand the branching rules for coupled repre-
sentations: how does a coupled representation of U(N) decompose under
U(N) → U(N1) × U(N2), for N1 + N2 = N? In this section we will give
formulas for these branching rules.

We begin with the case of a representation R of U(N) which is given by
an ordinary Young diagram, R = R (i.e. it can be constructed using only
fundamental indices, without the need for antifundamentals). In this case
the branching rule is well known (it is given e.g. in ref. [29] in the language
of Schur functions),

R →
⊕

R1,R2

NR
R1R2

[R1, R2]. (D.9)

Here R1 and R2 run over all Young diagrams (but of course the coefficient
NR

R1R2
is only non-zero if |R1| + |R2| = |R|). The same rule holds for repre-

sentations R constructed only from antifundamentals. Combining these two
rules we can find the branching rule for tensor products,

R+ ⊗ R− →
⊕

R1±,R2±

N
R+
R1+R2+

N
R−
R1−R2−

[R1+ ⊗ R1−, R2+ ⊗ R2−]. (D.10)

Now we can convert (D.10) into a branching rule for coupled representations.
We start with a coupled representation R+R−, apply (D.3) to write it in
terms of tensor products, then apply (D.10) to decompose it under
U(N1) × U(N2), then apply (D.1) to write the U(N2) part in terms of
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coupled representations again. This leads straightforwardly to

R+R− →
⊕

A±,Q±

⎛

⎝
∑

S′,A′

(−)|S′|NR+
A+Q+S′A′N

R−
A−Q−S′tA′

⎞

⎠ [Q+ ⊗ Q−, A+A−].

(D.11)
But using (A.13) the sums over S′ and A′ cancel one another, and we are
left with

R+R− →
⊕

A±,Q±

(
N

R+
A+Q+

N
R−
A−Q−

)
[Q+ ⊗ Q−, A+A−]. (D.12)

Note that for this formula to make sense we need that the A+A− that appear
are all well defined, which requires that R± are shorter than 1

2N2 rows.

Tensoring with powers of the determinant representation is also straight-
forward — writing this representation [1], it has the simple branching rule
[1] → [[1], [1]]. This leads to

R+R−[l] →
⊕

A±,Q±

(
N

R+
A+Q+

N
R−
A−Q−

) [
Q+ ⊗ Q− ⊗ [l], A+A−[l]

]
. (D.13)

The form of (D.13) that we ultimately use will be, when R = R+R−[l] and
A = A+A−[l],

TrR/A(eiφ) = sR+/A+(eiφ)sR−/A−(e−iφ) det(eilφ). (D.14)

Here eiφ ∈ U(N1), and we emphasize again that (D.14) holds only when R±
are shorter than 1

2N2 rows.

D.3 Factorization of SPQ

In order to understand the large-N factorization of the q-deformed Yang–
Mills with insertions, we need to study the properties of the modular matrix
SPQ of the U(N) Chern–Simons theory in the case where P and Q are
coupled representations,

P = P+P−[l], (D.15)

Q = Q+Q−[m]. (D.16)

The most naive expectation would be that SPQ would be factorized into a
piece depending on P+, Q+ and a piece depending on P−, Q−. As we will
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show below, the correct formula is a sum of such terms,

SPQ

= M(q)η(q)N

× q− 1
2 (κQ++κQ− )+(− 1

2 N−m)|P+|+(− 1
2 N+m)|P−|+(− 1

2 N−l)|Q+|+(− 1
2 N+l)|Q−|−2lmN

×
∑

R′

(−)|R′|qN |R′|CP+Qt
+R′CP−Qt

−R′t , (D.17)

where C is the topological vertex of ref. [20] (in canonical framing). This
formula was already obtained in ref. [6], in the special case P± = 0, by direct
computation using results from ref. [33].

Here, we will give a physical argument which explains the reason for the
factorization in the more general case of arbitrary P± and Q±.17 We restrict
to the case l = m = 0, i.e. P = P+P− and Q = Q+Q−; the dependence on
l and m is easily restored using (A.5) and (D.6). The idea is to realize
the left side of (D.17) as the partition function of the A model topological
string on the resolved conifold T ∗S3, with N branes wrapped on S3 and
four infinite stacks of non-compact branes. Via the geometric transition
of ref. [34] this is equal to the partition function of the A model on the
deformed conifold O(−1) ⊕ O(−1) → CP

1, including the four infinite stacks
of non-compact branes [25]. The latter partition function can be computed
using the topological vertex techniques of ref. [20], which (as we will see)
gives the right side of (D.17).18

So we begin with the geometry T ∗S3. As in ref. [35], we represent it as a
T 2 × R fibration over R

3. There are two lines l, l′ in R
3 over which an S1

of the T 2 × R fiber degenerates, which are shown in figure 9. Also shown in
that figure is the Lagrangian submanifold S3, which is a T 2 fibration over
a line interval connecting l and l′. Finally, we also indicate four Lagrangian
submanifolds of T ∗S3, constructed as described in ref. [28]. Each such sub-
manifold has topology S1 × R

2.

We will consider the topological A model on this geometry. On each
Lagrangian submanifold we place an infinite stack of A model D-branes.
There is then a GL(∞)-valued complexified Wilson line on each stack, which
couples to the open strings and thus enters the partition function. We write

17Our argument is not completely rigorous, but we hasten to add that the final result
has been checked on a computer for a variety of representations P± and Q±.

18Although the geometry O(−1) ⊕ O(−1) → CP
1 is also considered in the main text,

the role the topological string is playing here is quite different from the way it appears
there. We are using it here only as an auxiliary tool to prove the factorization of SPQ.
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Figure 9: A toric representation of the resolved conifold geometry T ∗S3,
with the Lagrangian submanifold S3 indicated, as well as four non-compact
Lagrangian submanifolds with topology S1 × R

2. Each non-compact sub-
manifold supports an infinite stack of branes with the GL(∞)-valued com-
plexified holonomy indicated.

these four Wilson lines U± and U ′
±, as indicated in the figure. We also

include N D-branes on the Lagrangian submanifold S3.

The A model partition function in this geometry can be computed fol-
lowing refs. [25,35]. The closed string partition function is essentially trivial
— it just gives an overall function of q, which is potentially ambiguous due
to the non-compactness of the Calabi–Yau. We set it to 1 here. The open
string partition function receives contributions from annulus diagrams run-
ning along the lines l and l′. On each line there are three kinds of annuli
which contribute: one kind with the two boundaries on the two infinite
stacks of branes, and two kinds with one boundary on an infinite stack and
one boundary on the N branes on S3.

Integrating out the open string sector connecting the two infinite stacks,
one gets a contribution to the partition function

∑

R

(−)|R|sR(U+)sRt(U−), (D.18)

whereas the sectors connecting the infinite stacks to the N branes on S3

contribute operators
⎛

⎝
∑

P+

sP+(U+)TrP+(V )

⎞

⎠

⎛

⎝
∑

P−

sP−(U−)TrP−(V †)

⎞

⎠ (D.19)

with V representing the holonomy around the S1 where the annuli over l
meet S3.
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Combining (D.18) and (D.19), one obtains for the open string contribution
from the branes on l∑

R,P±

(−)|R|sR⊗P+(U+)sRt⊗P−(U−)TrP(V ). (D.20)

Using the formula (D.5), (D.20) becomes
∑

P±

sP+(U+)sP−(U−)TrP(V ). (D.21)

Similarly, from the branes on l′ we obtain
∑

Q±

sQ+(U ′
+)sQ−(U ′

−)TrQ(V ′), (D.22)

where V ′ is the holonomy on the S1 where the annuli over l′ meet S3.
Altogether, then, the contribution from open strings which involve the four
infinite stacks of branes is∑

P±,Q±

[
sP+(U+)sP−(U−)sQ+(U ′

+)sQ−(U ′
−)

]
TrP(V )TrQ(V ′). (D.23)

We view this sP (V )sQ(V ′) as a product of Wilson line operators deforming
the open string theory on the N branes on S3, namely the U(N) Chern–
Simons theory; these operators are arranged so as to give a Hopf link in S3.
The Chern–Simons amplitude with this link inserted is simply SPQ [36], so
the topological string partition function is finally

ψtop =
∑

P±,Q±

[
sP+(U+)sP−(U−)sQ+(U ′

+)sQ−(U ′
−)

]
SPQ. (D.24)

To get the desired factorization of SPQ we now compute this partition func-
tion in another way: namely, we consider the geometric transition [34] to
the deformed conifold O(−1) ⊕ O(−1) → CP

1, with the volume of CP
1 given

by t = Ngs, and with four infinite stacks of branes, as shown in figure 10.
Using the topological vertex of ref. [20], the A model partition function in
this geometry can be computed as19

ψtop = M(q)η(q)N
∑

P±,Q±

[
sP+(U+)sP−(U−)sQ+(U ′

+)sQ−(U ′
−)

]

× q− 1
2 (κ(Q+)+κ(Q−)+N(|P+|+|Q+|+|P−|+|Q−|))

×
∑

R′

(−)|R′|qN |R′|CP+Qt
+R′CP−Qt

−R′t . (D.25)

More precisely, the factors M(q)η(q)N in ref. (D.25) do not appear in ref. [20],
so they deserve some extra comment. The factor M(q) is associated with

19One could determine the framing factors in (D.25) from first principles; we determined
them by requiring that the large N limit of our factorization formula be correct.
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Figure 10: The geometry of figure 9 after the geometric transition.

the closed string sector; namely, in the large volume limit, it was shown in
refs. [37, 38] that the closed A model partition function reduces to M(q)χ/2

on a Calabi–Yau three-fold with Euler characteristic χ. In the non-compact
case we are considering here χ is ambiguous, but the change in χ that occurs
due to the geometric transition would naturally be Δχ = 2 (a 3-cycle gets
replaced by a 2-cycle). Thus, since we took χ = 0 before the transition (we
chose the closed string contribution in ψtop to be 1), we should take χ = 2
after the transition, which accounts for the factor M(q). The factor η(q)N

is not as easily understood, but is presumably associated with the fact that
N D3-branes have disappeared in the transition; the same factor appeared
in ref. [39] associated to a single non-compact D3-brane. Comparing (D.24)
and (D.25) one obtains the desired formula (D.17).

One can also compute a factorization formula for 1/S0P , as was done in
ref. [6]:

1
S0P

= M(q)−1η(q)−Nq
1
2N(|P+|+|P−|)

∑
R CP+0RqN |R|CP−0R

C2
00P+

C2
00P−

. (D.26)

It would be interesting to know whether there is a physical argument for this
factorization formula along the lines of the argument given above for (D.17).

D.4 Factorization of q-deformed Yang–Mills amplitudes

Now we are ready to consider the large N factorization of the q-deformed
Yang–Mills amplitudes with operator insertions. We will approach the
problem by factorizing each of the elementary ingredients from Appendix B
separately.

In the large N (’t Hooft) limit, a convenient basis for the Hilbert space H is
given by the characters of the “coupled representations” which we introduced
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in Appendix A; we write R = |R+R−[l]〉 for the states corresponding to the
coupled representations. As was argued in ref. [32], these representations are
the only ones which contribute to the large N amplitudes, to all orders in
1/N ; the reason is that they are the only ones with C2(R) ∼ N . All other
representations are exponentially suppressed in the ’t Hooft limit by the
factors e− 1

2ag2
YMC2(R), which appear on a surface of area a as in Appendix B—

in the large N limit they give contributions which are O(e−N ).

In this factorized basis, the ingredients of the amplitudes can be written
as follows:

The annulus. Using (B.7) together with (D.6) and (D.7), we obtain easily

〈R1+R1−[l1]|Aa|R2+R2−[l2]〉
= δR1+R2+δR1−R2−δl1l2

× e−a 1
2g2

YMNl2eiNaθYMle−a( 1
2g2

YM(κR++N |R+|+2l|R+|)−iθYM|R+|)

× e−a( 1
2g2

YM(κR−+N |R−|−2l|R−|)+iθYM|R−|). (D.27)

The Wilson line freezing operator. From (B.11) and (D.14) we find

〈R1+R1−[l1]|δM (ei
∮

A, eiφ)|R2+R2−[l2]〉

= δl1,l2

⎛

⎝
∑

A+

sR1+/A+(e−iφ)sR2+/A+(eiφ)

⎞

⎠

×

⎛

⎝
∑

A−

sR1−/A−(eiφ)sR2−/A−(e−iφ)

⎞

⎠. (D.28)

The disc. From (B.12) and (D.17) this is

Ψ0 = M(q)η(q)N
∑

l∈Z,R±

q− 1
2N(|R+|+|R−|)

[
∑

R′

(−)|R′|qN |R′|CR+0R′CR−0R′t

]

× |R+R−[l]〉. (D.29)
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The dual Wilson line freezing operator. From (B.13), (D.17) and (D.14)
we get

Ψφ

= M(q)η(q)N
∑

l,m∈Z,R±,S±

× q− 1
2 (κS++κS− )+(− 1

2 N−m)|R+|+(− 1
2 N+m)|R−|+(− 1

2 N−l)|S+|+(− 1
2 N+l)|S−|−2lmN

×
[
∑

R′

(−)|R′|qN |R′|CR+St
+R′CR−St

−R′t

]
sS+(e−iφ)sS−(eiφ) det(eimφ)|R+R−[l]〉.

(D.30)

The trinion (pair of pants). From (B.14) and (D.26) this is

T =
∑

l∈Z,R±

[
∑

R′

q
1
2N(|R+|+|R−|) CR+0R′qN |R′|CR−0R′

C2
00R+

C2
00R−

]

× |R+R−[l]〉 ⊗ |R+R−[l]〉 ⊗ |R+R−[l]〉. (D.31)
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